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Preface 

Software architecture is a primary factor in the creation and evolution of 
virtually all products involving software. It is a topic of major interest in the 
research community where pronusmg formalisms, processes, and 
technologies are under development. Architecture is also of major interest in 
industry because it is recognized as a significant leverage point for 
manipulating such basic development factors as cost, quality, and interval. 
Its importance is attested to by the fact that there are several international 
workshop series as well as major conference sessions devoted to it. 

The First Working IFIP Conference on Software Architecture (WICSAl) 
provided a focused and dedicated forum for the international software 
architecture community to unify and coordinate its effort to advance the state 
of practice and research. WICSA 1 was organized to facilitate information 
exchange between practising software architects and software architecture 
researchers. The conference was held in San Antonio, Texas, USA, from 
February 22nd to February 24th, 1999; it was the initiating event for the new 
IFIP TC-2 Working Group on Software Architecture. 

This proceedings document contains the papers accepted for the 
conference. The papers in this volume comprise both experience reports and 
technical papers. The proceedings reflect the structure of the conference and 
are divided into six sections corresponding to the working groups established 
for the conference. 

Patrick Donohoe 
Software Engineering Institute 

Carnegie Mellon University 
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Architecture Design Recovery of a Family of 
Embedded Software Systems 
An Experience Report 

Lars Bratthall and Per Runeson 
Dept. of Communication Systems, Lund University, Sweden. 
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Abstract: Understandability of the current system is a key issue in most reengineering 
processes. An architecture description of the system may increase its 
understandability. This paper presents experiences from architectural design 
recovery in a product family of large distributed, embedded systems. 
Automated recovery tools were hard to apply due to the nature of the source 
code. A qualitative evaluation procedure was applied on the performance of 
the recovery process. The results suggest that producing the necessary 
architectural documentation during the recovery project costs eight to twelve 
times as much as producing the same set of documentation during the original 
development project. By applying a common architectural style for all 
members of the product family , the component reuse made possible decreased 
source code volume by 65%. 

1. INTRODUCTION 

A part of any reengineering project is to create an understanding of the 
architecture of the current system. This understanding can help determine 
which pieces are reusable, and to what extent. Also, the current architecture 
can pose requirements on later developed systems (Abowd et a!., 1997). 
Documentation of the software architecture may also decrease the large 
proportion of time maintainers spent on developing an understanding of the 
entity to modify (Holtzblatt et al., 1997). In this paper we present 
experiences from a project where architectural level design recovery was 
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performed on a product family of five distributed, embedded, software 
systems. 

Design recovery is a phase in reverse engineering where source code and 
external knowledge are used to create abstractions beyond those obtained 
directly by examining the system itself (Chikofsky and Cross II, 1990). 
Biggerstaff (1989) argues that "Design recovery must reproduce all of the 
information required for a person to fully understand what a program does, 
how it does it, why it does it, and so forth." In the project studied, the 
available source models (Murphy and Notkin, 1995) were the source code 
for a product family and a few pages of documentation. The access to orig
inal system experts was very limited. It was not known what quality 
attributes the architecture of the software possessed, except that it executed 
well. It was not known whether the members of the product family shared 
any common software architecture. The hardware was however well 
described and identical for all members of the product family. The source 
code was spread over 90 to 150 files for each member of the product family. 

An incremental approach to recovering information from the source code 
was adopted. To simplify future maintenance the architectural style "Layers" 
(Shaw and Garlan, 1996) was imposed, due to its known quality properties 
(maintainability aspects). Imposing an architecture was believed to be 
feasible as a recovered architecture can be considered an interpretation of a 
less abstract entity. Different tools for architectural design recovery were 
investigated, but due to performance constraints only tools that operated on 
static code could be used. Automated analysis has been discussed by several 
authors e.g., Chase et a!. ( 1998), Harris et al. (1996) and Holtzblatt et a!. 
(1997). Due to certain constructs frequently used in the source code 
examined, the value of these methods was considered limited. 

The software architecture was recovered largely by hand using simple 
tools like grep and emacs. SDL (ITU-T, 1996a) was used as architecture 
description language. Once the architecture of one member of the product 
family had been recovered, this . architecture was reused when attempting 
architectural recovery on other members of the product family. With some 
restructuring and minimal reengineering (Chikofsky and Cross II, 1990), 
both component reuse and architecture reuse (Karlsson, 1995) were used, 
resulting in a common architecture for all members of the product family as 
well as a reduction of the total code volume by 65%. 

2. CONTEXT 

The studied system was contracted to Ericsson Microwave Systems AB 
who develops complex systems. One of their product areas is 
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telecommunications. The studied project aimed at designing a family of 
switches. The switches shared the same set of hardware components, except 
for different special-purpose printed circuits. One family of subsystems 
within the switches was studied. 

For various reasons the software was not documented according to 
existing quality standards; the only existing source models available to 
maintainers were 300 000 lines of C source code, some assembler, and a 
few pages of documentation, the latter giving little clue regarding the 
architecture. This rendered any kind of maintenance difficult, as long time 
had to be allocated just to understand code. Future architectural erosion 
(Perry and Wolf, 1992) was feared, as there was no known rationale for the 
architectural design decisions taken. 

In order to solve these problems, an architectural design recovery project 
was launched. 

3. OVERVIEW OF THE ARCHITECTURAL 
DESIGN RECOVERY PROJECT 

Biggerstaff (1989) describes a general design recovery process with 
maintenance and the population of a reuse library as objectives. In this 
paper, the focus is on practical experiences gained in applying this process. 

Biggerstaff's process has three steps: 
1. Supporting program understanding, 
2. Supporting population of reuse and recovery libraries, and 
3. Applying the outcomes of design recovery for refining the recovery. 

These steps are applied iteratively. 

3.1 Step 1 - Program understanding for maintenance 

An architecture recovery team needs some initial knowledge. It includes: 
- Details of the available source models 
- Available design recovery tools 
- Knowledge of what code to allocate to different components. 

These issues were addressed initially. 

3.1.1 Details of the available source models 

Examining the make files showed that some of the files were never used. 
Examining the filenames showed similarity in the filenames between 
different members of the product family, and usually the contents of files 
with the same filename were similar to some extent. Closer examination 
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indicated that what had originated as identical files had eroded to slightly 
different files. The analysis also showed that identical C functions 
sometimes were allocated to different files, without any obvious rationale. 

3.1.2 Investigation of design recovery tools 

A number of tools believed to be beneficial in design recovery were 
investigated. Results indicated that a semi-manual approach was needed. 

Making a call graph did not help very much, since the subsystems were 
based on concurrent software processes, communicating mainly using the 
real-time operating system built-in signals. The call graph showed intra
process communication fairly well, but inter-process communication was not 
described well. 

Identification of a signal being sent could be automated; simple grep 
commands can look for operating system keywords used to create and send 
signals. Identification of the receiving software process for signals was 
difficult; we could not rely on pure lexical analysis, since the receiver of a 
signal usually was determined at run time. Dynamic analysis by executing 
the system on the target-system could possibly have provided input to event 
trace analysis (Jerding and Rugaber, 1997), but we were unable to 
automatically create event traces due to certain constructs frequently used: 
- Other mechanisms than signals were sometimes used, especially direct 

read/write to memory. This communication could not be traced without 
impeding the function of the system due to performance violations. 

- Communication to other subsystems was handled using signals wrapped 
into special-purpose packets. The operating system debugger could not 
symbolically show the contents of these packets. 
Further tool support was not investigated. Dynamic analysis conflicted 

with performance requirements, while automatic static recovery tools would 
have trouble handling the distributed nature, the special-purpose packets, the 
usage of direct memory read/ write, and the dynamic determination of 
receiving software processes. Thus, we in many cases had to identify the 
receiver of signals by manually walking through scenarios (well defined 
dynamic sequences). 

3.1.3 Code to allocate to components 

Some source files belonged to only one software process, while some 
files needed restructuring as parts of the code in one file belonged to more 
than one software process. There were also two COTS (Commercial Off
The-Shelf) products involved (the operating system and a TCPIIP stack), 
each spread across a set of files. 
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The design artefacts to recover were a static architectural description, 
interwork descriptions, and different dynamic models. 

3.2 Step 2 - Populating reuse and recovery libraries 

Based on the input from step 1, a set of hypotheses was decided on. 
- Manual work during step 2 and step 3 would be necessary, since a 

recovered software architecture is an interpretation, not entirely visible in 
code (Holtzblatt et al., 1997). 

- Software processes would be the initial abstraction level of the software 
components. Thus we used a variant of Harris et al.' s ( 1996) approach, 
that equated components with software processes. After looking at code, 
it was found that trying to divide software processes into smaller 
components, e.g., concurrent state machines, would be difficult as we 
could not distinguish the individual state machines in the software 
processes. Therefore we choose software processes as the initial 
abstraction level. 

- Component connectors were to be represented by inter-process 
signalling. The contents of inter-subsystem communication packets were 
to be tracked rather than the special-purpose packet itself. Function calls 
inside a software process would not be described, since we estimated that 
recovering this information would be too much work related to the use a 
maintainer would have. 

- Describing the architecture of a member of the product family by 
showing all software processes and their data/control connectors would 
show too much detail in some situations. Aggregated as well as non
aggregated components should be provided. The smallest component 
would consist of code related to a single software process. 

- Simple tools like grep and emacs would be the main tools for analysis. 
SDL would be used to represent the static architecture description. 
Message Sequence Charts (ITU-T, 1996b) would be used to represent the 
control and data flow between components. 

- For project reasons, an incremental approach allowing the premature 
termination and later continuation of the architectural recovery was 
needed. 

This led to the workflow described in table 1. On the horizontal axis, 
activities performed are shown. On the vertical axis, levels of increased 
value of the recovered artefacts are shown. Components are created at 
increasing abstraction levels, named C2 and C3. Level Cn components are 
aggregated from level C0 • 1 components. 
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Table 1. Goals versus performed activities 
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3.2.1 Creation of first order components (level C1) - activities A-D 

All source files belonging to a software process were assigned to one C1 

component. All assembler files were allocated to one C1 component. Each 
set of COTS files was allocated to one C1 component each. 

Some files could not be associated with a single software process despite 
restructuring. These functions were assigned to a library component. The 
types of level C1 components created were Single Software Process 
components, Library components, Assembler components and COTS 
components. 

Level C1 components were fairly easy to identify; simple tools allowed 
partly automated analysis. As the source code was not very interleaved 
(Rugaber et al. , 1995) only little restructuring was needed. 
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3.2.2 Creation of second order components (level C2) - activities E-G 

In order to raise the component abstraction level from each component 
containing only one software process, to components containing several such 
components an iterative approach was used. A graphical representation of 
inter-C1 control and data communication was drawn using SDL. The inter
process communication constructs prior identified in the source were 
represented by SDL signals or SDL remote procedure calls. By analysing the 
communication routes, the type and amount of communication, level C2 

components were decided on. If a set of level C1 components solved one 
easily delimited task, they were to be clustered into a level C2 component. 

Identifying level C2 components was more difficult than identifying level 
C1 components. Exact rules for clustering could never be devised, since 
some level C1 components participated in solving more than one task. 

3.2.3 Creation of third order components (level C3) - activities H-J 

The source code indicated that there were similarities between the 
members of the product family. We attempted to impose a layered 
architectural style (Shaw and Garlan, 1996), by clarifying service 
provider/requester relationships between components. Some restructuring of 
the original C2 components was required. 

Grouping of level C2 components into C3 layer components was done by 
looking at 'distance from hardware' . All hardware-close level C2 

components were assigned to a level C3 layer component 'Hardware 
Abstraction Layer'. Other level C3 layer components, with decreasing 
knowledge of hardware specifics, were 'Subsystem Controller', 'Main 
Controller' and 'Supervision and Test'. 

There were several reasons for attempting the layered architectural style: 
- The layered architectural style is well known for its good maintainability 

properties. 
- By dividing hardware-close functionality from control, we expected 

greater chances of component reuse in other members of the product 
family . 
We expected to be able to decrease the difference between different 

members of the product family by using a common architectural style for all 
of them. 

This multiple-level component architecture was represented in SDL. SDL 
was chosen, as it allows the direct representation of architectural features 
(Harris et a!. , 1996) such as software processes, components consisting of 
one or more processes, aggregated components, components without any 
software process, inter-process signalling and remote procedure calls. Thus, 
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many issues related to the representation problem (Rugaber and Clayton 
1993) were avoided. However, there was some semantic distance between C 
and SDL that had to be mapped: Direct memory reads/writes, interrupts, and 
the special-purpose packet used to convey signals between different 
subsystems. These constructs were mapped to SDL signals and SDL remote 
procedure calls. We used naming conventions to distinguish these constructs 
from the direct mapping between C source signals and these other 
communication constructs. 

3.3 Step 3 - Applying the outcomes of the design 
recovery 

The above steps were applied for one member of the product family . In 
doing design recovery for the other members of the product family, the 
already defined components and the architectural style were reused. By 
restructuring components by merging files if possible, the number of new 
components was held down. 

Design recovery for the other products in the family was much quicker 
than for the first member. A large part of the improvement came from 
having to document few new components. Also, knowing the expected 
architectural style, less work had to be done in choosing how to restructure 
the software to fit the architecture. 

The degree of reusability of components was proportional to the distance 
from hardware. The closer to hardware, the more easily could components 
be reused. By having several component abstraction levels (C3, C2, C1), we 
could reuse parts or whole of components: 
- Most level C1 hardware-close components could be reused at least once. 
- Some members of the product family could share level C2 components. 
- Some members of the product family could share level C3 components. 

A few new level C3 components had to be created, usually by replacing 
only a few level C1 components inside a level C3 component. 
The layered architectural style could be reused for all members of the 

product family. 

4. RESULTS AND EXPERIENCES GAINED 

The project resulted in a common architectural style for all members of 
the product family . This enabled component reuse, that decreased the total 
code volume (lines of source code) by 65%. The volume of architectural 
descriptions and component descriptions were reduced by approximately 
30%, relatively what would have been needed if no reuse had been applied. 
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A number of faults were discovered in the process of comparing components 
from different members of the product family. 

The set of hypothesis described in section 3.2 remained unmodified 
through-out the project. However, they would probably have changed if the 
first step in Biggerstaffs process had not been. This first step helped in 
deciding on the set of work hypotheses. 

It is a daunting task to do architectural recovery when tools can provide 
only limited aid. Subjective estimation indicates that the effort of our 
recovery/reuse project amounted to eight to twelve times the effort to 
accomplish the same results (architectural description, common architectural 
style, component-based architecture) during the original development 
project. The estimation is based on accurate figures for the 
recovery/restructure project and subjective estimations regarding how to 
handle the problem during original development. Future maintenance is 
expected to be much simpler and faster than would be possible without the 
architectural descriptions and component design. Without the design 
recovery project any maintenance would be extremely difficult. 

Experiences have been collected by conducting interviews with the 
designers involved in the architecture recovery project, as well as future 
maintainers and some involved managers. Experiences reported are related 
to tools, people and the recovery process used. 

4.1 Tool support 

Tools have been used for recovery as well as representation of the 
recovered architecture. During recovery, UNIX grep and the colour marking 
functions of emacs were helpful, especially combined into small scripts. 
Grep allowed the searching of common features across several members of 
the product family . Emacs helped in performing manual slicing, as well as it 
helped in comparing several versions of files automatically. 

SDL has shown to be suitable for describing the component architecture 
down to the software process level. It was possible to unambiguously 
describe the constructs believed usable for our purposes. Some semantic 
distance demanded mapping rules between C and SDL. We believe SDL to 
be a possible architecture description language for systems, where 
components are mainly based on software processes and connectors are 
mainly inter-process communication. 

A future challenge to solve is that there is no automatic correspondence 
between the source code and the architectural abstractions. For example, 
lack of intense communication between two components is not necessarily a 
sign of that the two components should not be aggregated into a larger 
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component. In the system studied, this was apparent when we decided to 
group hardware-close components into an aggregated component. 

4.2 People 

Experiences related to people concern previous knowledge and other 
intellectual instruments for design recovery. As the rationale for architectural 
decisions is not seen in C, having even limited access to original designers 
have been extremely beneficial. They have been able to provide information 
that has not been available in other source models. 

Having knowledge of architectural styles helped in choosing to use a 
layered architecture, as well as trying to establish the service 
provider/requester divisions, which is a client/server architectural style 
(Shaw and Garlan, 1996). It is believed that any recovery team can benefit 
from having access to original design knowledge, domain architecture 
knowledge and knowledge of architectural styles. Manual design recovery is 
error prone. This emphasises the need for automated design recovery, or 
better yet, do it right during the original development. 

4.3 The recovery process 

Dynamic analysis was difficult due to performance issues. For the 
purpose of maintenance, dynamic models are considered necessary. Better 
original descriptions would have been preferred, or, an elaborate debugging 
component should have been available. For example, being able to run the 
software on the target platform with relaxed timing requirements would have 
aided in analysing the software dynamically. 

The interleaving problem was rarely encountered, as we never split 
software processes into more than one component. Content coupling, in 
terms of several processes sharing a library of functions, was handled by 
either restructuring those files (by splitting them and allocating them to 
separate components) or allocating the library functions to a separate library 
component. By dividing the recovery process into discrete steps, 
management gained visibility into the project and could decide on project 
alterations and resource allocation. The incremental approach was thus 
perceived as beneficial. 

5. CONCLUSIONS AND THE FUTURE 

From the studied architecture recovery project, we conclude that the 
design recovery process described by Biggerstaff (1989) works, but 
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undertaking a design recovery project with limited access to system experts 
and other source models than the source code, is a daunting task. Especially, 
understanding hardware-close software is difficult, as it requires detailed 
hardware understanding. Knowledge of architectural styles and their 
properties help in choosing a suitable architecture to represent the code, as 
one knows what quality attributes a particular architecture possesses. An 
incremental approach to recovering the software architecture is beneficial 
since it increases visibility into the recovery process. 

The recovery project would have benefited from a larger set of well
defined component connectors. Full semantics for the mapping between 
source code and an architecture description language would allow the 
automatic creation and simultaneous maintenance of code and architectural 
views. 

Tool support for architectural recovery is important. In industrial projects 
like this, where the product is supposed to have a life-span of at least 15 
years, any description of the architecture should be represented using 
commercially available tools. We agree with researchers, e.g., Kazman and 
Carriere (1998), claiming that several methods are necessary in a design 
recovery project, thus concluding that a workbench with open interfaces is a 
suitable architecture for design recovery tools. 
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Abstract: Changes to a software system during implementation and maintenance can 
cause the architecture of a system to deviate from its documented architecture. 
If design documents are to be useful , maintenance programmers must be able 
to easily evaluate how closely the documents conform to the code they are 
meant to describe. Software architecture recovery, which deals with the 
extraction and analysis of a system's architecture, has gained more tool 
support in the past few years. However, there is little research on developing 
effective and efficient architectural conformance methods. In particular, given 
the increasing emphasis on patterns and styles in the software engineering 
community, a method needs to explicitly aid a user in identifying architectural 
patterns. 
This paper presents a semi-automatic method, called ARM (Architecture 
Reconstruction Method), that guides a user in the reconstruction of software 
architectures based on the recognition of patterns. Once the system's actual 
architecture has been reconstructed, we can analyze conformance of the 
software to the documented design patterns. 

1. INTRODUCTION 

A software architecture is a high-level description of a software system's 
design, often a model of the software's components (e.g., objects, processes, 
data repositories, etc.), the externally visible properties of those components, 
and the relationships among them (Bass, et al., 1998). The concept of 
software architectures has received considerable attention lately, and 
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developers are starting to document software architectures. However, the 
living architecture of a software system may drift from the documented 
architecture if architecture changes are made during software 
implementation or maintenance and no similar effort is made to maintain the 
architecture documents. Although architectural integrity could, in theory, be 
enforced by a rigorous review process, in practice this is seldom done. 

Architecture conformance analysis can be used to evaluate how well the 
architecture of a software system corresponds to its documentation; it can 
also assist in keeping the architecture documents up to date. Some progress 
on this problem has been made at the source file and module levels, where 
the software's call-graph is extracted from source code and compared with 
the expected call-graph (Murphy, et al., 1995), (Woods & Yang, 1995). In 
addition, a number of reverse engineering tools have been developed to 
automatically extract, manipulate, and query source model information (e.g., 
REFINE (Reasoning, -). Imagix (lmagix, -), Rigi (Wong, et al., 1994), 
(Storey, et al., 1996), LSME (Murphy & Notkin, 1996), IAPR (Kazman & 
Burth, 1998), RMTool (Murphy, et al., 1995)). 

Design patterns are an attempt to codify solutions to recurring problems, 
to make routine design easier. In an architecture, design patterns prescribe 
specific abstractions of data, function, and interconnections. Automated 
conformance analysis of newer software architectures is actually 
complicated by the use of design patterns and architectural styles in 
architecture documents. While this statement seems at first to be 
contradictory to the thesis of this paper, the complication stems from the fact 
that extraction tools extract code-level information, not architectural 
information. Hence, the analyst needs some way to map from the low-level 
extracted information up to architectural concepts. To properly analyze the 
architectures of systems developed using design patterns, we need tools and 
techniques for recognizing instances of pattern-level abstractions. 

This paper shows how code-level extraction can feed into pattern-based 
architecture conformance analysis. We present a semi-automatic analysis 
method, called ARM (Architecture Reconstruction Method), that codifies 
heuristics for applying existing reverse-engineering tools (for reasoning 
about code-level artifacts) to the problem of recognizing more abstract 
patterns in the implementation. Once the system's actual architecture has 
been reconstructed, we can analyze conformance of the software to the 
documented design patterns. 

Following this introduction, section 2 provides a review of software 
architecture recovery. Section 3 describes ARM in detail. Evaluation of the 
method with case studies is presented in section 4. Finally, section 5 
summarizes this work and proposes future research. 
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2. SOFTWARE ARCHITECTURE RECOVERY 

Software architecture recovery can be divided into two phases: 
1. identification and extraction of source code artifacts, including the 

architectural elements; and 
2. analysis of the extracted source artifacts to derive a view of the 

implemented architecture. 
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The extracted source artifacts form a source model, which comprises a 
collection of elements (e.g., functions, files, variables, objects, etc.), a set of 
relations between the elements (e.g. , "function calls function", "object A has 
an instance") and a set of attributes of these elements and relations (e.g., 
"function calls function N times"), to represent the system (Kazman & 
Carriere, 1998). 

2.1 Architecture recovery frameworks 

There exist many source model extraction tools, such as LSME (Murphy 
& Notkin, 1996), SNiFF+ (SniFF, -), ManSART (Yeh, et al., 1997) and 
Imagix (Imagix, -), that parse code fragments and extract source model 
elements, relations and attributes . Tools that use relational algebra to infer 
new facts from existing facts, such as SQL and Grok (Holt, 1998), can be 
used to manipulate and analyze source model artifacts. Tools for extracting 
and analyzing software architectures, such as Rigi (Wong, et al., 1994), CIA 
(Chen, et al., 1990) and SAAMTool (Kazman, 1996), provide not only 
visualization but also manipulation mechanisms to help the user simplify and 
navigate through the visual system representation. However, each individual 
tool or system has its limitations and restrictions in terms of the architecture 
recovery phases it covers, its support for applications developed in different 
programming languages and its flexibility in supporting customized analysis. 

A software architecture framework integrates and leverages multiple 
tools in an organized structure to facilitate architecture recovery. 

Kontogiannis et al. have developed a toolset, called RevEngE (Reverse 
Engineering Environment), to integrate heterogeneous tools, such as Ariadne 
(Kontogiannis, et al., 1994), ART (Johnson, 1993) and Rigi (Wong, et al. , 
1994) for extracting, manipulating and analyzing system facts, through a 
common repository specifically designed to support architecture recovery. 

The architecture recovery framework of the Software Bookshelf project 
(Finnigan, et al., 1997) provides access to a variety of extractors, such as C 
Fact Extractor (CFX) and CIA, for source model extraction. Manipulation 
and analysis of the source model stored in the repository is possible via tools 
like grep, sort, or Grok, to emit architectures of the subsystems and of the 
system. The architecture that Bookshelf produces is a hierarchical structural 
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decomposition of system in terms of subsystems, files, and functions. The 
architectures can be visualized using tools such as the Landscape Viewer. 

The Dali architecture workbench (Kazman & Carriere, 1999), is an 
infrastructure for the integration of a wide variety of extraction, 
manipulation, analysis, and presentation tools. The architecture recovery 
work presented in this paper was performed using Dali. 

2.2 The Dali workbench 

Dali's architecture is shown in Figure 1, where the rectangles represent 
distinct tools and lines represent data flow among them. 

Source model extraction can be performed by a variety of lexical-based, 
parser-based or profiling-based tools that produce static or dynamic views of 
the system under examination. A view is a source model extracted by a 
single extraction tool or technique. A static view contains static source 
artifacts extracted from source code. A dynamic view contains dynamic 
elements including dynamic typing information, process spawning and 
instances of interprocess communication (IPC). These extracted views are 
stored in a repository, currently a relational database. The various extracted 
views can be fused together into fused views (Kazman & Carriere, 1998). 

View Extraction 

.___Le_xt_·c_a_l _ _.ll Parsing II Profiling 1. 

Repository 

View Fusion 

Figure 1: The Dali workbench 

Visualization tools can be deployed in Dali to present the source model 
and the result of architecture analysis. For example, Rigi is used to present 
systems as a graph with nodes denoting the artifacts and arcs representing 
the relations between them. Dali supports various external manipulation and 
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analysis tools, such as Grok, IAPR (Kazman & Burth, 1998), and RMTool 
(Murphy, et al., 1995). The system view can be exported to these tools and 
the analysis results can be added back to the repository. Using Rigi's 
command language, new tools can be added in Dali and a software analyst 
can choose among tools when performing an analysis task. Dali does not rely 
on having an Abstract Syntax Tree (AST). This allows it to cope with 
architecture analysis on systems that can not be parsed. 

2.3 Architecture recovery methods 

Automated tools and frameworks can be used to extract and reason about 
code-level facts. However, human input is needed to extract and infer facts 
about higher-level abstractions (e.g., design patterns). An architecture 
recovery method defines a series of steps, and the pre/post conditions for 
each step, to guide an analyst in systematically applying existing reverse 
engineering tools to recover a system's architecture. 

Most current architecture recovery methods are based on a system 
decomposition hierarchy to reason about software architecture by looking at 
the relations (calls and uses relations in most cases) between the subsystems, 
between the files and between the functions (Portable Bookshelf, -). 
However, it is difficult to use these methods to recover architectures that are 
designed and implemented with design patterns. As design patterns are 
described as well-defined structures with constraint rules, a pattern-oriented 
architecture recovery method must incorporate the design pattern rules as 
well as structural information such as the system decomposition hierarchy. 

Shull et al. developed the BACKDOOR analysis method to recognize 
design patterns in object-oriented systems (Schull, et al., 1996). This method 
uses a general abstract pattern description, rather than an application-specific 
pattern instantiation, to guide pattern recognition, and hence could be 
ineffective in producing accurate results. The pattern definition, detection 
and evaluation in this method are performed manually, which makes the 
method primarily applicable to small systems. 

3. ARCHITECTURE RECONSTRUCTION METHOD 

To assist software architecture recovery of systems designed and 
developed with patterns, we developed the Architecture Reconstruction 
Method (ARM)-a semi-automatic analysis method for reconstructing 
architectures based on the recognition of architectural patterns. 

ARM is depicted in Figure 2. As indicated by the dashed boxes in this 
figure, ARM consists of four major phases: 
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1. Developing a concrete pattern recognition plan. 
2. Extracting a source model. 
3. Detecting and evaluating pattern instances. 
4. Reconstructing and Analyzing the architecture. 

r-------------------------------------
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Figure 2: Pattern recognition process flow chart 

3.1 Developing a concrete pattern recognition plan 

Constructing a pattern recognition plan consists of three steps. The first is 
to develop an instantiated pattern description. By instantiation, we mean a 
concrete pattern description, with all the pattern elements and their relations 
described in terms of the constructs available from the chosen 
implementation language. Starting with a design document, one can 
manually determine the patterns used in the design and can extract the 
abstract pattern rules-the design rules that define a pattern's structural and 
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behavioral properties. Pattern descriptions found in the design pattern 
literature, e.g., (Buschmann, et al., 1996), or obtained from humans who are 
familiar with the system design can be used to supplement these rules. Using 
these abstract pattern rules as a guide, one can then examine the source code 
of several potential pattern instances to derive the corresponding concrete 
pattern rules-the implementation rules that realize abstract pattern rules 
using data structures, coding conventions, coding methods and algorithms. 
Such concrete pattern rules can be recognized via syntactic cues, such as 
naming conventions and programming language keywords, or an analysis of 
data access and control flow. 

An instantiated pattern description is a specification of the concrete 
pattern rules written in Rigi Standard Format (RSF) (Wong, et al., 1994). A 
clause in RSF is a tuple (relation, entityl, entity2), which represents the 
relationship entity] relates to entity2. For example in the Mediator design 
pattern (see Figure 3), a Mediator component serves as the communication 
hub for all the Colleague components. An abstract pattern rule for this 
pattern is 

"The Mediator component mediates communications between colleague 
components." 

Medator ColleagJe 

Figure 3: Mediator design pattern 

In one of our case studies, the Mediator pattern is implemented in a C++ 
class where mediator and colleague components are member functions. 1 

1 This use of the mediator design pattern is an adaptation of what is found in (Gamma, et a!. , 
1994). 
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Based on call sequence information (control flow), the following concrete 
pattern rule is identified to realize the above abstract rule where function B is 
a Mediator and function A and C are Colleagues. 

"Within a class, function A calls function B and function B calls function 
C, where functions A, B, and C are distinctive." 

Using RSF, this rule can be formally specified as: 

((calls, Classl:Funcl, Class2:Func2) AND 
(calls, Class2 : Func2, Class3:Func3) AND 
(not_equal , Classl : Funcl , Class2:Func2) AND 
(not_equal, Classl : Funcl, Class3:Func3) AND 
(equal, Classl, Class2) AND 
(equal, Classl, Class3)) 

If an abstract pattern rule can not be mapped to a concrete pattern rule 
(e.g., the pattern is defined by complex dynamic attributes), one needs to 
assess whether it is a necessary rule for the pattern recognition task in hand. 
A necessary abstract pattern rule specifies a distinct characteristic of the 
target pattern. A potential pattern instance that is missing such a 
characteristic would be disqualified from being an actual pattern instance. 
Based on the assessment, one may decide to proceed to the next step of 
ARM if the missing abstract pattern rules are not necessary, or to terminate 
the recognition task if any necessary abstract pattern rule is missing in the 
concrete pattern rules . 

The second step is to translate the instantiated pattern description into 
pattern queries, written for one of the query and/or analysis tools supported 
by Dali . If the concrete pattern rules describe specific types of components 
and connectors, then tools based on a relational algebra such as SQL are 
suitable because they provide efficient and accurate matching on specific 
components and relations (connectors). If, on the other hand, the concrete 
pattern rules do not specify types of components or connectors, but rather 
allow for a wide range of possible realizations for a pattern, then tools that 
support more generalized searching criteria, such as the SAAMTooUIAPR 
toolset, should be used. A user can use the SAAMTool to specify a pattern 
as a graph and use attributed subgraph isomorphism provided by IAPR to 
match patterns. For example, the Mediator pattern description can be 
translated into an SQL query as follows: 

SELECT DISTINCT cl.tcaller, 
cl.tcallee as mediator , c2 . tcallee 

INTO TABLE med 
FROM calls cl, calls c2 
WHERE cl.tcallee = c2.tcaller AND 
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cl.tcaller <> cl.tcallee AND 
cl.tcaller <> c2.tcallee AND 
classname(cl . tcaller)=classname(cl.tcallee) 
AND 
classname(cl . tcaller)=classname(c2.tcallee); 
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Finally, a concrete pattern recognition plan must be developed to specify 
the "key" component of the pattern that should be recognized first and the 
order in which the subsequent components should be detected. The queries 
for a "key" component should not depend on detection of other pattern 
components. The mediator component in the Mediator pattern, for example, 
serves as the communication hub between colleague components and thus is 
the key to recognizing this pattern. If part of the target pattern is designed 
and implemented using other lower-level patterns, it is necessary to develop 
concrete pattern recognition plans for each pattern component and the 
compound pattern. 

3.2 Extracting a source model 

The second phase of ARM is to extract a source model that represents a 
system's source elements and the relations between them. The output of this 
phase is a source model that contains the information that is used for 
detecting necessary pattern rules . For example, Table 1 shows some of the 
relations that Dali currently extracts from C++ programs (Kazman & 
Carriere, 1999). The relations needed for detecting the necessary pattern 
rules of the Presentation-Abstraction-Control (PAC) pattern2 (Buschmann, et 
al., 1996) in our case studies are denoted by *. 

Table 1: Typical set of source relations extracted by Dali. 

Relation From To 
calls * function function 
contains file function 
defines file class 
has_subclass * class class 
has_friend class class 
defines_fn * class function 
has_member * class variable 
defines_ var * function variable 
has_instance * class variable 
defines_global * file variable 
var access* function variable 

2 The PAC pattern is described in detail in section 4.1. 
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A complication is that patterns are revealed at different levels of 
abstraction (e.g., the function vs . the class level), thus different parts of the 
recognition plan may need to be applied to a source model at different levels 
of abstraction. Using abstraction techniques, such as the aggregation 
technique provided by Dali (Kazman & Carriere, 1999), lower level source 
model elements can be grouped into a higher level element without loss of 
information. Thus one can use it to bring the source model to appropriate 
levels of abstraction for pattern detection and architecture analysis . 

3.3 Detecting and evaluating pattern instances 

Detecting pattern instances using Dali is an automatic process in which 
one uses query tools to execute a recognition plan with respect to a source 
model. After running the recognition plan on the source model using the 
query tools, the detection output consists of all the pattern instance 
candidates. Human evaluation of these candidates is required to compare 
them with the designed pattern instances and determine which candidates are 
intended, which are false positives and false negatives. A false positive is a 
candidate which is not designed as a pattern instance, but is "detected" 
falsely as an instance. A false negative is a candidate which is designed as 
an instance, but is not detected as one. 

One can try to improve the results (i.e., remove false positives and 
negatives) by modifying either the recognition plan or the source model and 
reiterating through ARM method. To improve the pattern recognition plan, 
one may choose another component of the pattern as the anchor and reorder 
the queries to form a new plan, or refine the query constraints for some of 
the pattern elements. If the source model extraction caused the deficiencies, 
an analyst needs to try to improve the extraction process by refining the 
existing extraction tools to catch the defects and/or incorporating other 
extraction tools to enhance the accuracy of source model, as described in 
(Kazman & Carriere, 1998). 

However, if the source code is incomplete or if the pattern is defined by 
complex dynamic attributes, it may be impossible for the recognition 
technique to precisely detect all pattern instances. The evaluation process 
ends when Dali can detect the maximal set of true pattern instances, and the 
human analyst can explain the presence of false positive and the absence of 
false negative instances. The output is the set of validated pattern instances. 

3.4 Reconstructing and analyzing the architecture 

In the final step, the analyst uses a visualization tool, such as Rigi, to 
align the recognized architectural pattern instances with the designed pattern 
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instances, organizing the other elements in the source model around the 
detected instances. The resultant architecture can be analyzed for deviations 
from the designed architecture. 

4. CASE STUDIES 

In an attempt to evaluate the applicability and generality of ARM, we 
applied it to two case studies where the systems were designed and 
developed with specific architectural patterns in mind. We obtained both 
source code and design documents for the applications from Informatique et 
Mathematiques Appliquees de Grenoble (IMAG) Institute in France. 

4.1 SupraAnalyse system 

The first application is a 25 KLOC system written in C++, called 
SupraAnalyse, that analyzes experimental data about human subjects' 
behavior when performing tasks using an interactive system (Lischetti & 
Coutaz, 1994). SupraAnalyse uses the Presentation-Abstraction-Control 
(PAC) pattern in its architectural design and implementation. The PAC 
pattern (Figure 4) defines a structure for interactive software systems in the 
form of a hierarchy of co-operating agents. Every agent is responsible for a 
specific aspect of the application ' s functionality and consists of three 
components: presentation, abstraction, and control. The Presentation 
component provides the visible interface; the Abstraction component 
maintains and accesses the data model; and the Control component manages 
intra-agent communications between the Presentation and Abstraction 
components and inter-agent communications with other PAC agents. 

Based on the instantiation of PAC patterns in SupraAnalyse, we first 
developed a recognition plan which consists of a sequence of SQL queries. 
Because the internal structure of a PAC agent is designed using the Mediator 
pattern, we iterated the recognition plan development phase to fully specify a 
sub-plan for recognizing the Mediator pattern. Several extraction tools, 
including LSME (Murphy & Notkin, 1996), Imagix (lmagix, -)and SNiFF+ 
(SNiFF+,-), were used to extract a source model that was stored in an SQL 
database. 

Before applying the recognition plan, the source model was simplified to 
function level and class level abstractions using the aggregation technique. 
That is, class information such as methods and member variables, was 
aggregated with class definition; and function information, such as local 
variable usage, was aggregated with function definitions. PAC pattern 
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components were then detected at function level abstraction, and PAC agents 
were recognized at the class level. 

P - Presertation Corrponent 
c -Cortrd Corrponent 
A- Jlbstr<:dion Corrponenl 

PAC Pattern Herarchy PAC Agent Internal Slructm! 

Figure 4: PAC patterns 

Evaluation of the detection results was performed to identify false 
positives and false negatives. For example, the designed PAC agent 
"Ciment'' is identified as a false negative because it can not be aligned to any 
detected pattern instance candidates. Subsequent iterations of ARM were 
taken to improve the source model extraction and recognition plan. We 
ended the iteration process when all false positives and false negatives were 
removed or explained by valid causes (such as incompleteness of the source 
code for the case where some class implementations were missing). For the 
false positive "Ciment" agent, further study of the source code shows that 
this designed agent is not implemented. 

Finally, we re-constructed the as-implemented architecture (Figure 5) by 
aligning detected PAC agents with the intended PAC agents in the designed 
architecture, and grouping the unmatched detected agents together (at the 
bottom of Figure 5). Architecture conformance was analyzed to identify 
deviations of the as-implemented architecture from the documented 
architecture. 
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Figure 5: As-implemented architecture of SupraAnalyse using PAC patterns 

The as-implemented architecture shows that there are relations that 
bridge layers of objects and thus violate the design principles of the PAC 
pattern. For example, agents "CSujet" and "CDetaillee" communicate 
directly with the top agent "CApp" and thus bridge over the 
"CDocumentAnalyst" agent. A further investigation of the layer bridging in 
the SupraAnalyse system was performed via searching for the Layer
Bridging pattern in the PAC agent hierarchy. ARM was applied again for 
this task. Because a layer may contain any type of component and because 
layer bridging can happen in several types of relations, an SQL pattern 
recognition plan was deemed inappropriate, since it would have involved 
listing all possible combinations of component and relation types. Instead 
we used SAAMTool to construct the Layer-Bridging pattern query as a 
graph. Nodes in the graph represent any type of component and edges 
represent any type of connector. The IAPR tool was then used to process the 
graphical query on a source model graph-the query posed as a subgraph 
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isomorphism problem (Kazman & Burth, 1998). Three instances of Layer
Bridging pattern were detected. These instances represent problematic areas 
where the implementation of SupraAnalyse has drifted from the design, 
when we asked the authors of the system about the layer bridging, they said 
they were unaware of the presence of the design violations. 

4.2 MATIS system 

The second case study was conducted on a larger system (77 KLOC) 
called Multimodal Airline Travel Information System (MATIS): an 
interactive system which allows the end-user to obtain information about 
flight schedules using speech, mouse, keyboard, or a combination of these 
interfaces (Nigay & Coutaz, 1991), (Nigay & Coutaz, 1993). It was 
implemented in Objective C using the NeXTSTEP Application Development 
Kit. 

Dialog.e cartrdler 
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Figure 6: PAC-Amodeus pattern 

The primary architectural pattern, the PAC-Amodeus model (see Figure 
6) consists of 5 components organized symmetrically around a key 
component: the Dialogue Controller (DC) , which itself is designed using 
the PAC pattern. The Functional Core (FC) maintains domain data and 
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performs domain-related functions. The Interface with the Functional Core 
(IFC) defines a set of interface objects to the Dialogue Controller and maps 
these interface objects into the formalism of the Functional Core. 

The Low Level Interaction Component (LL/C) contains the toolkits that 
implement the physical interface between the user and the application. The 
Presentation Techniques Component (PTC) is a mediator between the 
Dialogue Controller and the Low Level Interaction Component, and controls 
the perceivable behavior of the application via input and output commands. 
The key component Dialogue Controller is responsible for task level 
sequencing, by creating a thread for each request received from PTC and 
linking the appropriate IFC objects to perform the request. The IFC and 
PTC components are abstraction layers to enhance portability. 

Realizing that the DC component is the easiest to recognize as a PAC 
pattern instance, we formed our recognition plan as follows: first detect the 
PAC pattern instances and use these to identify the DC; second detect other 
components and hence the entire PAC-Amodeus pattern using the DC as the 
"anchor" of the pattern. The PAC pattern queries developed for 
SupraAnalyse were reused because they were applied to the elements and 
relations stored in the source model repository and therefore were not 
dependent on the particular language of implementation. Since the source 
code contains Objective C files and C++ files, language-specific extractors 
were developed and used to extract information from the system. A source 
model was created by combining the extraction results. 

Running the PAC pattern queries, we detected 8 PAC agents. Evaluating 
these PAC agents against the design document shows that the DC is 
composed of 4 PAC agents; another 4 recognized PAC agents belong to 
other PAC-Amodeus components. The detected PAC agent information was 
then added to the repository to enrich the source model. Using the DC as the 
starting point, other PAC-Amodeus components were subsequently detected 
by executing the rest of the recognition plan. 

After evaluating the detection results, we reconstructed the implemented 
architecture of MATIS, shown in Figure 7, using the recognized PAC
Amodeus instance. The PAC-Amodeus structure is evident, but there are 
several anomalies that need to be investigated. For example, the 
implemented architecture shows that the FC component, which was designed 
as an SQL database to process requests sent from the IFC, is missing. 
Investigation of the source code confirms that these requests are handled by 
a function in IFC that simulates the database processing by returning pre
defined values to certain requests. 

As another example, Figure 7 shows that the LLIC calls the DC directly, 
bridging over the PTC. This clearly violates the design of the PTC 
component as a layer between the DC and LLIC. 
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do _parse .c+ do frame .c-tdbsy mbols .c+MA Tl S main. m - -

Figure 7: Recognized PAC-Amodeus pattern in MATIS. Solid lines represent calls 
relations and shaded lines represent variable access relations 

5. LESSONS LEARNED 

These case studies both used patterns as the primary technique for 
reconstructing software architectures. They demonstrate the usefulness of 
ARM in assessing, planning and executing pattern recognition tasks. A 
recognition plan can be laid out to recognize a pattern by a) recognizing 
nested lower-level patterns first; b) recognizing the pattern's key element; 
and c) recognizing other elements of the pattern and hence the entire pattern. 
The pattern matching process is facilitated by using automated query and 
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analysis tools. If an iteration of ARM can not be completed because the exit 
conditions for a step can not be met, proper assessment of the task should be 
conducted to identify the causes of detection deficiencies and to provide 
guidelines for future efforts to improve the pattern detection. 

This process is efficient both in terms of the analyst's time and in terms 
of the amount of processing required to do pattern recognition. Consider, for 
example, the tools presented here: SQL queries to match patterns are quite 
efficient (as long as appropriate database indices have been built in advance 
on the tables of interest), and IAPR pattern-matching, while in principle NP
hard, can be rendered tractable by the judicious use of features that limit the 
search space, as reported in (Kazman & Burth, 1998). 

The time spent in learning and using ARM can be amortized over several 
architecture reconstruction tasks performed on similar systems (written in 
the same language and/or using the same design patterns). Queries 
developed from previous applications of ARM may be reused in executing 
one or more pattern recognition tasks, as we showed by reusing the PAC 
pattern queries. 

The case studies also provide evidence that static analysis of source code 
is not always sufficient for pattern recognition. Patterns that are implemented 
using only static mechanisms can be recognized from a source model 
containing static source artifacts. Patterns whose implementation involves 
dynamic mechanisms will require extraction of dynamic information, such 
as process spawning, instances of interprocess communication (IPC), and 
run-time procedure invocation. In the MATIS implementation, for example, 
object variables are dynamically typed. That is, an object variable is declared 
to be a generic type, and assigned specific class types at run time. The best 
way to solve this problem is to extract the object-type information at run 
time. However, due to the lack of access to the NeXT Application 
Development Kit environment (including its class libraries), we could not 
execute the system or use dynamic analysis tools to extract the missing 
object-type information. Fortunately, the object variables were never 
assigned to more than one type in MATIS. Therefore, we were able to use 
the static object creation and assignment information to resolve the type of 
each object. This suggests that extracting dynamic information of a system at 
run time will sometimes be necessary even in reconstructing a static 
architecture. 

6. CONCLUSIONS 

Using design patterns in software design has become a widely used 
technique for achieving a high quality architecture. Reconstructing 
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architectures of systems that were designed and developed with design 
patterns has traditionally been approached through manual source code 
inspections (Schull, et al., 1996). In this paper, we presented ARM-a semi
automatic analysis method-to reconstruct architectures based on recognized 
instances of design patterns. ARM is an iterative and interpretive process; a 
human is an integral part of the loop, to evaluate the results and determine 
what patterns to apply in the subsequent iteration. Two aspects differentiate 
ARM from other approaches for pattern recognition. One, ARM clearly 
distinguishes abstract pattern description from concrete pattern instantiation 
and uses the latter to guide pattern detection. Two, using automated tools to 
perform pattern matching makes the pattern recognition process less error
prone, compared to manual inspections. Upon the reconstruction of the 
system's architecture, we can analyze conformance of the software to the 
documented design patterns. 

To further validate the usefulness and applicability of ARM, more case 
studies need to be conducted on systems in various application domains. 
Another area of future work is to incorporate approximate pattern matching 
techniques into ARM. The associated metrics to measure the dissimilarity 
between the pattern query and the actual pattern instance need to be further 
studied and established. 

Finally, to make ARM still more cost-effective, a pattern knowledge base 
could be built to provide recognition plans tailored for common 
instantiations of a given pattern. 
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Abstract: The overall structure of a system described by a set of components and their 
interconnections is termed its software architecture. In this paper, we associate 
behavioural specifications with components and use these specifications to 
analyze the overall system architecture . The approach is based on the use of 
Labelled Transition Systems to specify behaviour and Compositional 
Reachability Analysis to check composite system models. The architecture 
description of a system is used directly in the construction of the model used 
for analysis. Analysis allows a designer to check whether an architecture 
satisfies the properties required of it. The paper uses examples to illustrate the 
approach and discusses some open questions arising from the work. 

1. INTRODUCTION 

Software architecture has been identified as a promising approach to 
bridging the gap between requirements and implementations in the design of 
complex systems. Software architecture describes the gross organisation of a 
system in terms of its components and their interactions. The initial 
emphasis in Software architecture specification has thus been in capturing 
system structure [5,8,13]. The authors have previously published papers on 
the use of the architecture description language Darwin for specifying the 
structure of distributed systems and subsequently directing the construction 
of those systems [8,9, 10]. Darwin can also be used to organise CORBA 
based distributed systems [11]. Darwin describes a system in terms of 
components, which manage the implementation of services. Interconnection 
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structure is specified by bindings between the services required and provided 
by component instances. Darwin has both a graphical and a textual form 
with appropriate tool support [9,12] . 

Structural View 

Behavioural View ervice View 

Analysis Construction! 
implementation 

Figure 1. Common structural view with service and behavioural views 

In this paper, we describe the use of Darwin structural descriptions as a 
framework for behaviour analysis rather than system construction. Darwin 
has been designed to be sufficiently abstract to support multiple views (cf. 
[7]), two of which are the behavioural view (for behaviour analysis) and the 
service view (for construction) (Figure 1). Each view is an elaboration of the 
basic structural view: the skeleton upon which we hang the flesh of 
behaviour specification or service implementation [14]. 

In previous papers, we have discussed the use of Darwin to produce the 
service view, with components providing and requiring services at their 
interfaces and with implementation definitions for the primitive components. 
For example, when used to structure CORBA systems [11], the 
computational behaviour of Darwin primitive components is determined by 
CORBA object implementations and these object implementations interact 
via interfaces specified in IDL using the ORB in the usual way. Primitive 
components encapsulate objects and specify their instantiation, their required 
interfaces and provided interfaces. As depicted in figure 2, a primitive 
component may embed one or more objects. 

In this paper we concentrate on the behavioural view using Labelled 
Transition Systems (LTS) for behaviour specification and analysis . The 
analysis approach is Compositional Reachability Analysis CRA [4] . We have 
developed techniques for analysing system models in the CRA setting with 
respect to both safety [2] and liveness [3] properties. The techniques are 
supported by software tools, which provide for automatic composition, 
analysis, minimisation, animation and graphical display. We first describe 
the relationship between components and their behavioural specifications. 
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Darwin 

D- component • - provided service 0 -required service 

CORBA 

<:=:> -object 1- -interface --+ - interface reference 

Figure 2. Embedding objects in components 

2. PRIMITIVE COMPONENTS 

A primitive component is one with no substructure of components. In the 
service view of architecture, a primitive component has an implementation 
defined by an object or objects programmed in a programming language such 
as C++. In the behavioural view, a primitive component is defined as a finite 
state LTS. The example of figure 3 depicts the Darwin graphical and textual 
description of a primitive component with two interfaces. 

In the behavioural view, we do not distinguish between provided and 
required services, service access points are simply declared as portals. 
Consequently, implementation details such as invocation direction can be 
deferred, although, in many cases, it is obvious from the behavioural model 
as to which component is providing a service and which is using it. 

A major objective of our work in architectural analysis is to provide tools 
that are both accessible and usable by practising engineers. To this end, we 
originally conceived that the behaviour of primitive components should be 
specified graphically as state transition diagrams since these should be 
familiar in one form or another to software engineers. However, it quickly 
became apparent that this is an extremely cumbersome method for other than 
trivial behaviour specifications. With our focus on actions rather than states 
in specifying behaviour, it was natural to use process algebra as a concise 
notation for describing behaviour. However, it is unlikely that most software 
engineers have a working knowledge of process algebra. To mitigate this 
problem, we have included the facility to depict textual specifications as 
labelled transition diagrams. These diagrams may be animated, by an 
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interactive behaviour simulation, to check that the specification corresponds 
to the engineer's intuition. 

interface BUTTON (red; blue;} 
DRINKS 

()press pour¢ interface BEVERAGE(coffee; tea;} 

component DRINKS ( 
portal press:BUTTON; 
portal pour :BEVERAGE; 

Figure 3. Darwin description of DRINKS component 

The behaviour of the drinks component is modelled in Figure 4 both 
graphically as a Labelled Transition System and textually in our process 
algebra notation FSP (Einite Erocesses). 

DRINKS 

press.blue 

pour. lea 

(press . red -> pour.coffee -> DRINKS 

lpress.blue -> pour . tea -> DRINKS 
) @ {press, pour}. 

Figure 4. Behavioural description of DRINKS component 

Primitive components are defined as finite state processes in FSP using 
action prefix "->" and choice "I". If x is an action and P a process then 
(x->P) describes a process that initially engages in the action x and then 
behaves exactly as described by P. If x and y are actions then 
(x->P I y->Q) describes a process which initially engages in either of the 
actions x or y. After the first action has occurred, the subsequent behaviour 
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is described by P if the first action was x and Q if the first action was y. 

Thus the DRINKS component offers a choice of the actions press. red 
and press. blue. As a result of engaging in one of these actions the 
appropriate drink is poured. The behavioural view does not distinguish 
between input and output actions although, as in the example, input actions 
generally form part of a choice offered by a component while output actions 
do not. The @{press, pour} states that all actions labelled or prefixed by 
press or pour can be shared with other components. The next example is 
a component that has internal actions that cannot be shared with other 
components. Figure 5 gives the Darwin graphical description for the 
primitive component LOSSYCHAN together with its behaviour modelled in 
FSP and the corresponding LTS diagram. 

LOSSYCHAN 

range T = 0 .. 1 
LOSSYCHAN = 

{in[x:T)->out[x)->LOSSYCHAN 
lin[x:T)->fail ->LOSSYCHAN 
)@{in,out}. 

Figure 5. LOSSY CHAN component 

1n.1 

tau 

The component LOSSYCHAN models a channel which inputs values in 
the range 0 .. 1 and then either outputs the value or fails. In other words, 
the component models a transmission channel that can lose messages. 
Failure is modelled by non-deterministic choice on the input, which leads to 
the internal action fail, if failure is chosen. Since fail does not appear 
at the interface of the component, it becomes the silent action tau in the 
LTS diagram for the component. In many Architectural Description 
Languages, LOSSYCHAN would be represented as a connector rather than a 
component [1,13] . However, Darwin does not have a separate connector 
construct. Connectors can be distinguished as a particular class of 
components. It is clear from the above that connectors are modelled in 
exactly the same way as components. 

The modelling notation FSP-finite state processes-includes guarded 
choice, local processes and conditional processes. However, these are 



www.manaraa.com

40 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou 

syntactic conveniences to allow concise model definition. Definitions using 
these constructs can all be expressed using action prefix, choice and 
recursion as described in this section. 

3. COMPOSITE COMPONENTS 

A composite component is constructed from interconnecting instances of 
more primitive components. A composite component defines a structure and 
no additional behaviour. Its behaviour can therefore be computed based on 
this structure and the behaviour of its components. 

customer[1]: 
CUSTOMER 

SERVICE 

• • 
customer[N]: 
CUSTOMER 

SERVICE 

const int N = 3; 1 1 #customers 

interface SERVICE { 
prepay(int); gas(int); 

component CUSTOMER 
portal 

SERVICE; 

component STATION 
portal 

customer[l . . N] :SERVICE; 

GASSTATION 

STATION 

customer[1 .. N] 

component GASSTATION 
inst 

STATION; 
forall i = 1 to N { 

inst 
customer[i] :CUSTOMER; 

bind 
customer[i] .SERVICE 

--STATION.customer[i]; 

Figure 6. GASSTATION composite component 

To illustrate composition, we will use the gas station problem, originally 
stated in [ 16] and more recently addressed in [2, 17]. The gas station problem 
concerns a set of N customers who obtain gas by prepaying a cashier who 
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activates one of M pumps to serve the customer. The overall GASSTATION 
component is depicted in figure 6. 

In an implementation such as CORBA discussed in the introduction, 
Darwin bindings (drawn as arcs between portals) are generally references to 
objects. In the behavioural view, a binding denotes an action shared between 
two components. Each customer in figure 6 shares the actions prepay and 
gas, which constitute the SERVICE interface, with the STATION 
component. Component instances in the behavioural view are finite state 
processes as described in the previous section. The composite behaviour is 
the parallel composition of these processes. Consequently, the behaviour of 
GASSTATION is the parallel composition of its constituent components: 

II GASSTATION = (customer [ 1. . Nl :CUSTOMER II STATION) . 

Note that to create multiple copies of CUSTOMER we use process 
labelling. Each action label of the customer process (namely prepay and 
gas) is prefixed with the process label. Thus customer I has the action 
labels customer [ 1] .prepay and customer [ 1] . gas. The STATION 
is itself a composite component consisting of the cashier and one or more 
pumps as depicted in figure 7. A DELIVER component is also required to 
associate pump actions with customer actions. The need for this component 
is discussed later in the paper. 

A binding in Darwin always denotes a shared action in the behavioural 
view. Shared actions are the means by which processes synchronise and 
interact in FSP. It is sometimes necessary to relabel actions to ensure that the 
shared action has the same name in all the processes that share that action. 
Re-labelling is required in the FSP description of the STATION component 
based on the particular bindings: 

//STATION= (CASHIER II pump[l. .M] :PUMP I/ DELIVER) 

/{pump[i:l .. M] .start/start[i], 
pump[i:l. .M] .gas/gas[i]} 

@{customer}. 

The general form of the relabeling function is: 
I { newlabel_lloldlabel_l , ... newlabel_nloldlabel_n}. 

This section has outlined how the FSP composition expressions for the 
behavioural model can be generated directly from the Darwin composite 
component structure. In the next section, we discuss analysis using the 
behavioural model. 
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custom er[1 .. N].prepay CASHIER 
s ta rt[1..M) 

custom er(1 .. N].gas DELIVER 
gas (1..M) 

STATION 

const M = 2 ; I I #pumps 

component STATION { 
portal customer[1 .. N] :SERVICE; 
inst CASHIER; 
inst DELIVER; 
forall i = 1 to N bind 

customer[i] .prepay 
customer[i] .gas 

forall i = 1 to M { 
inst pump[i] : PUMP; 
bind 

pump[i] .start 
pump[i] .gas 

CASHIER . customer[i] . prepay ; 
DELIVER.customer[i] . gas; 

CASHIER . start[i) ; 
DELIVER .gas[i]; 

Figure 7. STATION composite component 

4. ANALYSIS 

The complete behavioural model for the gas station is listed in figure 8. It 
includes behaviour definitions for the primitive components, CUSTOMER, 
CASHIER, PUMP and DELIVER. A CUSTOMER makes a prepayment of 
some amount (a) chosen from the range (A) and then inputs some amount of 
gas (x). The process definition includes a test to check that the amount of 
gas actually delivered is the same as the amount paid for. In this simplified 
model of the gas station, the cashier does not give change and pumps are 
expected to deliver the amount of gas that has been paid for. The CASHIER 
starts any pump that is ready and passes to it the identity of the customer (c) 
and the amount of gas required (x). The PUMP outputs the correct amount of 
gas, which is delivered to the CUSTOMER by the DELIVER component. The 
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composition expressions for the composite components STATION and 
GASSTATION are as described in the previous section. 

const N 3 //number of customers 
const M 2 //number of pumps 
range c 1. .N //customer range 
range p 1. .M I /pump range 
range A 1.. 2 //amount of money or Gas 

CUSTOMER= (prepay[a:A]->gas[x:A)-> 
if (x==a) then CUSTOMER else ERROR) . 

CASHIER = 
(customer[c:C] .prepay[x:A]->start[P] [c] [x]->CASHIER). 

PUMP = 
(start[c:C] [x:A] -> gas[c] [x] -> PUMP). 

DELIVER= 
(gas[P] [c:C) [x :A) -> customer[C] .gas[x] -> DELIVER) . 

II STATION = (CASHIER II pump [ 1. . M] :PUMP II DELIVER) 
I {pump [ i: 1. . M] . start/ start [ i] , 

pump[i:l . . M) .gas/gas[i)} @{customer} . 

IIGASSTATION (customer[!. .N] :CUSTOMER II STATION). 

Figure 8. Gas station behavioural model 

Animation 
Our analysis tool LTSA (labelled transition system analyser) allows a user 

to explore different execution scenarios using the behavioural model. 

EJ 
customer.3.prepay.1 
pump.1.start.3.1 
pump.1.gas.3.1 
customer.3.gas.1 

CU$lomer. l .prepay.1 

cuuomer. l .prepay.2 

cuuomer.2..prepay.1 

customer.2..prepay.2 

customer.3.prepay.2 

Figure 9. Animating the gas station 



www.manaraa.com

44 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou 

To do this, the user must specify the set of actions that he/she wants to 
control. The controlled set is defined by a menu, which for figure 9 is: 

menu RUN= {customer[C) . prepay[A)} 

Figure 9 depicts the trace of actions that result from instigating a prepay 
action from customer 3. The cashier allocates pump 1, which delivers the 
requisite gas to the customer via the DELIVER process. 

Reachability Analysis 
Animation allows a user to explore different execution scenarios, 

however, it does not allow general properties concerning the model to be 
checked. For example, does a customer always receive the correct amount of 
gas? Reachability analysis performs an exhaustive search of the state space 
to detect ERROR and deadlock states (no outgoing transitions). In fact the 
behaviour model of figure 7 has a bug that permits incorrect behaviour. The 
output of the analyser is shown below: 

property customer.3:CUSTOMER violation. 
property customer.2 : CUSTOMER violation. 
property customer.l : CUSTOMER violation . . .. 
States Composed: 3409 Transitions: 11862 in 1468ms 
Trace to violation in customer.2:CUSTOMER: 
customer.l . prepay.l 
pump.l.start.l.l 
customer.2 . prepay.2 
pump.l.gas.l.l 
customer.2.gas.l 

The output shows that a property violation in each of the customer 
components is detected. In addition, an example trace, which causes one of 
the violations, is produced. Remembering that the CUSTOMER model 
requires that the amount of gas delivered to the customer should be the 
amount paid for, the trace is an execution in which customer 2 gets the gas 
paid for by customer 1. This error is essentially the same as the race 
condition discussed in [17] . The error in the model is that the DELIVER 

process delivers gas to any ready customer C rather than to the customer 
identity c passed to it by the cashier. The corrected DELIVER process is: 

DELIVER 
=(gas[P) [c : C) [x:A) -> customer[c) .gas[x) -> DELIVER) . 

Safety properties 
We can specify safety properties that a composition of components must 

satisfy using property automata [2]. These specify the set of all traces that 
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satisfy the property for a particular action alphabet. If the model can produce 
traces, which are not accepted by the property automata, then a violation is 
detected during reachability analysis. For example, the following automaton 
specifies that for, two customers, if one customer makes a payment then he 
or she should get gas before the next customer makes a payment. In other 
words, service should be FIFO. 

range T = 1.. 2 
property 

(customer[i:T] .prepay[A] -> PAID[i)), FIFO 
PAID[i : T] -> FIFO 

PAID[i] [j] 
(customer[i] .gas[A] 
lcustomer[j : T) .prepay[A] -> 

) ' 
PAID[i:T] [j :T] = (c ustomer[i].gas[A) -> PAID[j]) . 

A gas station with a single pump satisfies this property, however, a 
station with two pumps does not and leads to the following violation: 

Composing 
property FIFO violation. 

States Composed: 617 Transitions: 1398 in 94ms 
Trace to property violation in FIFO: 
customer.1.prepay . 1 
pump . 1.start . 1.1 
customer.2.prepay.1 
pump.2.start.2.1 
pump . 2.gas.2.1 
customer.2.gas.1 

The trace describes the scenario in which customer 1 pays first and gets 
pump 1 followed by customer 2 paying and getting pump 2. Clearly in a two 
pump system, pump 2 can finish first, thereby violating the FIFO property. 

Liveness properties 
The LTSA analysis tool allows behavioural models to be checked against 

specific liveness properties specified in Linear Temporal Logic. However, 
we have found a check for a general liveness property which we term 
progress to provide sufficient information on liveness in many examples. 
Progress asserts that in an infinite execution of the system being modelled, 
all actions can occur infinitely often. In the gas station example, it would 
assert that customers will always eventually be served. In performing the 
progress check, we assume fair choice which means that if an action is 
eligible infinitely often, then it is executed infinitely often. With this 
assumption, the progress check finds no problem with the gas station. 
However, we can examine the behaviour of the system under different 
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scheduling constraints by applying action priority. For example, the system 
below states that the actions of customer 1 have lower priority than other 
actions: 

I I GAS STATION (customer [1 .. N] : CUSTOMER II STATION) 
>>(customer[l]}. 

Unsurprisingly, this causes a progress check violation since it is now 
possible for the cashier to ignore customer 1 in favour of other customers. 
Customer 1 may never be served. The tool gives the following output. 

Progress violation for actions: 

{customer.l . prepay.l, customer.l.gas.l , customer.l.gas.2, 

customer.l.prepay.2, pump.1.start.1.1, pump.2.start.1 . 1, 

pump.1.start.1.2, pump.2.start.1.2, pump.1.gas.1.1, 

pump. 1. gas. 1. 2 ........... } 

Trace to terminal set of states : 

Actions in terminal set: 
{customer . 2 . prepay . 1, customer . 2.gas.1, customer.2.gas.2, 

customer . 2 . prepay . 2, customer.3 .prepay . 1, customer . 3 . gas.1 , 

customer . 3.gas.2, customer.3 . prepay . 2, pump.1.start.2 . 1, 

pump.2.start.2.1 ......... . . } 

This includes the set of actions that do not occur infinitely often in the 
system and the set of action that can occur infinitely often. It is clear that 
actions for customer 1 occur in the former set and the actions for customer 2 
in the latter. The tool gives a trace that leads to the execution in which the 
violation occurs. In the example, this trace is empty, as customer 1 never 
gets an opportunity to get gas. 

5. DISCUSSION & CONCLUSIONS 

We have presented an approach that associates behaviour descriptions 
with architectural components and supports behaviour analysis of the 
composition of these components according to the software architecture. 
Although relatively small, the example exhibits non-trivial behaviour. It 
demonstrates that we can produce concise and flexible behavioural models 
in which it is easy to add additional components and interactions. In the gas 
station, it is trivial to modify the numbers of customers and pumps. In fact, 
the gas station as presented is an instantiation of a common distributed 
software architecture style known as a multi-server or multithreaded server. 
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In a multi-server system, a separate server thread allocated by an 
administrator thread handles each client request. 

In the introduction we stated that we could use the same structural 
description for system construction as for behaviour modelling. This is not 
always the case. For example, the gas station behavioural view includes the 
DELIVER component which routes pump actions to customers. This 
component would not appear in the service view since this routing would be 
implicit in the service invocation mechanism. DELIVER is modelling an 
aspect of architectural connection and it is specific to the behavioural view. 
In other words, we recognise that there is a need to augment the structural 
description with connector components for the behavioural view of 
architecture. In contrast to Wright [1] we have resisted requiring that a 
connector component is always interposed between application components 
since this seems to lead to large numbers of auxiliary actions. 

An issue that always arises when considering exhaustive state space 
search methods is scalability. We have used the current toolset, which has 
not yet been optimised for performance, to analyse an Active Badge 
System[21] in which the final model has 566,820 reachable states and 
2,428,488 possible transitions. This took 400 seconds to construct and check 
on a 200MHz Pentium Pro and required 170Mb of store. Although not 
addressed in this paper, our tools support compositional reachability analysis 
in which intermediate composite components can be minimised with respect 
to their interface actions using observational equivalence. Previous work 
[15] has addressed the problem of intermediate state explosion. 

We believe that analysis and design are closely inter-linked activities 
which should proceed hand in hand. The FSP notation and its associated 
analysis tool LTSA have been carefully engineered to facilitate an 
incremental and interactive approach to the development of component 
based systems. Analysis and animation can be carried out at any level of the 
architecture. Consequently, component models can be designed and 
debugged before composing them into larger systems. The analysis results 
are easily related to the architectural model of interconnected components. 
The LTSA analysis tool described in this paper is written in Java™ and can 
be run as an application or applet. 1\ is availabl¢ at http://www
dse.doc.ic.ac.uk/-jnm. The approach we have described in this paper to 
analysing component-based systems is a general one that is not restricted to 
a particular tool-set. For example, CSP/FDR [6,19] has been used with the 
architectural description language Wright[!] and both LOTOS/CADP [18] 
and Promela/SPIN [20] have been used in the context of analysing software 
architectures. The objective, whatever the tool, is to use behaviour analysis 
during design to discover architectural problems early in the development 
cycle. 
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Abstract: Legacy systems, no matter which architectural style they rely on, contain 
numerous pieces of source code with very similar functionality. We see these 
system aspects as a good starting point for rearchitecting legacy systems. The 
goal is the evolution of the legacy system architecture towards a product line 
architecture which incorporates the originally replicated system aspects as 
reusable, ideally self-configuring components. This paper presents the 
concepts which we regard as necessary and/or useful for such an evolution: 
Framelets form small architectural building blocks that can be easily 
understood, modified and combined. Reflection together with a high-level 
definition of semantic aspects allow the construction of partially self
configuring components. A case study corroborates that this constitutes a 
viable approach for rearchitecting legacy systems in practice. 

1. PRODUCT LINE ARCHITECTURES FOR 
REPLICATED COMPONENTS 

The source code of legacy systems comprises numerous replications of 
similar chunks of code. This means that from an architectural perspective 
many components of the overall architecture provide similar if not identical 
functionality. In other words, source code was written again and again from 
scratch for implementing these components. The idea for Rearchitecting 
legacy systems suffering from this problem is to develop a product line 
architecture for each such replicated component. The particular components 
are slight variations of the product line, that is, they belong to the family of 
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the product line. Depending on the size of the replicated components, this 
kind of Rearchitecting activity will lead to a set of small product lines. 

Let us take a look at a specific legacy system which we rearchitectured 
recently1. The three-tier client/server (CS) system of the bank is 
representative of legacy software systems relying on the CS architectural 
style. The clients (Windows PCs) access a central data repository via a 
remote procedure library, which is available as set of C functions. The data 
repository resides on a server machine (currently a Unix workstation; 
migration to Windows NT is under way) and/or a mainframe. The remote 
procedure library represents a quite stable part of the system architecture 
which has not changed at all over the past ten years . For implementing the 
client side the bank used a fourth-generation tool (SQL Windows/Gupta). 
The problem associated with this approach is that the tool produces a 
monolithic architecture: all dialog windows form one executable which has 
to be loaded to each client no matter how small the percentage of required 
dialogs actually is. From a development point of view it is hardly possible to 
package dialogs or parts of dialogs into reusable components. 

From an architectural point of view the module structure of the client 
system is quite natural to envision. One dialog forms one module. In some 
cases a small group of dialogs might be packaged into one unit. Despite the 
shortcomings of typical fourth-generation tools regarding modularization, 
several other choices, such as state-of-the-art Java development 
environments allow the straightforward implementation of such a module 
structure. 

A closer look at the module structure of dialogs reveals that almost every 
such module contains one or more components for handling remote 
procedure calls and one or more components for managing items in a list. Of 
course, the components differ in various contexts. For example, before a 
remote procedure is invoked, the input parameters of the procedure have to 
be read out of specific GUI elements. The number of parameters and the 
GUI elements differ between remote procedure calls (RPCs). RPCs return 
their results in C-arrays that have to be interpreted properly. The results are 
then displayed again in GUI elements. This infrastructure surrounding an 

I The project is part of a cooperation between RACON Software GmbH, a software 
house of the Austrian Raiffeisen bank, and the Software Engineering Group at the 
University of Constance. The principal question at the outset was, whether a 
Rearchitecting effort based on framework technology and Java can lead to a 
significantly better modularization of the overall system that allows the reuse of 
components. Both aspects were defined as goals that could be achieved. The 
paper presents the concepts and ideas which we regard as generally useful for 
Rearchitecting legacy systems. 



www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study 53 

RPC is an example of source code that has to be implemented again and 
again for each RPC, but which offers similar functionality. 

As most dialogs in real world CS systems have one or more GUI 
elements that display items in lists (by means of a GUI component called 
multi-column grid control), interactions associated with lists are also 
replicated in most dialogs . For example, a button for removing an item from 
the list has to be enabled only if an item in the list is selected, otherwise the 
button is disabled. Pressing a button to add an item opens a dialog window 
for entering the data. Pressing a button to modify an item also opens a dialog 
window and transfers the data representing the item to the corresponding 
GUI elements for the purpose of editing them. The aspects that differ in the 
various list-handling components are the types of the listed items, the dialog 
window to display an item, and some details such as button labels and the 
location of buttons for manipulating the list (for example, under the grid 
control or beside it). 

RP-Handling 

Server I Host 

Figure 1: Module structure of the CS system with replicated RPC components 

Figure 1 illustrates schematically the problem of replicated components 
in the architecture of the CS system at hand. Though the size of these 
components is small (about 200 to 300 source lines of code), they are 
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replicated several hundred or even thousand times. Note that Figure 1 shows 
several replicated RPC components, but only one ListHandling component, 
as just one of the two sample dialogs contains a list. (Figures 1 and 2 apply 
the notation introduced by Bass et al. (1998). Solid arrows express control 
flow, dotted arrows depict data flow .) 

Figure 2 shows an architectural solution which is based on a small 
product line for each such component. This solution is better as the number 
of components is significantly reduced. 

RP·Handllng 

Server I Host 

Figure 2: Module structure of the CS system with a product line architecture 

The following sections present the concepts underlying reflection-based 
framelets. Such framelets were used to develop the product line architecture 
sketched above. A case study discussing the RPC framelet concludes the 
paper. 

2. FRAMELETS 

Object-oriented frameworks can be of any size, ranging from just one or 
a few simple classes to large sets of complex classes. However, the 
conventional idea of a framework is that it constitutes the skeleton of a 
complex, full-fledged application. Consequently, frameworks tend to be 
relatively large, consisting of, say, hundreds or thousands of classes. We 
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argue that the common problems (see e.g., Casais (1995); Sparks et al. 
(1996); Bosch et al. (1998)) associated with frameworks stem from this idea. 

We argue that the reason for common problems associated with 
frameworks is the conventional idea of a framework as the skeleton of a 
complex, full-fledged application: 
- The design of such typical frameworks is hard. Due to the complexity and 

size of application frameworks and the lack of understanding of the 
framework design process, frameworks are usually designed iteratively, 
requiring substantial restructuring of numerous classes and long 
development cycles. 

- Reuse of a framework is hard. A framework conventionally consists of 
the core classes of an application, and one has to understand the basic 
architecture of a particular application type to be able to specialize the 
framework. 

- The combination of frameworks is hard. Often a framework assumes that 
it has the main control of an application. Two or more frameworks 
making this assumption are difficult to combine without breaking their 
integrity. 

A framework becomes a large and tightly interconnected collection of 
classes that breaks sound modularization principles and is difficult to 
combine with other similar frameworks. Inheritance interfaces and various 
hidden logical dependencies cannot be managed by application 
programmers. A solution proposed by many authors is to move to black-box 
frameworks which are specialized by composition rather than by 
inheritance. Although this makes the framework easier to use, it restricts its 
adaptability. Furthermore, problems related to the design and combination 
of frameworks remain. 

This suggests that it is not the construction principles of frameworks that 
form a problem, but the granularity of systems where they are applied. We 
propose a radical downsizing of frameworks and call these assets frame lets. 
In contrast to a conventional framework, a framelet 

- is small in size ( < 10 classes), 

- does not assume main control of an application, and 

- has a clearly defined simple interface. 

Like conventional frameworks, a framelet can be specialized by 
subclassing and composition. 

We consider a framelet not only as a reusable asset but indeed as a 
fundamental unit of software in general. If a software system is seen as a set 
of service interfaces and their implementations, a framelet is any (small) 
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subset of such a system (see Figure 3). An interface that belongs to the 
framelet without its implementation (and used within the framelet) is part of 
the specialization interface of the framelet. An interface that belongs to the 
framelet together with its implementation (and used outside of the framelet) 
is part of the service interface of the framelet. This is basically the 
foundation for using framelets in restructuring legacy systems. 

Legacy system 

Framelet 

- ·· - -- -
Legend· 

Speclollzobon 
nterfoce 

n Service ontertoce 
U Service tmplementotlo 

_L Service col 

Figure 3: A frarnelet as a subset of a software system 

Our vision is to have a family of related framelets for a domain area 
representing an alternative to a complex framework. Thus we view framelets 
as a kind of modularization means of frameworks. On a large scale, an 
application is constructed using framelets as black-box components, on a 
small scale each framelet is a tiny white-box framework. 

A particular problem arising from the use of framelets as production 
lines is specialization dependency: the problem of specializing a large 
conventional framework may reappear in the case of framelets as the 
existence of various hidden dependencies that the specializations of 
individual framelets must follow to build a consistent application. Ideally, it 
should be possible to specialize each framelet independently of the others. 
To make this possible, framelets should be able to adapt themselves 
automatically to the context in which they are being used, relieving the 
programmer of the burden of explicitly writing the context requirements as 
configuration code in the specialization. In the sequel we show that this can 
be at least partially achieved using reflective features provided by many 00 
languages (e.g., Java), together with certain semantic conventions. 
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3. REFLECTION AS THE BASIS OF SELF
CONFIGURING ASSETS 

57 

What frameworks and framelets have in common is that they represent 
one means of implementing product line architectures. For this purpose they 
rely on the constructs provided by object-oriented programming languages. 
The few essential framework construction principles, as described, for 
example, by Pree (1996), are applicable to framelets as well. A framelet 
retains the call-back characteristic (a.k.a. the Hollywood principle) of white
box frameworks: framelets are assumed to be extended with application
specific code called by the framelet. Figure 4 (a) shows a run-time snapshot 
of a framelet with the objects A and B as hot spots. Usually hot spots 
correspond to abstract classes or Java interfaces in the static program code. 
A reuser of the framelet would have to choose either from already existing 
specific subclasses of the abstract classes or from interface implementations, 
or would have to implement appropriate classes. The framelet is adapted by 
replacing the place holders by instances of specific A and B classes (see 
Figure 4 (b)). 

(a) (b) 

Figure 4: Framelet before (a) and after (b) adaptation 

Besides the mentioned canonical possibilities of defining abstract entities 
of a framelet, there exist significantly more flexible ways of doing this, 
albeit ones that sacrifice type safety. Let us assume we design the framelet 
sketched in Figure 4 in Java, where all classes have a common ancestor, i.e., 
they inherit from class Object. Now the framelet designer could decide not 
to restrict the two hot spots to a specific type, such as A and B in our 
example. Instead it should be possible to plug any object into the framelet. 
In other words, the static type of these hot spots becomes Object. The only 
useful assumption that the framelet designer can make about these abstract 
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entities is that they provide the full range of meta-information. As meta
information is supported by the Java standard library (JDK 1.1 and above) 
any object offers the same range of meta-information. For example, it 
becomes possible to iterate over instance variables, access their types and 
values, iterate over an object's methods and invoke particular ones. On first 
consideration, this seems to be useless: No semantics are associated with 
these operations, as opposed to abstract classes or interfaces, whose methods 
define a specific type with an associated behavior on which the framework 
developer can rely. 

The advantage of such reflection-based hot spots is that somewhat 
"intelligent" framelets can be constructed that exhibit self-configuring 
properties. The framelet generically couples itself with the objects that fill 
the hot spots. In order to make this happen, some semantics have to be 
defined for the abstract entities. The sample framelet discussed in the next 
section applies a very simple mechanism for defining semantics, i.e., naming 
conventions. The point is that the semantic definitions are completely 
decoupled from the programming language level. They reintroduce a notion 
of typing on a more domain-related level. Thus proper semantic definitions 
render void the above mentioned drawback of giving up strong typing. They 
introduce kinds of equivalents of types on the domain level. Of course, 
naming conventions are probably the most basic means of defining 
semantics. We are currently investigating more sophisticated means of 
pragmatically defining domain-specific semantics. 

4. THE RPC PRODUCT LINE-A CASE STUDY 

Remember that calling a remote procedure requires some infrastructure 
in addition to the mere invocation. The values of the input parameters of the 
remote procedure originate from GUI elements. The return parameters of 
most remote procedures are packaged in a C-array that has to be carefully 
processed before they can be displayed in particular GUI elements. 

The interface of a reusable asset should be designed as straightforwardly 
for the user as possible. If the infrastructure surrounding an RPC is 
packaged in a reusable asset, the ideal situation would be that the reuser just 
invokes one method, doRPC( ... ), of this component. The first parameter is 
the name of the RPC as a string. The second parameter of doRPC( ... ) is a 
reference to the dialog window which contains the GUI elements 
corresponding to the input parameters of the remote procedure. Finally, a 
reference to the dialog window has to be specified in whose GUI elements 
the result parameter values are displayed. Let's call these two dialogs input 
and output dialog windows. Note that the input and output dialog windows 
can be identical. The RPC component should ideally be able to do the 
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configuration job itself, i.e., extract the parameter values from the 
appropriate GUI elements of the input dialog window and transfer the 
results to the GUI elements of the output dialog window. This would make 
the reusable asset a perfect small product line for calling remote procedures. 
How can such a convenient reuse level be achieved? 

Here a simple naming convention comes into play. The GUI elements 
have to have the same names as the RPC parameters. The RPC component is 
implemented as a framelet in Java with two core hot spots: the input dialog 
window and the output dialog window. Both hot spots are of type Object. As 
discussed in detail below, the RPC framelet only requires the meta
information interface to accomplish the configuration job. We'll see that the 
naming convention is a sufficient semantic specification of the behavior of 
the two hot spots. 

The RPC product line works internally as follows: The framelet is based 
on a parameter description for each remote procedure. The type of each 
parameter of a particular remote procedure has to be known. Furthermore, a 
parameter has to be classified as an input or an output parameter. In the 
realm of the RPC framelet, the class construct was chosen to describe a 
remote procedure. (These classes don't have to be written by hand. A tool 
generates these descriptions out of the available RPC documentation.) Each 
such class contains besides an empty constructor only public instance 
variables. The instance variables correspond to the parameters of the remote 
procedure. The instance variable names reflect the parameter names in the 
remote procedure documentation. A suffix Out marks output parameters. 
The types of the instance variables correspond to the types of the remote 
procedure parameters. 

In order to call a remote procedure, including all the data fetching and 
processing that is associated with a call, the reuser sends the message 
doRPC( ... ) to the RPC framelet, passing the remote procedure name as well 
as the input and output dialog variables as parameters as sketched above. 

Based on the remote procedure name, the RPC framelet first searches the 
class that describes the parameters of the remote procedure, and instantiates 
this class. The frarnelet then iterates over the instance variables of this 
object and assigns to them those values to them which it retrieves from the 
GUI elements of the input dialog window that have the same name as the 
parameters in the description object. For this purpose, the framelet iterates 
over the instance variables of the dialog window. This works fine as the GUI 
elements of a dialog window manifest in public instance variables of that 
dialog window object. 

Figure 5 exemplifies the interaction between various components during 
the invocation of a remote procedure. The solid lines again depict control 
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flow, whereas the dotted lines represent data flow. Activating the button 
Search ("Suchen" in the dialog window with German labels) should imply 
the invocation of a remote procedure SearchPerson which basically searches 
all records in a database that correspond to the search parameters (e.g., the 
entered last name). 

First the method doRPC( .. . ) is called (label 1 in Figure 5) and receives 
the following parameters: the name of the remote procedure as a string, and 
the references to the input and output dialog windows. In this example both 
refer to the same dialog. The RPC framelet now retrieves the values from 
the input dialog window in order to assign these values to the remote 
procedure parameter description object (a) and calls the remote procedure 
(labels 2 and 3 in Figure 5). 

... _ 
__.... ....... 

--- b .--------, 

Server/Host 

Figure 5: Schematic representation of interactions and data flow in a RPC framelet 
adaptation 

Note that the name of the GUI element which displays the string 
Schwarzenegger is not visible in Figure 5. The GUI element has the 



www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study 61 

intemal2 name lastName and thus adheres to the naming convention. One 
instance variable of the remote procedure description object also has the 
name lastName. 

The RPC framelet finally processes the results returned from the host or 
server and assigns the values to the proper instance variables of the remote 
procedure description object (b). The remote procedure description object 
provides some additional information how to process the result (a C-array 
structure) for each remote procedure. This detail will not be discussed in this 
paper. From there the RPC framelet transfers the data via the meta
information interface and naming convention into the GUI elements of the 
output dialog window (c). 

The source code in Example 1 illustrates how reflection allows the 
generic implementation of a RPC. The second parameter of this method is 
the remote procedure description object whose role is explained above. 

The classes Class, Method and Field are part of the standard Java library. 
The first line of method invokeRP( ... ) stores all instance variables (fields in 
Java jargon) of the remote procedure description object in an array. Suppose 
that the object has N instance variables, then the arrays, params, and args 
have the initial size N=fields.length. The for-loop assigns the particular 
array component the type (params[i]= fields[i].getType()) and the value of 
the instance variable (args[i]= fields[i].get(parametersOfRPC)) . 

The class ListOfRPCs contains all remote procedures as methods. The 
methods invoke the associated C functions by means of the Java Native 
Interface (JNI) . The statement getMethod( ... ) returns the Method object that 
corresponds to the name of the remote procedure. This is the first parameter 
of method invokeRP( ... ). The reference to this Method object is stored in 
the variable RPCmethod. Class Method offers a method invoke( ... ) to finally 
carry out the call. 

The selected source code illustrates how reflection is useful to decouple 
the frame let from the specific remote procedure library. The description of a 
remote procedure in a separate class suffices for a generic implementation of 
a remote procedure call in the framelet. New or changed remote procedures 
only require additional or modified descriptions. The RPC framelet itself is 
not affected. 

class RPCaiiManager ... { 

2 The GUI editor assigns a name to each GUI element. A tool generates Java code 
which corresponds to the visuaVinteractive specification of the GUI. In general, a 
dialog window is represented in one class. The GUI elements contained in a 
dialog window become instance variables of this class. The GUI element names 
determine the instance variable names. 
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ListOfRPCs rpclist; II contains all RPCs as methods 

RPCaiiManager ( ... ) { 

public void doRPC(String RPCname, Object in Dialog, Object outDialog) { 

protected void invokeRP(String nameOfRPC, 
Object parametersOfRPC) { 

Field[] fields= parametersOfRPC.getCiass().getDeclaredFields(); 
Method RPCmethod = null; II auxiliary var. for invoking RPC 
Class[] params =new Class[fields.length]; 
Object[] args =new Object[fields.length]; 

for all params do { 

params[i] = fields[i].getType(); II type of parameter 
try { 

args[i] = fields[i].get(parametersOfRPC); II par. value 
} catch (lllegaiAccessException iae) { ... } 

RPCmethod = rpclist.getCiass().getMethod(nameOfRPC, params}; 

.. . II exception handling 
RPCmethod.invoke(args); 
... II exception handling 

Example 1: Generic implementation of the remote procedure call 

Overall, the automated configuration of the RPC product line relies 
solely on meta-information. A method of class Class called newlnstance() 
allows the instantiation of a class whose name is provided as string. Class 
Class also offers methods for iterating over the instance variables of an 
object. Both properties together are sufficient for the implementation of the 
RPC framelet. 

Measurements of the run-time overhead of iterating over instance 
variables showed that the overhead can be neglected. The time for 
generically assembling an RPC takes between 0.2 and 0.5% of an RPC. 
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5. CONCLUSION 

We have introduced two basic concepts for extracting reusable elements 
from legacy systems: framelets and dynamic specialization through 
reflection. The latter mechanism supports the idea of a framelet by 
automating part of the specialization work. Neither of these concepts is 
strictly limited to the 00 world, but our discussion and case study have 
been carried out in the context of 00: this paradigm fits well our purposes 
through its mechanisms for abstraction, specialization and reflection. To 
some extent, corresponding mechanisms are provided by various component 
technologies (e.g., COM). 

It should be emphasized that dynamically configurable framelets are not 
only useful for restructuring legacy systems, but they can and should be 
used as basic architectural units in the design of new systems as well. Since 
a frame let implements only a restricted functionality, its development is 
expected to be far less iterative than the development of a typical application 
framework. Hence, a mature generic software system based on framelets can 
be developed in essentially shorter time than a conventional framework, yet 
retaining the applicability of a framework. 

The feasibility of framelets may depend on the overall architectural style. 
It seems that framelets are particularly natural units in a layered architecture 
where the services required by a layer are implemented by a lower layer. In 
this case a single layer can be sliced into several framelets. For each such 
slice, the interface to the upper layer represents the specialization interface 
while the interface to the lower layer represents the service interface of the 
frame let. 

Though framework-related design patterns (Gamma et al., 1995; 
Buschmann et al., 1996) represent architectural knowledge, they are too 
small to become the foundation of reusable architectural components. Based 
on the first experience with framelets we argue that framelets might be a 
pragmatic compromise between design patterns and application frameworks. 
Framelets might be viewed as the combination of a few design patterns into 
a reusable architectural building block. 

To which degree an application can be based on framelets remains an 
open question, but we feel that frequently used independent features suitable 
for framelets can be easily found in many application domains. Future work 
will focus on the prototypical development of framelet families, on 
investigation of pragmatic semantic conventions used for the automatic 
configuration of framelets, and on programming tools supporting the use of 
frame lets. 
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Abstract: The end product of architecting is an architectural hierarchy, a collection of 
architectural descriptions linked by mappings that interpret the more abstract 
descriptions in the more concrete descriptions. Formalized transformational 
approaches to architecture refinement and abstraction have been proposed. 
One argument in favor of formalization is that it can result in architectural 
implementations that are guaranteed to be correct, relative to the abstract 
descriptions. If these are correct with respect to one another, conclusions 
obtained by reasoning from an abstract architectural description will also apply 
to the implemented architecture. But this correctness guarantee is achieved by 
requiring that the implementer use only verified transformations, i.e., ones that 
have been proven to produce correct results when applied. This paper explores 
an approach that allows the implementer to use transformations that have not 
been proven to be generally correct, without voiding the correctness guarantee. 
Checking means determining that application of the transformation produces 
the desired result. It allows the use of transformations that have not been 
generally verified, even ones that are known to sometimes produce incorrect 
results, by showing that they work in the particular case. 

1. INTRODUCTION 

The process of specifying an architecture often begins by providing a 
very high-level description of it. This description characterizes the 
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architecture in terms of a few abstract components, perhaps the principal 
functions the system must perform and some data stores. These components 
are linked by abstract connectors, perhaps indicating dataflow or control 
flow relationships among the components. This abstract description 
provides an easily understood overview of the entire system architecture, but 
omits so much detail that it provides relatively little guidance to someone 
charged with implementing the architecture using programming-language
level and operating-system-level constructs. So the abstract description must 
be successively refined-with complex components and connectors 
decomposed into simpler parts, and abstract specifications of operations and 
relationships replaced by more concrete specifications-until an appropriate 
amount of detail has been added. It usually is desirable to continue the 
refinement until implementation-level constructs have replaced all the 
abstractions. 

Alternatively, architecting a system can consist of assembling instances 
of reusable component and connector types selected from a library. Such 
libraries effectively make the implementation-level architecture more 
abstract, and reduce the conceptual gap between the requirements 
specification and the implemented architecture. Nevertheless, combining a 
large number of components and connectors in complex ways can easily 
result in an architecture that is hard to understand and analyze. So, it is 
desirable to generate more easily comprehensible abstract representations of 
the implementation-level architecture. 

In either case, the end product of the architecting process is typically a 
collection of architectural descriptions, at different levels of abstraction and 
often in different styles (Garlan, Allen, & Ockerbloom 1994). The more 
abstract descriptions are linked to the more concrete descriptions by 
interpretation mappings. An interpretation mapping says how the 
abstractions are implemented.' It sends each sentence in the language of the 
abstract description to a corresponding sentence in the language of the 
concrete description. For example, the fact that some component a is 
implemented by components at. a2, .••• , an would be indicated by mapping 
the sentence 

Component( a) 

to the sentence 

Component(a,)" Component (az)" ... "Component(an) 

1For more details on characterizing implementation steps using interpretation mappings, see 
our earlier paper (Moriconi, Qian, & Riemenschneider 1995). 
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The collection of architectural descriptions and interpretation mappings that 
comprise the complete architectural specification is called an architecture 
hierarchy. 

There are many advantages to formalizing refinement and abstraction in 
system development: a library of refinement or abstraction transformations 
provides a "corporate knowledge base" of standard, or preferred, 
development patterns; mechanizing the application of these transformations 
lessens the likelihood of clerical errors during the development process; 
reuse of the transformations will result in greater validation of the patterns 
they codify; and so on. But one of the most fundamental advantages of 
formalization is that it allows the average developer to produce abstraction 
hierarchies that are guaranteed to be consistent. In other words, the use of 
verified transformations in the development process will guarantee that 
abstractions accurately characterize implementations, albeit more abstractly. 
A verified refinement transformation is one that has been proven to produce 
a correct implementation of whatever it is applied to. A verified abstraction 
transformation is one that has been proven to produce a correct abstraction 
of whatever it is applied to. 

Even if attention is restricted to the case of architectures, there is some 
debate as to exactly what correct should mean. We have proposed a 
somewhat stricter-than-usual criterion for correctness (Moriconi, Qian & 
Riemenschneider 1995), while others have argued that the standard criterion 
is preferable (Philipps & Rumpe 1997). For present purposes, any 
reasonable criterion that characterizes correctness in terms of preservation of 
truth will do perfectly well. The standard correctness criterion is that every 
consequence of the abstract description must be a consequence of the 
concrete description as well. More precisely, for every sentence A in the 
language of the abstract description, where rl is the logical theory that 
formalizes the abstract description, 

where r2 is the theory that formalizes the concrete description, and ll is the 
interpretation mapping that links the two theories.2 A mapping Jl that 
satisfies this condition is called an interpretation of T1 in h Our proposed 
stronger criterion for purely structural descriptions replaces the conditional 
with a biconditional, i.e., requires that the interpretation mapping be a 
faithful theory interpretation. One might also employ weaker-than-standard 

20ur earlier paper explains how to fonnalize structural descriptions of architectures as logical 
theories. Since structural descriptions are largely declarative, the process is quite 
straightforward. 
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criteria, where only some consequences of the theory-properties of special 
interest-need be preserved. 

What all these criteria have in common is that they justify the use of 
formal reasoning about the architecture based on the more abstract 
descriptions. If some sentence is shown to be a formal consequence of the 
abstract architectural theory, the concrete theory is known to correctly 
implement the abstract theory, and the sentence is among those that the 
correctness criterion guarantees are preserved by the implementation, then 
the sentence is known to be a consequence of the concrete theory as well. It 
is correctness guarantees that link the results of abstract analyses to the real 
world. 

The usual approach to producing a correctness guarantee is 
restricting the architect to the use of verified transformations. This approach 
suffers from a problem, in practice. Even given a fairly mature library of 
verified transformations, it would hardly be surprising if an architect found 
himself unable to perform a certain refinement or abstraction step that he 
believed to be correct because the required transformation has not been 
included in the library. Expecting the typical system architect to produce a 
formal proof that the step is correct is unrealistic, yet the presence of a single 
unverified implementation step in the hierarchy voids the correctness 
guarantee provided by the restriction to verified transformations. Is there 
any way to allow the user to include such arbitrary steps in the development 
of the architecture hierarchy, while maintaining a correctness guarantee? 

2. PROOF -CARRYING ARCHITECTURES 

Our solution to this problem is based on the notion of checking the 
correctness of steps in architecture hierarchy development. By checking, we 
mean automatically performing some calculation that shows the step is 
correct. Checking can be substantially simpler than verification, because it 
is focussed on a particular step. Verifying a transformation means showing 
that it always produces correct results, while checking a transformation step 
means showing that a correct result was obtained in one specific case. Thus, 
checking entirely avoids the sometimes difficult problem of characterizing 
the preconditions required for the transformation to produce correct results 
(Riemenschneider 1998). 

Our initial approach to checking transformation steps was inspired by 
work on compilers that generate proof-carrying code (PCC) (Necula & Lee 
1998). The basic idea is that, rather than attempting to prove the 
transformations performed by a compiler always produce code with certain 
desired properties, to generate a purported formal proof that the complied 



www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 69 

code has those properties as part of the code generation process. The 
purported proof can then be checked and, if it turns out to be a correct proof, 
it follows that the generated code has the desired properties. Thus, the 
emphasis is shifted from showing that compiler transformations are correct 
in general to checking that they produced correct results in individual cases. 

The application of this idea to architectural transformation is 
straightforward. At some abstract level, the architectural description is 
proven to guarantee that the architecture has some desirable property, C. 
The interpretation mapping J.L that sends abstract level sentences to their 
implementations can also be applied to the proof of C. If the image of the 
proof under the implementation mapping turns out to be a correct proof that 
the implementation has J.L(C), then, of course, the implementation has J.L(C). 
Checking the transformed proof can, therefore, provide the desired 
correctness guarantee. 

3. AN EXAMPLE: SECURE DISTRIBUTED 
TRANSACTION PROCESSING 

The idea of proof-carrying architectures can be illustrated by an example, 
based on our development of software architectures for secure distributed 
transaction processing (SDTP) (Moriconi, Qian, Riemenschneider & Gong 
1997). These architectures extend X/Open's standard DTP architecture 
(X/Open Company 1993) by enforcing a simple "no read up, no write down" 
security policy. The primary result of our development efforts is a hierarchy 
that links an extremely abstract architectural description, shown in Figure 1, 
to three implementation-level descriptions written in a style that can be 
directly translated into a programming language such as Java using standard 
network programming constructs. The gap between the abstract SDTP 
architecture and each concrete SDTP architectures is filled by roughly two 
dozen descriptions-the exact number varies among the implementations
at intermediate levels of abstraction, linked in a chain by interpretation 
mappings. 

We are in the process of formally proving the implementation-level 
architectures are secure by proving that the abstract description is secure, 
and proving that every interpretation mapping preserves security. One of the 
techniques that is being employed is showing that the interpretations 
incrementally transform the abstract-level security proof into 
implementation-level security proofs. The example below shows how the 
interpretation mapping associated with the first refinement step in all three 
chains transforms the abstract security proof into a slightly more concrete 
security proof. 
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ap 

ar H tx 

tm rm ... - ;;; 

xa 

Figure 1. Abstract SDTP architecture- components linked by secure channels 

3.1 The abstract SDTP architecture 

Figure 1 depicts the most abstract architecture for SDTP. The boxes are 
the components of the architecture: the Application (labeled "ap"), some 
number of Resource Managers (labeled "rm"), and a Transaction Manager 
(labeled "tm"). The components are linked by secure channels, indicated by 
the heavy double headed arrows that make up the interfaces between the 
Application and Resource Managers, the Application and the Transaction 
Manager, and the Resource Managers and the Transaction Manager. Secure 
channels are a type of connector that enforce the security policy. In other 
words, secure channels will not carry classified data from a component to a 
component that lacks required clearances. To say that the system as a whole 
satisfies the security policy means that there is no flow of classified data to a 
component that lacks the required clearances. 

3.2 An abstract proof of security 

Informally, the security of the system follows almost immediately from 
the fact that it employs only secure channels. Not surprisingly, a textbook
style natural deduction proof (Lemmon 1987, Mates 1972) of system 
security is quite simple3• Consider the dataflow from some given Resource 
Manager rm to the Application ap, for example. A proof of the formula 

3 In this paper, I will use natural deduction, since that provides a familiar concrete 
representation of formal proofs. In our actual verifications that the SDTP hierarchy's 
interpretation steps preserve security, we are employing the PVS verification system [18]. 



www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 71 

(\id: Labeled_Data) [Fiows(d, rm, ap) 
:::>label( d);?: clearance(ap)] 

which says 

every labelled datum d that flows from rm to ap has a security label 
classifying it that is less than or equal to the clearance level of ap 

from five axioms of the architectural theory is shown in Figure 2. 

{1} J. (Vd : Labeled.Data)(Fiows(d, rm, ap) 
::> Carries(securur..channel,d, rm's..ar..port, ap's..ar..ports(rrn))] 

Axiom describing specifiC urdutecturc 
{2} 2. Port_Of(ap's..ar..ports(rm), ap) Axiom describing specific arehitecture 
{.'l} 3. ('lc: Secure..Channel)('ld: labeled.Data)(Vx : Output.Port) 

(Vy: lnpuLPort)[Carries(c,d,x,y) ::>label( d)$ clearance(y)] 
Axiom characterizing secure clumnels 

{4} 4. ('fa: Component)(Vy: lnput.Port)[Port-Of(y,a) ::>dearance(y) $ clemnce(a)] 
Axiom constraining port clearances 

{5} 5. (\Is,, ••• s. : Socurity..l.abel)[s1 $ '' "., :5 •• ::> s1 $ s.] 
Axiom specifying transitivity of s<eurity label ordering 

(1} 6. Flows( do, rm, ap) => Carries(secure....ar..channel, do, rm''-'•-Port, ap',....r.ports(rm)) 
Universal iMt.antiation (1) 

{3} 7. carr;...(secure..ar..channel, do, rm's..>r-port,ap's..>r-ports(rm)) 

{1,3} 8. 

(4} 9. 

{2,4} 10. 
{5} n. 

{2,4,>} 12. 

{1,2,3, ·1,.';} 13. 
(1,2,3,4,5} 14. 

::> label( do) :5 clearance(ap's..ar..ports(rm)) 
UniYCr5al ill6tantiatiou (3) 

Flows( do, rm, ap) ::>label( do) :5 clearance(ap's..ar-ports(rm)) 
Tautological consequence (6,7) 

Port..Of(ap'.s..ar..ports(rm), ap) ::> :5 clearance(ap) 
Unh-ert;al ill6tantiatiou (4) 

clearance(ap's..ar..ports(rm)) :=:; clearance(ap) Tautological oonoequence 
label( do) :5 clearanee(ap's..ar.ports(rm)) h elearanct(ap's..ar.ports(rm)) $ elearance(ap) 

::>label( do) 5 dearance(ap) 
Uuh.ocrstt.l instantiation (5) 

label( do) :5 dearance(ap's._ar..ports(rm)) :::>label( do)::; clearance(ap) 
Tautological COD""'!UC!l<e (10,11) 

Flows( do, rm, ap) ::>label( do) :5 dearance(ap) Tauwlogkal «>ll""'J"'"'"" (8,12) 
(Vd: l•beled.D•ta)[Fiows(d, rm, ap) :::>label( d) :5 clearance(ap)) 

Uni\'M'&I gcncralization (13) 

Figure 2. Formal proof that dataflow from rm to ap satisfies the security policy 

The five axioms say 
1. every labelled datum d that flows from rm to ap is carried by 

secure_ar_channel form the output port rm's_ar_port to the input port 
of the port array ap's_ar_ports that is indexed by rm, 

2. the input port of the port array ap's_ar_ports that is indexed by rm is a 
port of ap, 

3. if secure channel c carries labelled datum d from output port x to input 
port y, then d's security label is less than or equal to the clearance level 
ofy, 
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4. the clearance level of any port y of component a must be less than or 
equal to the clearance level of a, and 

5. the ordering of security labels is transitive. 

The first two axioms are facts about the particular architecture, the third 
axiom is the defining property of the secure channel subtype, the fourth and 
fifth axioms are general axioms of the security model. 

3.3 A slightly more concrete SDTP architecture 

The secure channels of abstract SDTP architecture can be implemented in 
terms of ordinary dataflow channels and additional components in a variety 
of ways, depending upon the security properties of the components 
(Moriconi, Qian, Riemenschneider & Gong 1997). The most interesting 
implementation is shown in Figure 3, where the light double headed arrows 
represent ordinary dataflow channels that do not enforce the security policy. 

ap 

t 
mls filter 

t 
rm tm 

Figure 3. More concrete SDTP architecture-secure channels refined to ordinary 

channels, or ordinary channels plus security filter 

This implementation is suited to the case where all of the resource 
managers are single-level, but not necessarily the same level. The security 
policy is enforced by a multi-level secure component that filters dataflow 
between the application and the resource managers: if passing a datum from 
a resource manager to the application would violate the security policy, the 
filter removes it from the stream. 
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The concrete architecture can be thought of as resulting from the 
abstract architecture by applying several transformations. For example, one 
transformation, the Filter Introduction Transformation (FIT), replaces secure 
channels between components that are not multilevel secure by ordinary 
dataflow channels and a component that enforces the security policy. 

3.4 A slightly more concrete proof of security 

Now it must be shown that, like the abstract SDTP architecture, the more 
concrete SDTP architecture has the desired security property. The two 
conventional approaches to establishing this result are 
1. to directly prove that the more concrete architecture is secure, in much 

the same way the abstract architecture was proven secure (perhaps using 
the abstract-level proof for heuristic guidance), and 

2. to show that the Filter introduction Transformation (ffi), and the other 
transformations that produce the more concrete architecture from the 
abstract architecture, always preserves the security properly. 

The use of proof-carrying architectures provides a third alternative. 
When transformation FIT is applied, it can be applied not only to the 

architectural description, but to the formal security proof of Figure 2 as well. 
The result of applying FIT to this proof is shown in Figure 4, where the 
implementation mapping J.l associated with this application is determined as 
follows. A complete account of how first-order interpretation mappings are 
defined, and basic facts about them, can be found in logic textbooks 
(Enderton 1972, Shoenfield 1967)3• For present purposes, it is enough to 
know that 
1. for every term t of the language of the abstract theory, J.l(t} is a (possibly 

complex) term of the language of the more concrete theory, 
2. for every predicate F of the language of the abstract theory, J.l(F) is a 

(possibly complex) predicate of the language of the more concrete 
theory, 

3. for every formula A of the language of the abstract theory, 
J.l( -.A) = -.J.l(A) 

and similarly for the other connectors, and 
4. for every formula A of the language of the abstract theory, every variable 

x, and every type predicate T of the language of the abstract theory, 
J.l((V'x: T) A)= J.l(V'x : T) J.l(A) 

where J.l(V'x : T) is a sequence of universal quantifiers, and similarly for 
the other quantifiers. 

3 Technically, we will make use of what are called n-dimensional interpretations (Hodges 
1993, pp. 212.) But this is a reasonably straightforward generalization of the definition 
found in the cited textbooks. 
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The Carries predicate 

Carries((secure channel), (datum), (out port), (in port)) 

that is mentioned in formulas 1, 3, 6, and 7 of the abstract-level proof is 
mapped to a conjunction of the Carries, Passes, and Carries predicates, 

Carries((channel), (datum), (out port), (filter in port)) 

1\ Passes( (filter), (datum), (filter in port), (filter out port)) 

1\ Passes((channel), (datum), (filter out port), (in port)) 

This clause in the definition of ll says that a secure channel carrying a 
datum from some output port to some input port is implemented as a channel 
carrying the datum from the output port to some input port of a filter, passing 
the datum through the filter from the input port to some output port, and 
carrying the datum from output port of the filter to the input port5. This 
mapping is also applied to formula 3 in order to preserve the fact that 
formula 7 should follow from formula 3 by Universal Instantiation. 

The universal quantifier over secure channels in formula 3, 

(V' (secure channel variable) : Secure_Channel) 

is mapped by ll to universal quantifiers over channels and a universal 
quantifier over MLS components, 

(V' (to-filter channel variable): Channel) 

(V' (filter variable) : MLS_Component) 

(V' (from-filter channel variable) : Channel) 

It is easy to check that the result of applying the FIT interpretation 
mapping ll to the proof of security is a syntactically correct derivation of the 

5 This mapping would not be appropriate to apply to every occurrence of the Carries 
predicate in every derivation, because some secure channels in the abstract architecture 
may not be replaced by a combination of two channels and a filter in the concrete 
architecture. However, formulas I , 6, and 7 of the proof specifically refer to what 
secure_ar_channel carries, and this secure channel is being implemented by two 
channels and a filter , so I will use this simpler interpretation for purposes of the example. 
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desired security property from formulas that are images of axioms of the 
more abstract architectural theory. Mapping )! sends tautological 
consequence steps to correct tautological consequence steps, universal 
instantiation steps to correct universal instantiation steps, and universal 
generalization steps to correct universal generalization steps. So )! has 
indeed mapped the formal abstract-level security proof to a concrete-level 
security proof, but not necessarily a proof from axioms of the concrete 
architectural theory. 

{J} 1. (Vd: Labeled.Data){Fk>ws(d,rm,ap) 
:> Carries( rm_toJilter .channel, d, rm's..ar .port, filttrJn..port( rm))] 

" Passes( mls.lilter, d, filterJn.port(rm), filter .DUt..port(rm) )] 
A d, filter..out..port(rm), ap's..ar..ports(rm))j 

{2} 2. Port..Of(ap's..ar..ports(rm), ap) 
{3} 3. (Vc, : Channel)('lf: MLS-Component)CVct : Channei)(Vd : Labeled.Data) 

(Vx1 : Output_pon)(Vxo : Output..Pcrt)(Vy1 : lnput_port)(Vy2 : lnput_port) 
[Carries(c,, d,x, ,y1)" Passu(f, d, y1,x,)" Carrios(c:., d, x,, y2) 

::>label( d) :5 dearance(y2)] 

{4} 4. (Va : Component)(Vy: lnput-Port)[PorLOf(y, a) :> dearance(y) 5 clearance( a)] 
{5} 5. (Vs,,s,, .. : Security..Label)[s, 5. .. "s, 5 .. :> •• 5. sa] 
{1} 6. Fl..,s(do,rm,ap) 

::> Carries( m>-toJiltor ..channel, do, rm's..ar .port, filter Jn..port( rm)) 
" Pmes(mlsJilter,do, filter ..in..port(rm), filter ..out.port(rm)) 
" Carries( filter _to..ap..channel(rm ), do, filt•r..out.port(rm ), ap's..ar.ports( rm)) 

{3} i. Carries(rrn_toJilter..channel,d, rm's..ar.port, filterJn.port(rm) 
"Passes(mlsJilter, d0 , filtorJn.j)ort(rm), Mter..out..port(rm)) 
" Carries(filttr -to.JOp..t:hannel( rm), do, filter ..out.j)ort(rm), ap's..ar-ports(rm)) 

::>label( do) 5. cleoronce(ap's..ar_ports(rm)) 
{J, 3} 8. Flows( do, rm, ap) ::>label( do) 5 clearonco(ap's..ar..ports(rm)) 

{4} 0. Port..Of(ap's..ar_ports(rm),ap) ::>cloaranoe(ap's..ar_ports(rm)) 5. dearanoe(ap) 
{2, 4} 10. cluranco(ap's..ar_ports(rm)) 5 cloaranco(ap) 

{5} 11. label( do) 5. clearance(ap's..ar_ports(rm)) "clearanoe(ap's..ar..ports(rm))::; clearance(ap) 
::>label( do) 5. clurance(ap) 

{2,4, 5} 12. label( do) 5 clearance(ap's..ar_ports(rm)) :::>label( do) :5 dearance(ap) 
13. Flows(do,rm, ap) ::>label( do) 5 clearance(ap) 

{1, 2, 3, 4, .>} H . (Vd : Labeled.Data)[Fk>ws(d, rm,ap) :::> label( d) .$ clearance(ap)J 

Figure 4. Transformed formal proof that dataflow from rm to ap satisfies the security policy 

3.5 Completing the proof 

The image of the first axiom under )! says that every labelled datum that 
flows from rm to ap is carried to the filter from rm, passed through the filter, 
and then carried to ap from the filter. Just as in the case of the first axiom, 
this is a fact about the particular architecture that is either an axiom of the 
concrete theory, or easily and automatically derivable from axioms of the 
concrete theory. The mapping)! leaves the second axiom unchanged. This 
will certainly be an axiom of the concrete theory, as well as the abstract 
theory. The image of the third axiom is a bit more complex. It states that 
the combination of the two channels and the filter enforces the security 
property. It is quite unlikely that this would be among the chosen axioms of 
the concrete-level theory, since it is the filter alone, effectively, that is 
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enforcing security. Still, it is easy to see that this formula must be a 
consequence of axioms of the concrete theory: the security model requires 
that channels that do not enforce security can only connect ports with 
matching clearances, and one of the defining properties of an MLS 
component is that it only supplies data at an output port if the classification 
of the data is less than to equal to the clearance of the port. A formalization 
of this proof from particular axioms we use in the SDTP security verification 
is shown in Figure 5. 

{1} 1. 0fc : Chllnnel)0fd : ubeled.Data)(¥x : Output.Port)(¥y : lnput.Port) 
[Carri .. (c, d,x, y) ::> clearance(x) = cluranee(y)] 

Axiom sp•dfying coll.D<lCti<m consttaint impos<ld by security mod<>J 
{2} 2. (Vf: MLS-Component)(Vd : tnput.Port)(Vx: Output.Port) 

[Passes( f. d, y,x) ::>label( dearanee(x)] 
Axiom r.hl>racterioiug MLS componentll 

{3} 3. (Vx)(¥y)(Vz)[x = y :> [z :S x •• t $ y] ltL•truli!C of identity axiom sebl!mo 
{1} 4. Carries( e., do, x,, y,) => dearanct(xo) = cl .. rance{y2} Uuiveml in>tautiatiOil (1) 
{2} 5. Patse(fo,do,y1, x2) :>label( do) $ clearance(x.) Uniwn<al (2) 

{1, 2} 6. Carries(c,,do,x.,y1)" Passes(fo,do,y1,x.) A(arries(c,,do, x, ,y,) 
::>label( do)$ clearance(x,) " clearance(x,) = clearance(y2) 

Tautologkal oo.-tuen<!C (3,4) 
{3} 7. cloarance(x,) = cleorance(y2) ::>[label( do) $ clearance(x,) •label( do)$ clurance(y2) 

Uni\-.rslll iu!ltantiation (3) 
{1, 2, 3} S. Carries(c, , do,x.,y1) ·" Passes(fo.,do, y1,x.)" Carries(c,, do,x2.,y2) 

=>label( do) $ clearance(y2) 

Ta utologkal <Oll!IJ<Iuenc" (6,7) 
{1, 2, 3) 9. 0fc,: Chlonnel)(¥f: MLS_Compottent)(Veo : Channei)(Vd: Labeled_Oata) 

(Vxt : Output.Port)(Vx, : Output.Port)('v'y, : lnput.Port)(Vy, : lnput.Port) 
(Carri .. (<, ,d,x, ,y1)" P..,.s(f,d,y1 ,x,) " Catfies{c,,d, x,,y,) 

::> clearanct(y1)J 
Universal generallzation (8) 

Figure 5. Proof of image of abstract-level formula 3 under ll from axioms of concrete theory 

Discovery of this proof is easy. The form of the desired conclusion-a 
conjunction of conditions on Carries and Passes in the antecedent, and the 
comparison of label to clearance in the consequent-immediately suggests 
the use of the axioms on lines I and 2 of the proof. So it should be quite 
plausible that the proof can be discovered without human intervention by the 
transformation system. The interpretation mapping U does not affect the 
images of the remaining two axioms; they remain general axioms in the 
security model. So, by combining the proof in Figure 5 with the proof in 
Figure 4, we obtain a proof of the security property from axioms of the 
concrete theory. Moreover, this proof is recognizably a formalization of our 
informal argument (Moriconi, Qian, Riemenschneider & Gong 1997, p. 890) 
that the concrete architecture satisfies the security policy. 
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4. GENERALIZING FROM THE EXAMPLE 

The idea of using the architectural transformation to transform the proof 
that the more abstract architecture has a desired property into a proof that the 
more concrete architecture has the property worked well for this rather 
simple, but real-world, example. Is there any reason to believe that it will 
work equally well in other cases? 

Recall that the standard criterion for correctness of an 
implementation mapping )l of an abstract logical theory T1 in a more 
concrete theory T2 is that )l must interpret r, in T2, i.e., it must be the case 
that, for every formula A in the language of h 

T, 1- A => T21- )l(A) 

If )l interprets T1 in T2, an easy inductive argument shows that )l 

maps formal proofs from T1 to formal proofs from )l[TJ] that can be extended 
to proofs from T2. If A is an axiom of then, since )l is a theory 
interpretation, )l(A) is derivable from T2• Because )l is defined so that 
connectives pass through it, )l maps tautological consequence steps to 
tautological consequence steps. Similarly, )l maps universal instantiation and 
universal generalization steps to universal instantiation and generalization 
steps, respectively. Thus, )l maps formal proofs from abstract axioms to 
formal proofs from images of abstract axioms, and images of abstract 
axioms can always be proved from concrete axioms, as shown in Figure 6. 

(I) I "• A'"*m r, 

(2)1. A, A."f..tOtacl T 1 

11.21 J " · T-.(1 , 1) 

Formal proof from 
axioms of T1 

at abstract level 

" 

" .. 

pov•.m-oe .. ......, 
(ondr_, 

I) I ><A,J 

provo rmogo .. _, 
(21l.><A,l 

(ancl r.-) 

,.....,_, 

Formal proof from 
Images of axioms of T 1 

at concrete level 

1, 2, 

(I) 1. 8 1 
121 l. B, 

lt.l. I lt .Joi{AI) ,,. .... n+tc, 
1•+1) 

:"• l , a-+ .Z.. 
,JI+ J, JI+!, 

I • .,... 

• 

Formal proof from 
axioms o1 T 1 

at concnlle level 

Figure 6. Interpretation of formal proofs 

N.KDaf Tl 

Ax.o.of r, 
"-"""""' r, 

T._ (,.,,-6., 

So, if an architectural transformation step is correct, in the standard 
sense, the corresponding interpretation mapping will map formal proofs to 
formal proofs containing gaps that can be filled. A fortiori, an abstract-level 
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formal proof of some particular property of interest-say, satisfaction of a 
security policy-will be mapped to a proof that the implementation also has 
(the implementation-level analogue of) the property. Since the replacement 
of the secure channel from rm to ap by a pair of channels and a filter is 
evidently correct, it is not surprising that the FIT mapping sends the abstract
level security proof to a concrete-level security proof. 

It follows that the proof-carrying architecture approach allows the 
architect to perform arbitrary correct transformations when implementing an 
abstract architecture, provided the transformation system that supports the 
approach is clever enough to find the proofs of images of axioms. 

The question remains: In general, how hard is it to discover these 
proofs? In our experience, it is invariably quite easy, because we deal with 
refinement patterns that make only small changes in representation of the 
architecture. Indeed, the example in Figure 5 is representative of the 
complexity of most of these proofs. At lower levels in the SDTP hierarchy, 
there are more gaps to be filled in-because lower-level architectural 
theories are more complex, and proofs are based on a larger number of 
axioms-but the size of the gaps is about the same. We are confident that 
considerable automated support for finding proofs to fill the gaps can be 
provided. 

Finally, it should be noted that incorrect transformations that happen to 
preserve the proof of the property of interest will also be judged acceptable 
on the proof-carrying architectures approach. Therefore, it is well-suited to 
the case where the focus is on obtaining an implementation with some 
particular desirable property - i.e., when a weaker-than-usual correctness 
criterion is adequate - and placing minimal constraints on the architect's 
implementation options is preferred, as is the case in SDTP. 

5. RELATED WORK 

Although there is a large and growing literature on formal software 
transformation, nearly all of it is oriented toward maintaining functional 
correctness, rather than system structure. Similarly, there is a large body of 
literature on architectural refinement and composition, nearly all of it 
employing semiformal representation and analysis techniques, at best. The 
comparatively few papers on formal refinement of architectural structure 
include Broy's work on component refinement (Broy 1992), Brinksma, et 
al.'s, work on connector refinement (Brinksma, Jonsson & Orava 1991), 
Philipps and Rumpe's recent work on refinement of information flow 
architectures (Philipps & Rumpe 1997), and the work described in our own 
earlier papers. Also closely related is work by Garlan's group (Abowd, 
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Allen, and Garlan 1995), Luckham's group (Luckham, Augustin, Kenney, 
Vera, Bryan & Mann 1995) , and Moriconi and Qian's work on formally 
representing the semantics of connectors and relating semantic models at 
different levels of abstraction (Moriconi & Qian 1994). But, the emphasis in 
all these cases has always been on verification of general refinement 
patterns, rather than checking particular steps. 

Necula and Lee's work on proof-carrying code and its applications 
(Necula & Lee 1996, 1997, 1998) introduced the notion of replacing 
verification by checking in the context of compilation. The work described 
in this paper can be viewed as generalizing their ideas about code refinement 
transformations to architectural transformations, both refinements and 
abstractions. 

6. CONCLUSIONS 

Transformational development of architectures can guarantee that 
implementations are correct by restricting the architect to a stock of verified 
transformations. But such a correctness guarantee is quite brittle, since use 
of a single non-verified transformation voids it. Moreover, if many 
transformations are used, and the verification of each is difficult, then 
confidence in the correctness of the implementation may be less than 
desired. Checking particular refinement steps offers a way of allowing the 
architect greater freedom, and of achieving higher levels of confidence that 
the implemented architecture has the desired properties. 

Our initial approach to checking, based on the idea of proof-carrying 
architectures, is especially well suited to the case where the main 
requirement is high confidence that the implementation has some specific 
property. The property is shown to hold at some abstract level, and every 
refinement is produced by application of a transformation known to preserve 
the property, or is checked for correctness by making sure that the 
transformation preserves the proof of the desired property, or both. 

The main limitation of this first approach to checking is that properties 
are checked one at a time. We are exploring other approaches to checking 
that allow an entire class of properties to be checked at once. One that 
seems particularly promising is based on the idea of applying the simplified 
technique for proving implementation mapping correctness 
(Riemenschneider 1997) to development steps at architecture definition
time. This complementary approach to checking will allow the correctness 
of steps to be checked, relative to our strong correctness criterion, rather than 
checking one or a few properties of interest. But it can be applied only to 
complete architectural descriptions of single structures, not to descriptions of 
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varied families of architectural structures. The proof-checking architectures 
approach applies equally well to descriptions of single structures and 
descriptions of families . 

As mentioned above, our preliminary experiments with proof-carrying 
architecture are being performed with the PVS verification system (Owre, 
Rushby & Shankar 1992). Improved support for working with proof
carrying architectures, including automated discovery of the gap-filling 
proofs, is being implemented as part of the Xform4 system, an enhanced 
version of our present architectural correctness checking toolset. Xform, 
pronounced transform, is a recursive acronym for "Kform, ,for Qrderly 
r.eification5 and maintenance." Xform will support transformational 
development and maintenance of architectural descriptions written in 
languages such as SADL (Moriconi & Riemenschneider 1997) and ACME 
(Garlan, Monroe & Wile 1997). 
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Abstract: The construction of dependable software systems is recognized as a complex task: 
the system developer has to address the usage of fault tolerance techniques in 
addition to the design of the functional aspects that are specific to the system. This 
paper proposes a framework aimed at easing the development of dependable 
systems by providing software designers with a repository of dependable software 
architectures. A dependable software architecture shows how to integrate a fault 
tolerance technique with a given system so as to make the system dependable. 
Furthermore, the dependability behaviors of architectures are formally specified, 
which allows to unambiguously interpreting the various fault tolerance techniques 
as well as to organize the repository of corresponding architectures into a 
refinement-based lattice structure. 

Key words: Dependability, formal specification, software architecture, software reuse, 
specification refinement. 

1. INTRODUCTION 

Making a system dependable is recognized as a complex task. In addition 
to the treatment of functional aspects that are system-specific, the system's 
designer has to cope with the integration of the fault tolerant mechanisms 
that satisfy the system's dependability requirements. However, the field of 
dependability has reached a sufficient level of maturity to capture its various 
ramifications. In particular, there exist a significant number of fault tolerant 
mechanisms to handle various dependability needs over different system 
platforms. Thus, there is an a priori knowledge of the mechanisms that are 
eligible to make a system dependable with respect to the system's 
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dependability requirements and underlying platform. Furthermore, the 
understanding of fault-tolerance mechanisms and associated abstractions 
enables a separation of concerns in system design by addressing 
independently the design regarding functional and dependability aspects . In 
that context, we propose a framework for making a system dependable 
through the reuse of appropriate fault tolerance abstractions. 

Our work builds on results of the software architecture field (Perry and 
Wolf 1992, Shaw and Garlan 1996). A system's software architecture 
abstractly describes the system's gross organization in terms of components 
(i.e., units of computation) and connectors (i.e., units of interaction). This 
allows the practical use of formal methods to define the behaviors of 
components and connectors, and to carry out complementary system 
analyses. Our framework for the construction of dependable systems consists 
of characterizing dependable software architectures that are generic with 
respect to the base functional architectural elements (i.e., functional 
components and connectors among them). The dependability behaviors of 
the architectures are further defined formally, which enables their 
unambiguous interpretation, as well as to organize the set of dependable 
architectures according to a refinement relation over their behavior. 
Practically, the developer is provided with a repository of dependable 
architectural patterns from which he may select the one that meets the 
dependability requirements of his system. Ultimately, the fault tolerance 
constituents of a dependable architecture may correspond to implemented 
mechanisms. Such mechanisms can be directly integrated with the system's 
functional structure according to the structure shown by the dependable 
architecture. 

This paper is organized as follows. Section 2 details our approach to the 
formal specification of dependability behaviors. Section 3 introduces our 
framework for making systems dependable, presenting a repository of 
dependable software architectures. Finally, we conclude in Section 4, 
summarizing our contribution and comparing it with related work. 

2. FORMAL SPECIFICATION OF DEPENDABILITY 
BEHAVIOR 

To be practically beneficial for software development, a formal 
framework should satisfy two conditions: 
1. It should be easy to understand and use. 
2. It should be expressive enough to capture all (or at least a big majority) 

of the targeted properties (i.e., properties relating to dependability in our 
case). 
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Both these conditions are satisfied by an extension of predicate logic with 
the precedence relation (Lamport 1978) (binary operator«<») specifying a 
partial order in which predicates are verified. Based on the precedence 
relation, we define the relations eventually (unary operator « 0 ») and 
in the past (unary operator « V ») which denote that a predicate will be 
verified in the future or was verified in the past. The extended predicate 
logic provides comprehensible and easy to employ means for combining the 
constraints on system states that should be reached after a failure with the 
partial order of actions that should be performed to reach these states. Notice 
that the use of temporal logic relations is not indispensable for modeling the 
temporal precedence of the predicate. Indeed, means have been invented like 
history lists, which are employed by a number of approaches (e.g., see 
(Chrysanthis and Ramamritham 1994) and (Stoller and Schneider 1996)) in 
order to avoid temporal relations for ordering the occurrences of events in a 
system and to remain purely first order logic. However, we use them because 
we believe that they render the formulas more legible. The formal 
framework we use is presented hereafter, followed by our approach to the 
specification of system behaviors with respect to dependability, introducing 
the specification of dependability properties and a refinement relation over 
them. 

2.1 Formal framework 

A system is a set of variables, which can be assigned different values 
according to the system specifications. A state of the system is a mapping of 
variables to values, where the values of some variables can be undefined. 
When the values of one or more variables lay outside the range defined in 
system's specifications, afailure is said to occur. An execution of a system is 
a partially ordered set of system states, where one state in the set is 
distinguished as being the initial state (i.e., the state preceding all other states 
in the set). An objed of the system is an entity having some state. Hence, a 
system can be seen as a set of objects. An action is a state transition, which 
can be caused by some internal object computations, or by some 1/0 
operation. Actions are associated with objects and we assume deterministic 
actions, i.e., given the specifications of an object, an object state and an 
action on that state, the resulting state after performing the action is uniquely 
defined. However, we do not constrain the choice of the next action to be 
performed, which can be a random choice among different alternatives. 
Hence, although actions are deterministic, the execution of an object and, 
consequently, the execution of the entire system are non-deterministic. In 

1 The term object signifies a logical entity and not entities specific to programming languages 
(e.g. C++ objects). 
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this context, an event is the execution of some actions or the reach of some 
state. In the remainder of this document, we use the following notations: 
_ Objects are denoted by the first five lower-case Greek letters, primed or 

followed by a subscript value (e.g., a , etc). 
cr, primed or followed by a subscript value, denotes a system state. For 
object states, we prefix the object name (e.g., a .cr ). We neglect the 
object name when it is obvious in a given context. 
"E denotes system specifications. For object specifications, we prefix the 
object name (e.g., a."E ). 
X denotes a system execution which is a partially order set of system 
states. When followed by the superscript c, it denotes a failure-free 
execution. 

- Actions are written in lower-case italics followed by a list of arguments 
in parentheses. To distinguish among actions of different objects, we 
prefix the object name to the action (e.g., data)). We neglect 
the object name when it is obvious in a given context. 

The structural elements of the system model presented above do not 
suffice to describe the properties of a specific system (i.e., the relations 
among constituent objects, their interactions, their invariants, and their 
constraints). For this, a set of predicates is needed to capture the essential 
properties of system entities. This set of predicates should be minimal in 
order to be easy to use and understand. We present below a set of predicates 
that capture the fact that the system is in a given state, and the execution of 
110 actions. Notice that this set of predicates is not unique; another set of 
predicates, richer or more frugal, can be chosen if it facilitates the system 
programmer' s reasoning (e.g., additional predicates that can be defined are 
init, exit, begin, commit, and abort, to describe the actions related to object 
initialization and termination, or the actions related to transactional 
properties). In the remainder of this document, we use the following 
predicates: 
- The predicate expressing that a system is in state cr is introduced by the 

unary operator [],i.e., [cr] is true when the system is in state cr. 
Similarly [a.cr] is verified when object a is in state cr. 

- The predicate export expressing the 110 action performed by an object 
a when it sends to an object the data d. The data d sent, are a 
function of some a's state preceding the 110 action, and if some 's 
state is a function of data d, the export action precedes this state. More 
formally, the predicate is defined as: 
export( d)= (3a.cr: V[a.cr] "d = f(a.cr))" = g(d) => 

- The predicate import expressing the 110 action performed by an object 
when it receives the data d sent by object a. The export of data d 
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from a preceded, and some state after receiving dis a function 
of the received data. More formally, the predicate is defined as: 
import( d)= Vexport(a, A = g(d) A 

Notice that the predicates export and import correspond to the 
and actions respectively. 

2.2 Dependability properties 

Given the above formal framework, we are able to define dependability 
properties, which serve to characterize dependability behaviors of software 
architectures. Let us point out here that the dependability properties 
introduced in the following, reflect more the authors' perspective on the 
issue rather than a widely acknowledged characterization. Alternative 
specifications of dependability behaviors can be envisioned. In the same 
way, there may exist alternative interpretations for the terms we use to 
qualify the dependability properties. Here, we base our work on the fault 
tolerance perspective introduced by Laprie (Laprie 1992). 

The important point we want to make with respect to our approach to the 
specification of dependability properties is that it enables us to characterize 
the various behaviors of a system in the presence of failure, which are 
attainable using existing fault tolerance techniques. The set of these 
behaviors may further be expanded as new fault tolerance techniques 
emerge. In the remainder, we present the specification of some 
representative dependability properties so as to give the reader, the intuition 
of how dependability properties are characterized in general. Basically, 
dependability properties fall into two groups: 
l. Abstract properties specified in terms of system states, which are defined 

independently of any fault tolerance technique. They serve to 
characterize the dependability behavior of an overall architecture, when 
this behavior is too abstract to associate a specific fault tolerance 
technique with it. 

2. Concrete properties specified in terms of system actions, whose 
definition is closely related to some fault tolerance technique. They serve 
to characterize the dependability behaviors associated with architectural 
elements, with respect to a given fault tolerance technique. 
Let us first give abstract properties defined at the state level. The most 

abstract dependability property, simply qualified as Dependability, ensures 
that a system makes progress despite the occurrence of failure. The Safety 
property defines that, after a failure, the system should enter an error-free 
state, which is some subset of a state, reached before the occurrence of the 
failure. The basic characteristic of this abstraction is the removal of the 
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failure products. The specification of the Availability property indicates that 
the state reached after a failure is a state contained in some failure-free 
system execution. The basic characteristic of this abstraction is the repair of 
failure effects. Another specification is the Reliability property, which 
defines that the state reached after a failure includes a state that should have 
been reached in the absence of failures . The basic characteristic of this 
property is the transition to the expected state despite the occurrence of 
failures . More specific dependability properties are the ones of Detection and 
Fmask where the former characterizes failure detection and the latter the 
system capability to mask the occurrence of failures . Let faulty be the 
predicate expressing that a system state contains an erroneous mapping of 
variables to values, i.e., faulty( a) is true when some of the variables of cr 
have been assigned values not defined by system's specifications. Similarly 
faulty(a.cr) is verified when the object state a.cr contains an erroneous 
mapping from variables to values. 

Table 1: The fonnal specifications of some dependability properties. 

Dependability (S) =( [cr] /\faulty( 3 cr' e r.: [cr] < [cr'] 

Safety(S) = ( [cr] A faulty( ( 3 cr',cr" e r.: ([cr] < [cr'])" ([cr"] < [cr]) 
" ( cr' k cr") ) 

Availability(S) = ( [cr] /\faulty( ( 3 cr' e 1: : ([cr] < [cr'])" (cr' e Xc)) 

Reliability(S) = ( [cr] A faulty( ( 3 cr',cr" e 1: : ([cr] < [cr'])" 
( cr" e Xc ) " ('if crP : [ crp] < [ cr] [ crp] < [ cr"]) " ( cr" ;;;:;; cr') ) 

Detection(S) = [ cr] A faulty( cr) 

Fmask(S) = "d cr e r.: ( 3 crr: faulty(crc) " ([cr] < [crr]) ) ( 3 cr' e 1: : 
([ crr] < [ cr']) " ( cr ;;;:;; cr') ) 

DetectionObj(a) = ( 3 ) 
<export( a, E, 

FmaskObj(a) = ([a.cr] Afaulty(a.cr)) (3 : =s a .r." [a.cr] < 
"3a.cr' : ( ([a.cr'] < [a.cr]) 

(3 : = a .cr'" < 

The upper part of Table I gives the specifications of the aforementioned 
dependability properties, for a system S. The properties in the upper part of 
Table 1 characterize only the system state that is reached after a failure 
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occurrence. They do not make explicit the system objects that are involved 
in fault treatment nor the needed interactions among them. This is captured 
by concrete properties, defined at the action level. For instance, the 
Detection and Fmask properties may be respectively revised into the 
specification of DetectionObj and FmaskObj. The specification of the former 
expresses the fact that a system object transmits a message to some other 
object in the system, after a failure occurred. This message contains the 
information of the occurred failure, which implies that the transmitting 
object captures this knowledge in its state. Similarly, the specification of the 
latter expresses the fact that for a failed object, there exists an equivalent 
object (not necessarily a different one) which reaches a correct state that 
follows all the failed object's states preceding the failure. In other words, 
this means that the state that would have been reached by a given object in 
the absence of failures, is eventually reached even if a failure occurs on the 
object in question. 

The formal expressions that describe the aforementioned properties are 
given in the lower part of Table 1. Notice that the interaction events are 
expressed by the export and import predicates, and their parameters define 
the exact interaction pattern between the two objects indicated by the 
predicate parameters. Object E is used to signify any object of the 
environment. In addition, the equivalence of object specifications, noted =s, 
is defined with respect to the observable behavior of objects, i.e., the 
specifications of two objects are equivalent if the sequences of import() and 
export() actions performed by the objects are equivalent. 

As more concrete examples, let us consider the enforcement of 
dependability for an object, using a replication technique. Achieving 
replication consists of replicating an object into a group of objects and 
making the group behave as a single object from the perspective of the 
group's environment. The behavior of the objects group may differ 
depending on the replication technique (i.e., active, semi-active, passive) that 
is used. The formulas of Table 2 characterize the dependability properties for 
the active and passive replication techniques, where id(d) uniquely identifies 
the data d among all the data exchanged in the system. The id function is 
defined so that id(d) = id(d') if d and d' are exported by objects having 
equivalent specifications and the export actions correspond in the sequences 
of the 110 actions performed by the objects. 

2.3 Refinement relation 

Based en the proposed approach to the specification of dependability 
properties, we are able to define a refinement relation over these properties. 
This relation allows refining an initial dependability requirement into more 
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Table 2: Fonnal specification of active and passive replication 

Active( <X, N) = 3 .. . , <XN.J : G = {<X, <XJ. .. . , <XN.d 1\ Replication( G) 1\ 

Filter(G) 1\ AtomicDelivery(G) 

Replication(G = {<Xi} i=J..N) = "i <Xi, <X; E G : (( <lj.L =s <X_; .L) 1\ 

-.(faulty( <lj.L) =>faulty( <X_;.L))) 

Filter(G = { <XiL=J..N) = 3 ( ((Uj, <Xj E G) 1\ import( <Xi, di) 1\ 

import(<Xj, di) 1\ (id(di) = id(dj))) => 
(3! do) 1\ (id(do) = id(di) = id(dj)))) 

AtomicDelivery(G = { <Xdi=J..N) = (3 <X E G : import(£, <X, d) => 
("i <Xi E G : import(£,<lj, d))) 1\ (3 <X E G : 
(import(£, <X, d1) <import(£, a, d2)) => ("i <Xi E G : 
(import(£, <Xi, d1) <import(£, <lj, d2)))) 

Passive( <X) = 3 y, : Replication( {<X, 1\ StableStorage( <X, y) 1\ 

Restore( <X, , y) 

StableStorage(<X, y) =import( <X, y, f) 1\ (f = a.cr) 1\ ([<X.cr] <export( a, y, f)) 
1\ -.(3 y.cr: faulty(y.cr)) 

Restore( y) = (3 a.cr' : (([a.cr'] < [a.cr]) 1\ import(y, 1\ (f = a.cr'))) 
1\ ("i £, d: (([a.cr] <export(£, <X, d))=> d))) 

concrete dependability properties, which ultimately correspond to the 
behavior of fault tolerance mechanisms for which an implementation is 
available. Considering two dependability properties PJ(S) and PiS), the 
latter is a refinement of the former if P2(S) => PJ(S). For illustration, Figure 1 
depicts the refinement relation that holds over the dependability properties 
introduced in the previous subsection. In the figure, each property P is 
represented by a box that contains a set of boxes to denote alternative correct 
refinements of P, and each of these sub-boxes points towards a set of 
properties whose conjunction is a correct refinement of P. 

3. REPOSITORY OF DEPENDABLE SOFTWARE 
ARCHITECTURES 

The proposed specification of dependability properties provides means to 
unambiguously describe the dependability behavior of an architecture, but it 
is of limited help from the standpoint of easing the development of 
dependable systems. To facilitate their use, we propose to attach to each 
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dependability property, the structure (i .e., the software architecture) of the 
corresponding system with respect to the fault tolerance technique that is 
used to enforce the given property. 

Dependability 

/I 

/ ,, 
Availability Reliability Safety 

AI 

/ 
Detection Fmask 

I 

DetectionObj FmaskObj 

I/ ' 

,/ 
Active Passive 

lA 

/ 
At.Delivery Filter Replication St. Storage 

Figure]: Some refinements of the dependability property 

The refinement relation over dependability properties provides the 
adequate base ground to organize the repository of dependable software 
architectures. The repository is organized as a lattice structure defined 
according to the refinement relation, and each node stores the acquired 
knowledge about a given dependability property. For some property P, this 
knowledge includes: (i) the property name, (ii) the formal specification of 
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the dependability property, (iii) the set of dependability properties (through 
references to adequate nodes) into which P may be refined, and (iv) the 
dependable software architecture Ap, associated with P. 

The repository may be depicted in a way similar to the graph given in 
Figure 1 except that each node now embeds the description of the 
dependable software architecture corresponding to the property defined by 
the node. The dependable architecture corresponding to an abstract property 
is a black-box component embedding the system since the property is too 
abstract to have a fault tolerance technique associated with it. On the other 
hand, the architecture defined for a concrete property exposes the system's 
structure with respect to some fault tolerance technique. The following 
subsection further elaborates on the description of dependable architectures, 
which, as shown in Subsection 3.2, may be derived from the specification of 
dependability properties. Subsections 3.3 and 3.4 then introduce the main 
functions used for the management of the architecture repository; they relate 
to the introduction and retrieval of a dependable architecture with respect to 
a given property. 

Prior to detailing the description of dependable software architectures, let 
us note that we concentrate here on the definition of architectures with 
respect to the fault tolerance technique that is used to enforce a given 
dependability property. The proposed architectural description may be 
enriched when there is an available mechanism to implement the embedded 
fault tolerance technique. For instance, the architectural definition could then 
include the specification of the component's interaction protocol (e.g., using 
Wright (Allen and Garlan 1997)) and of the component's functional 
interface. In the same way, the definition of connectors could be introduced 
so as to detail the interaction protocol used by the mechanism. In general, the 
description of a dependable software architecture includes at least the 
specification of the dependability behavior of its components, and may be 
extended using the capabilities of existing ADLs (Architecture Description 
Languages). In particular, a dependable architecture may be defined using 
ACME (Garlan et al. 1997) so as to exploit different ADLs and thus allow 
various architecture analyses . 

3.1 Dependable software architecture 

To be helpful to system developers, the description of dependable 
architectures must make clear how to compose a dependable system from a 
base system. The components of a dependable architecture may be of either 
of the two following kinds: Generic, in which case the component 
corresponds to the initial system that is to be made dependable, or 
Dependable, in which case the component is specifically introduced for 
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enforcing some dependability behavior. Then, given a software architecture 
providing some concrete dependability property, a system can be integrated 
with the corresponding fault tolerance technique by mapping the system onto 
the generic components. We propose the following description for 
dependable architectures 

Dependable Architecture: Name = 
Dependability: 

--Architecture's dependability property-
Components: 

{Component Name: TypeComp: -- Dependability behavior--} + 
Configuration: 

-- Description of a configuration through bindings among 
components --

where the specifications of dependability behaviors and properties are 
expressed according to our approach discussed in the previous section. 

Table 3: Architectural descriptions associated with the Replication, Filter, and 
AtomicDelivery properties 

Dependable Architecture : Replication = 
Dependability : Replication(G); 
Components : G[i: l..N] : Generic: Replication(G); 
Configuration : nil ; 

Dependable Architecture : AtornicDelivery = 
Dependability : AtornicDelivery(G); 
Components: G[i: l..N]: Generic: (i:l..N): 

(import(£, G(i), \fj E [1, N] :import(£, GG), d)) 
1\ ((import(£, G(i), d)< import(£, G(i), d')) 

(\fj E [1, N] :import(£, GG), d)< import(£, GG), d')); 
Configuration: (i: l..N) : AtornicDelivery.Import to G(i).lmport; 

Dependable Architecture : Filter = 
Dependability: Filter(G); 
Components: G[i: l..N]: Generic: TRUE; 

F: Dependable: (i,j E [1, N] 1\ import(G(i), F, d) 1\ 

import(GG), F, d') 1\ (id(d) = id(d'))) 
(3 ! export(F, £, d"): (id(d") = id(d))); 

Configuration : (i: l..N) : G(i).Export to F.Import; 
F.Export to Filter.Export; 
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A dependability behavior may simply be TRUE if there is no 
dependability requirement associated with the architectural element. The 
type of a component identifies whether the component is generic or 
dependable. We further assume that each architectural component (including 
the architecture itself) has an Import and an Export port. For illustration, 
Table 3 gives the descriptions of the architectures associated with the 
Replication, Filter, and AtomicDelivery properties. Let us remark that the 
proposed architectural descriptions expose only structural information 
regarding fault tolerance. In particular, only bindings dedicated to fault 
tolerance are characterized. 

Considering the proposed description of dependable architectures, a 
system S may be modified so as to enforce a given dependability property P 
by mapping S onto each generic component of the architecture associated 
with P while ensuring the declared dependability behavior, and providing an 
adequate implementation for the dependability-specific components. 
Alternatively, the repository of dependable architectures may further be 
exploited to find out more refined architectures, which possibly correspond 
to available fault tolerance mechanisms. 

3.2 Deriving dependable architectures from properties 
specifications 

Ideally, one would like to have a systematic way to derive the structure 
of a dependable architecture from its associated formal specification. 
Although not direct, the proposed specification of dependability properties 
embeds the needed information. Let us take a close look at dependability 
properties. From a property specification, we are able to infer: 
1. the objects involved in the enforcement of the property, which are all the 

objects appearing in the specification 
2. the objects' behaviors with respect to dependability, which are given by 

part of the specification that refers to the object 
3. the needed interactions among objects, which are given by part of the 

specification expressed in terms of import and export predicates. 

To systematically infer the above information and hence a dependable 
architecture, from a property specification, we propose to structure the 
specification of dependability properties accordingly. For ObjectType stating 
whether the object is generic or not, and parameters VarName being of type 
integer, Table 4 gives the form of the specifications of a property P, 
followed by an illustration of its employment using as an example the Filter 
property. 
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Table 4. The fonn of property specification and an example 

?(objects {ObjectName: ObjectType}*; lnd {VarName}+) = 
objects : { ObjectName : ObjectType ; }+ 
behaviors : { ObjectName : -- formula -- ; }+ 
configuration : -- formula -- ; 

Filter(G: Generic[ I, N]) = 
objects : F : Dependable ; 
behaviors: (i: l..N) : G(i): TRUE; 

95 

F: (import(G(i), F, d) A import(G(j), F, d') A id(d) = id(d')) => 
(3 ! export(F, e, d") : (id(d") = id(d))); 

confi2uration: ((i: l..N) : import(G(i), F, d)) 1\ export(F, e, d'); 

Intuitively, we can infer from the specification of the Filter property that 
the corresponding dependable architecture is made of the set of generic 
components G(i) and of the dependable component F. In addition, the 
formula given in the configuration part enables to deduce interaction among 
components based on the semantics of the import and export predicates: 
import( d) as well as export( a, implies that the Export port of a 
is bound to the Import port of further recall that e is used to signify 
any object of the environment. Thus, import( a, e, d) (resp. import(e, a, d)) 
signifies that the Export (resp. Import) port of a is bound to the 
architecture's Import (resp. Export) port. The same applies for the export 
predicate. Precisely, the inference of the logical formula and of the software 
architecture corresponding to a given dependability property is achieved as 
follows. Let P be defined as: 

?(objects 0;, I:s;i::;n;var ... ) = 
objects: 0';, 1:::; i:::; n' ; 
behaviors : 0; : B; , I :::; i :::; m ; 
configuration : B ; 

The corresponding logical formula is equivalent to: 3 ... , O., 3 0'., ... , 
0' n' : (B 1\ (1\i=l..m B;)) 

Let us remark here that the proposed specification of properties may lead 
to extend the original specifications. This is exemplified by the new 
definition of Filter , which extends the original one with the formula stated 
in the configuration part. As another example, let us consider the 
AtomicDelivery property. The embedded formula 3 a E G : import(e, a, d) 
=> ('if a.; E G : import(e, a.;, d)) relates to the behavior of the as. It also 
relates to the architecture's configuration: all the as are accessible by objects 
of the environment. Thus, this formula must appear in two parts of the 
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property specification. However, the formula for configuration is simplified 
into V <Xi E G : import(£, <X;, d). fu general, we do not see the required 
modification of property specification as a major drawback given the 
resulting benefit for the production of architectural descriptions. 

Let us now examine the inference of the architecture associated with P(). 
It consists of defining the interpretation of each constituent of the property 
specification in terms of architectural description. The treatment of the 
objects and behaviors parts of the specification is direct: each object given 
in the objects lists translates into an architectural component whose type 
(i.e., dependable or generic) is the one declared in the embedding list; and 
each object behavior given in behaviors is attached to the corresponding 
architectural component. The interpretation of the configuration part is less 
direct, it requires to interpret each element of the corresponding logical 
formula. Precisely, a formula defining a configuration is of the form: /\; P; 
where each P; is expressed as either an import or an export predicate, whose 
parameters may possibly be universally quantified. Thus, each P; is 
translated into bindings among components according to the parameters of 
the import or export predicates. 

3.3 Updating the repository 

Updating the architecture repository requires providing functions for the 
addition and removal of dependability properties. However, since the 
treatment of the latter is quite straightforward, we address only the former in 
the following. The introduction of a dependability property P leads to insert 
the corresponding node N within the repository, according to the refinement 
relation over properties. 

Inserting a property: Let us use the following notations: 

- P denotes the set of dependability properties. 
N denotes the set of nodes of the repository. 
Prop(N) is the function that returns the property defined by node N. 
AncN(P) denotes the set of immediate ancestor nodes of N, with respect 
to the dependability property P. 
DecN denotes the set of immediate successor nodes of N. 
POvt{'X) denotes the power-set of X. 

Let us first consider the introduction of a property P refining a 
property of the repository (i.e., P needs not to be conjuncted with another 
property). For instance, if we consider Figure 1, P may be Reliability but not 
Fmask, which has to be conjuncted with Detection to be a refinement of an 
existing property. Given our assumption, the node N for property P must be 
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introduced within the repository in a way that guarantees the following two 
conditions: 

Cl(P, AncN(P)) = '1/N'E AncN(P) : (P Prop(N')) 1\ --{3 N"E N-{N'} : 
(P Prop(N") Prop(N)) 

C2(P, DecN) = 'II N' E DecN: ( (Prop(N') P) 1\ --,(3 N" E N - {N'} 
(Prop(N') Prop(N") P))) 

Let us now consider the introduction of a property P that refines an 
existing one, when conjuncted with a set of complementary properties. We 
require all these properties to be inserted in the repository at once, using the 
following Insert function. Given a set of properties {P;}i=t..n to insert and 
the current nodes of the repository, the function returns the ancestor nodes 
that are common to all the Nis defining the Pis, with respect to the property 
1\i=t..n Pi, and the set of successor nodes for each Ni : 

Insert: POWP) x POWN) P x POWPOWP)) 

Insert( {P;}i=l..n• N) = ((\=t..nAncN;(/\j=l..n Pj) , {DecN;}i=t..n)) if 
Cl(/\i=l..n h (\=t..nAncN;(/\j=t..n Pj)) and 
ViE [1, n] : C2(Pi, DecNi) 

When a node defining a concrete property P is created within the 
repository, the node should be completed with its corresponding architecture 
description. This is realized by inferring the architecture description from the 
property specification as discussed in the previous subsection. 

Correct architecture refinement: Up to this point, we have seen that the 
introduction of a property within the repository is achieved according to the 
refinement relation over dependability properties. Let us consider two 
properties P 1 and P2 such that P2 refines P 1• From the developer's 
standpoint, this means that the architecture A2 associated with P2, may be 
safely used to enforce property P 1• Let us now assume that the architecture 
A1 associated with P 1 was originally selected to make a system dependable, 
but was later replaced by A2 (e.g., such a replacement may be due to the 
availability of the mechanisms embedded by A2). The replacement of A1 by 
A2 is practical only if both architectures have compatible structures, i.e., A2 

exposes the structure of A 1 's architectural elements. In this way, the later 
replacement of a dependable architecture by an architecture enforcing a 
stronger property does not impact on the design decision made so far. Thus, 
when a property P2 refines a property we require the architecture A2 
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associated with P2, to be compatible with the architecture A1 associated with 
P1• We say that A2 is a correct refinement of A1 (with respect to their 
architectural structures). Let us notice that in the case of architectures 
corresponding to available mechanisms, the refinement relation over 
architectures could additionally be constrained according to the definition of 
(Moriconi et al. 1995). 

Let us first consider the simplest case that is when P2 corresponds to a 
single node: the corresponding architecture A2 is a correct refinement of an 
architecture if P2 refines the dependable property associated with and 
if A2 defines a set of sub-architectures that maps onto the components of A1• 

Let us use the following notations: 
- An architecture A is defined by the triplet (P A• CA, BA) . 
- P A denotes the dependability property of A. 
- CA denotes the components of A. 
- BA = { ( C;, C; ') }i=J..n, C;, C;' E CA, defines the architectural bindings 

among A's components. 
- Comp : P0£.1-(B) P0£.1-(C) is the function that returns the set of 

components embedded in a given set of bindings. 
- A denotes the set of dependable architectures. 
- Beh : P x C P is the function that returns the dependable behavior of a 

given component belonging to the specification of a given dependability 
property. 

We introduce the following function to identify whether an architecture AR is 
a correct refinement of an architecture A, with respect to the architectures' 
structures: 

Refine : Ax A BOOL 

Refine( A, AR) = 3 total function M : CA POW BAR) such that M is I -to-1 
and onto, and 
V C, C' E CA : (C::;; C'" Comp(M(C)) n Comp(M(C')) = 0, and 
V C E CA :Dependability(? AR, M(C)) => Beh(P A• C) 

Dependability gives the dependability behavior of the sub-architecture given 
by a set of bindings among components: 

Dependability : P x P0£.1-(B) P 

Dependability(?, B) = (/\Ci e comp(BJ Beh(P, Ci)) 1\ 1\'I(C. C) e s(import(C, C', 
d)=> export(C, C', d)) 

Let us now consider the case where a conjunction of dependability 
properties Pi. 1 i N, is introduced as a refinement of an existing property 
P. We must define the software architecture A that results from the 
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combination of the set of architectures Ai, 1 i N, associated with each 
property Pi, and then verify that A is a correct refinement of the architecture 
associated with P, according to the definition of Refine. We have seen that 
the components of an architecture subdivide into generic and dependable 
components. Let us further recall that generic components correspond to the 
same functional component that is the software system to be made 
dependable. Henceforth, the generic components of the Ais correspond to the 
same components. Thus, generic components are mapped onto the same 
components in the architecture A, and their dependable behavior is the 
conjunction of the behavior declared in each of the Ais for generic 
components. 

On the other hand, the dependable components of an architecture are in 
general specific to this architecture. Thus, the dependable components of A 
are the union of the dependable components of the Aj. However, there are 
two cases where dependable components of distinct architectures may have 
to be merged into a single component. One of these cases is exemplified by 
the architectures used to enforce Passive replication: they object is shared by 
the architectures enforcing StableStorage and Restore. In general, this case is 
detected through the definition of the conjunction of properties, which may 
explicitly share objects. The other situation where dependable components 
of distinct architectures may be merged is when there is a relation of logical 
implication between each pair of associated dependable behaviors. Here, we 
can keep only the dependable component that enforce the strongest 
dependability behavior among the set of components. So far, we have stated 
how to infer the set of generic and dependable components of an architecture 
resulting from the composition of some architectures. The set of bindings 
among these components are further the ones that are specified for the 
corresponding components within the Ais. 

3.4 Using the repository 

Using the architecture repository for the construction of a dependable system 
consists of retrieving the software architecture associated with the 
dependability property that is targeted for the system. Let .l be the undefined 
node. The retrieval function is defined as Retrieve : P N u .l with: 

Retrieve(P) = N if (N e N) 1\ (Prop(N) P) 1\ ---,(3 N' e N : 
(Prop(N) Prop(N') P)), or 

.l if ---.(3 N e N : (Prop(N) P)) 

The node N returned by the Retrieve function allows us to identify all the 
dependable architectures that are eligible to make a system dependable with 
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respect to the given dependability property. These architectures are all the 
architectures defined by the nodes of the sub-lattice whose root is N. Some 
of the eligible architectures may possibly be combinations of architectures 
when properties of the sub-lattice are refined into a conjunction of 
properties. Architecture combination is achieved according to the approach 
discussed in the previous subsection. Given eligible architectures, it is up to 
the system developer to select the one that is the most appropriate for the 
system. Several factors may influence the selection process. Among the most 
prominent factors, we foresee the existence of implementation for all or part 
of the dependable components embedded in the architectures. At this time, 
the selection of the most appropriate dependable architectures among the set 
of eligible ones is left upon the system developer. 

We are currently examining solutions to help the developer in the 
selection process by coupling the architecture repository with an 
implementation repository. The benefit of our proposal for the construction 
of dependable systems lies in providing a repository of dependable 
architectures whose behaviors are precisely characterized using temporal 
first order logic. This characterization allows: (i) to infer an architectural 
description from a property specification, (ii) to retrieve an architecture 
providing the dependability property targeted for a given system, and (iii) to 
use an architecture selected from the repository to know how to extend a 
base non-dependable system with appropriate fault tolerance mechanisms. 
However, we cannot expect system developers to carry out the proofs 
appertained to the management of the repository of dependable architectures. 
Tools must be provided to assist this management. These tools include: 
- A tool for the inference of a dependable architecture from the 

specification of a dependability" property. 
- A tool for updating the repository and retrieving architectures. This tool 

subdivides into a tool for classical database management, and a theorem 
prover for implementing the database functions that are defined over 
dependability properties. 
We are currently implementing the first tool as well as the one relating to 

database management, their features are direct from the presentation we 
made in this paper. From the standpoint of providing a theorem prover, we 
are currently examining existing provers (e.g., (Manna et al. 1994)) so as to 
reuse an existing one for our framework. 

4. CONCLUSIONS 

This paper has presented a framework aimed at easing the construction of 
dependable systems. The framework relies on the formal specification of 
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dependability properties, using temporal first-order logic. The proposed 
specification of dependability properties allows to infer the dependable 
software architecture corresponding to a property, which characterizes the 
structure of a dependable system with respect to the fault tolerance technique 
enforcing the given property. The structure of a dependable architecture 
further makes clear how to compose a dependable system from a base 
system. Formal specification of dependability properties enables us to 
provide a repository of dependable architectures, which is organized 
according to the refinement relation holding over dependability properties. 
Our proposal relates to a number of research efforts of the software 
engineering domain. In particular, it builds on results in the area of 
architecture description languages, and of software reuse. 

From the standpoint of existing ADLs, there have been many proposals 
based on formal techniques. However, these proposals aim at 
complementary goals to ours. For instance, objectives for ADLs based on 
formal techniques include comparison of architectural styles using the Z 
notation (Abowd et al. 1995), reasoning about interaction patterns of 
architectural styles using a CSP-based calculus (Allen 1997), comparison of 
architecture designs and proving properties with regard to a specific 
architecture using the chemical abstract machine model (Inveradi and Wolf 
1995), verification of reconfiguration correctness of architectures using 
graph grammars (LeMetayer 1996), definition of executable prototypes for 
architectures using partially ordered set of events (Luckham et al. 1995), and 
correct stepwise refinement of architectures using first-order logic (Moriconi 
et al. 1995). The last reference appears to be the most closely related to our 
proposal. However, in this reference, the architectural refinement relates to 
preserving topological constraints of the architectural elements. On the other 
hand, we are concerned with characterizing the semantics of an architecture 
from the standpoint of provided dependability properties. This 
characterization further serves to provide developers with a repository of 
dependable architectures that show how to make a base system dependable, 
using a fault tolerance technique enforcing the targeted dependability. 

There is a significant amount of work in the area of software reuse 
(Krueger 1992). In this subsection, we concentrate on two research efforts on 
this topic: systematic component retrieval, and software reuse for 
customizing execution environment. To our knowledge, systematic 
component retrieval based on a specification of components using first-order 
logic has firstly been experimented in the Inscape environment (Perry 1989). 
This environment belongs to the family of development environments that 
can be seen as ancestors of the ones based on ADL, i.e., applications are 
described using a module interconnection language which is roughly an 
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ADL without the connector notion. The Inscape environment demonstrated 
that it was feasible to use the specification of components in terms of pre
and post-conditions to guide complex system design but also to retrieve 
component implementations in a systematic way. Successors of this proposal 
then enhanced the practicality of systematic software retrieval. A software 
retrieval tool that may be used in any development environment is presented 
in (Rollins and Wing 1991). This capacity is further enhanced in (Zaremski 
and Wing 1997), which provides a framework to support the definition of 
various refinement relations. Efficiency of software retrieval is addressed in 
(Mili et al. 1997), which proposes to organize the software database 
according to a refinement relation over software specifications. This work 
and its more recent version (Jilani et al. 1997) supply, moreover, a retrieval 
function that returns a software component approaching a specification if 
there is no available component matching the requested specification. The 
proposal presented in (Schumann and Fischer 1997) also addresses 
efficiency of the software retrieval process; it consists of using rejection 
filters based on signature matching and model checking technology to rule 
out non-matching components as early as possible. Our proposal builds on 
the above results and applies them to the domain of retrieving a software 
architecture with respect to a requested dependability property instead of a 
functional one. 

Customizing execution platforms so as to adapt to application needs is 
now a growing concern in the software engineering domain. This has led to 
the definition of notations to ease the development of customized systems 
using existing software. Examples of environments offering such a facility 
can be found in (Batory and O'Malley 1992, Hiltunen and Schlichting 1995, 
Stroman and Agha 1994). These proposals differ from ours in that we are 
addressing customization of execution platforms based on the refinement of 
requested dependability properties, while they provide a way to construct 
such platforms based on its adequate structuring. Thus, these environments 
could be conveniently exploited in our framework to take over the 
construction of the dependable system after the selection of the adequate 
dependable architecture. 
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Abstract: Several notations and languages for software architectural specification have 
been recently proposed. However, some important aspects of composition, 
extension, and reuse deserve further research. These problems are particularly 
relevant in the context of open systems, where system structure can evolve 
dynamically, either by incorporating new components, or by replacing existing 
components with compatible ones. Our approach tries to address some of these 
open problems by combining the use of formal methods, particularly process 
algebras, with concepts coming from the object-oriented domain. In this paper 
we present LEDA, an Architecture Description Language for the specification, 
validation, prototyping and construction of dynamic software systems. 
Systems specified in LEDA can be checked for compatibility, ensuring that the 
behaviour of their components conforms to each other and that the systems can 
be safely composed. A notion of polymorphism of behaviour is used to extend 
and refine components while maintaining their compatibility, allowing the 
parameterisation of architectures, and encouraging reuse of architectural 
designs. 

1. INTRODUCTION 

The term software architecture (SA) has been recently adopted referring 
to the discipline of Software Engineering that deals with the description, 

1 This work was funded in part by the "Comisi6n Interministerial de Ciencia y Tecnologfa" 
(CICYD under grant TIC98-0445-C03-03. 
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verification, and reuse of the structure of software systems (Shaw and 
Garlan, 1996). At the level of abstraction of SA, software is represented as a 
collection of computational and data elements, or components, 
interconnected in a certain way, and it is at this level where the structural 
properties of software systems are naturally addressed. SA pays special 
attention to the interaction among components, instead of the internal 
computations of these components. 

The significance of explicit architectural specifications is widely 
accepted. First, they raise the level of abstraction, facilitating the description 
and comprehension of complex systems. Second, they increase reuse of both 
architectures and components (Shaw and Garlan, 1995). However, effective 
reuse of a certain architecture often requires that some of its components can 
be removed, replaced, and reconfigured without perturbing other parts of the 
application (Nierstrasz and Meijler, 1995). These aspects are particularly 
relevant when dealing with open distributed systems, whose architecture 
evolves dynamically, and consistency has to be guaranteed for every 
substantial change produced on the system. In the context of SA, consistency 
must be analysed in terms of the compatibility between components, since 
system performance depends on the correct interaction among them. 

Although object-orientation can be applied to all levels of software 
design, in SA the more general term component-oriented is preferred, 
allowing to consider not only objects but architectures, interaction 
mechanisms and design patterns as first-class concepts of an architecture 
(Nierstrasz, 1995). However, most concepts corning from the object-oriented 
paradigm can be applied to SA. Particularly, in this work we address the 
application of inheritance, parameterisation, and polymorphism to the 
specification of software architectures. 

A number of Architectural Description Languages (ADLs) have been 
already proposed. ADLs address the need for expressive notations in 
architectural design, trying to provide precise descriptions of the glue for 
combining components into larger systems. Despite the proposed notations 
are useful for the description of complex software systems, most of them are 
not formally based, which prevents the analysis and proof of the properties 
of the systems and architectures described (Abowd et al., 1993). In addition, 
several significant issues, such as specification of dynamic systems, 
architecture parameterisation and refinement, are not usually addressed. In 
Section 9 we compare our approach with other related works, particularly 
Wright and Darwin, while an exhaustive comparison on the characteristics of 
some outstanding ADLs can be found in (Medvidovic and Rosenblum, 
1997). 

In order to avoid some of these limitations, our interests focus on the 
application of formal methods to SA. Formal specifications have a precise 
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meaning derived from the semantics of the notation used, and validation 
tools can be developed to prove properties of the systems specified. To this 
effect, process algebras are widely accepted for the specification of software 
systems, which can be checked for equivalence, deadlock freedom, and other 
interesting properties. 

Dynamic architectures are those which describe how components are 
created, interconnected, and removed during system execution, and which 
allow run-time reconfiguration of their communication topology. Formal 
specification of such systems requires the use of an adequate formalism. In 
particular, we propose the use of the 7t-calculus (Milner et al., 1992), a 
simple but powerful process algebra which can express directly mobility, 
allowing the specification of dynamic systems in a very natural manner. 
However, the 7t-calculus is a low level notation, which makes difficult its 
direct application to the specification of large systems. 

This was our original motivation for the development of LEDA, an ADL 
which embodies mechanisms of inheritance and dynamic reconfiguration. 
The language is structured in two levels: components, representing system 
parts or modules, and roles, which describe the observable behaviour of 
components. Roles are written in an extension of the 1t-calculus, thus 
allowing the specification of dynamic architectures. Each role describes the 
protocol that a component follows in its interaction with other components. 
In turn, components are described as composed of other components. The 
structure or architecture of a component is indicated by the relations among 
its subcomponents, which are expressed by a set of attachments or 
connections among the roles of these subcomponents. 

LEDA differs from other ADLs in that it makes no distinction, at the 
language level, between components and connectors, i.e. connectors are 
specified as a special kind of components. This allows the language to be 
more simple and regular, and does not impose a particular compositional 
model in the description of software architectures. 

Since the semantics of LEDA is written in terms of the 7t-calculus (Canal 
et al., 1998b ), specifications can be both executed, allowing architecture 
prototyping, and analysed. In this sense, it is possible to determine whether a 
system is safely composable, i.e. whether its components present compatible 
behaviour and can be combined to form the system. This kind of analysis has 
been traditionally limited to interface conformance, but we are also 
interested in determining whether the behaviour of a component is 
compatible with that of its environment. On the other hand, component reuse 
would be encouraged if we could check whether a certain existing 
component can be used in a new system where a similar behaviour is 
required. Again, the intuitive notion of compatibility arises. We have 
formalised compatibility of behaviour in the context of 7t-calculus (Canal et 
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a!., 1998a), ensuring that compatible roles are able to interact successfully 
until they reach a well-defined final state. Architectures written in LEDA are 
tested for compatibility in each of the attachments among roles of their 
components. Compatibility does not require that the components involved 
have strictly complementary behaviour, since we usually want to connect 
components which match only partially. 

Reuse of existing software components would be promoted if we had a 
way for adapting a component to an interface which is not compatible with 
its own interface. This is what LEDA adaptors are made for. Adaptors are 
small elements, similar to roles and also written in 1t-calculus, which are 
able to communicate successfully components whose behaviour is not 
compatible. 

Our approach is completed with mechanisms of inheritance and 
parameterisation for roles and components which ensure that compatibility is 
preserved. A child component inherits its roles from its parents, while 
redefinition of behaviour is restricted by several conditions which ensure the 
maintenance of compatibility. Thus, we can replace safely a component in an 
architecture with any other component which inherits from the former. This 
gives place to a mechanism of architecture instantiation, by which a software 
architecture can be considered as a generic framework, which can be 
partially instanced and reused as many times as needed. Component 
frameworks derive from the idea of design patterns, and they represent the 
highest level of reusability in software development: not only source code of 
components, but also architectural design is reused in applications built on 
top of the framework (Pree, 1996). In this sense, LEDA specifications can be 
considered as generic architectural patterns or frameworks which can be 
extended and reused, adapting them to new requirements (Canal et a!. , 
1997). 

Although specification certainly plays an important role during system 
design and prototyping, the final goal of software design is to obtain real 
executable applications. LEDA specifications are also used for the creation, 
interconnection and deletion of components on an executable distributed 
platform. Combining the capabilities of prototyping and execution of LEDA, 
it is possible to simulate the execution of partially implemented systems. 
Hence, system development can be done gradually, providing a smooth 
transition from specification to implementation. 

The structure of this paper is as follows . First, we describe briefly the 
1t- calculus and the notation we use for specifying roles with it. Then, 
Sections 3 and 4 deal with the specification of components, roles and 
attachments in LEDA. Next, in Section 5 we discuss how our approach 
addresses architecture prototyping and validation, while Section 6 deals with 
component and role inheritance, and also addresses the topic of architecture 
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refinement. Section 7 shows how non-compatible components can be 
interconnected using adaptors . All the notions introduced in these sections 
are illustrated by several examples. Finally, Section 8 discuss briefly how 
LEDA specifications can be used in order to derive executable applications 
from an architecture. We conclude comparing our approach with some 
related proposals. 

2. THE 1t-CALCULUS 

The 1t-calculus, developed by Milner as a successor of CCS, is specially 
suited for the description of dynamic systems, in which components are 
created and interconnected during system execution, because it permits 
direct expression of mobility. Mobility is achieved in 1t-calculus by the 
transmission of channel names as arguments or objects of messages. When a 
process receives a channel name, it can use this channel as a subject for 
future transmissions. This allows an easy and effective reconfiguration of the 
system. In fact, the calculus does not distinguish between channels and data, 
all of them are generically names. This homogeneous treatment of names is 
used to construct a very simple but powerful calculus. In contrast, 
1t-calculus is a low level notation, and its use in industrial-size problems 
would be tedious and difficult. 

LEDA embodies the 1t-calculus for specifying the roles which describe 
the behaviour of components. Roles are described in LEDA as processes, 
using a syntax which derives from the original notation of the 1t-calculus, 
adding some syntactic sugar to obtain more friendly specifications. Let 
P,Q, ... range over processes, and a,b,c, ... range over names. Sequences of 
names are abbreviated using tildes (li). Then, processes are built from names 
and processes as follows: 

P ::;;. 0 I r.P I x!(o).P I x?(ii).P I (x)P l{x;;.z}P I PIQ I P+Q I A(ii) 

Empty or inactive behaviour is represented by 0. Silent transitions, given 
by 't, model internal actipns. Thus, a process r.P will eventually evolve to P 
without with its environment. An output-prefixed process x!(o).P 
sends the na,mes o (objects) name x (subject) and then continues like 
P. An input-prefixed process x?(ii).P waits for some names ii to be sent 
along x and then behaves like P{o/ii}, where {alii} is the substitution of a 
with a. 

Restrictions are used to create private names. Thus, in (x)P, the name xis 
private to P. Private names can be exported to other processes simply by 
sending them as objects of output actions, as in (z)x!(z) . A match {x;;.z}P 
behaves like P if the names x and z are identical, and otherwise like 0. 
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The composition operator is defined in the expected way: P I Q consists 
of P and Q acting in parallel. Summation is used for specifying alternatives: 
P + Q may proceed to P or Q. The choice can be locally or globally taken. In 
a global choice, two processes agree synchronously in the commitment to 
complementary actions, as in 

(. .. + x!(o).P + ... )I( ... + x?(ii).Q + ... Q{O!ii} 
On the other hand, local choices are expressed combining the summation 

operator with silent actions. Hence, a process like(. .. + r.P + r.Q + ... )may 
proceed to P or to Q with independence of its context. We use local and 
global choices to state the responsibilities for action and reaction. 

Finally, A(ii) is an agent with names ii. Each agent identifier A is defined 
by an unique equation: A(ii) = P. The use of agents allows modular and 
recursive definition of processes. 

Some examples of processes written in 1t-calculus can be found in the 
following sections, but for a detailed description of the calculus, including its 
transition system, we refer to (Milner et al., 1992). 

3. COMPONENTS AND ROLES 

LEDA is an ADL for the description and validation of structural and 
behavioural properties of software systems. The language is structured in 
two levels: components and roles. Components represent software pieces or 
modules, each one providing a certain functionality while roles describe the 
behaviour of components and are used for architecture validation, 
prototyping, and execution. 

3.1 Components 

LEDA distinguishes between component classes and instances, and 
provides mechanisms for the extension and parameterisation of components. 
The specification of a component class consists of three main sections: (i) 
interface, consisting of several role instances; (ii) structure or composition, 
consisting of several component instances; and (iii) attachments, which 
contains a list of connections which indicate how the component is built 
from its parts. 

The interface of a component is described as a set of role instances, 
which specify the behaviour of the component from the point of view of 
each other component that interacts with it. Each role is a partial abstraction 
representing both the behaviour that the component offers to its 
environment, and the behaviour that it requires from those connected to it. 
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LEDA distinguishes between role classes and instances, and provides 
constructions for the extension and derivation of roles. 

For instance, consider a file transmission between two components, 
named Sender and Receiver respectively. Component Receiver plays the role 
of reader, receiving the data which is sent by Sender, which acts as writer 
(Figure 1). 

component Sender { 
interface 

writer: Writer; 
} 

component Receiver { 
interface 

reader : Reader; 
} 

Figure 1: Components Sender and Receiver 

3.2 Specification of component's behaviour 

Traditionally, interface description has been limited to the signature of 
the methods that a component imports and exports, or the messages that it 
can send or receive. However, our goal is to describe the observable 
behaviour of components, that is, how they react to external stimuli, and how 
input and output stimuli are related. This behaviour is described by the roles 
that form the interface of the component. Roles are specified as processes in 
the 7t-calculus. 

Roles Writer and Reader in Figure 2 specify the protocol of interaction 
between the components Sender and Receiver, i.e. they describe how these 
components behave in order to perform a successful data transmission. Data 
is transmitted matching two complementary actions w!(data) and w?(data). 
As indicated by the use of local choices, the responsibility for action falls in 
the Writer part, which knows when the file has been completely transmitted, 
and sends an event wq!() (writer quits), while the Reader must be able to 
react to both Writer actions. 

role Writer(w,wq) { 
spec is 

} 

't.(data)w!(data). Writer(w,wq) 
+ 't.wq!().O; 

role Reader(w,wq) { 
spec is 

} 

w?(data).Reader(w, wq) 
+ wq?().O; 

Figure 2: Roles Writer and Reader, from components Sender and Receiver 

3.3 Composites 

Components can be either simple or composite. A composite contains 
several subcomponents which are instances of other component classes. Any 
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software system can be described as a composite. Thus, the syntax of LEDA 
does not distinguish between components and systems or architectures. As 
we have shown, simple components are described by the roles of their 
interfaces, but for composites, we must also describe their internal 
architecture. This architecture is the result of the interconnection or 
attachment of several subcomponents. The specification of composites in 
LEDA will be shown by means of a set of examples of increased 
complexity, describing a family of systems following a Client/Server 
architectural pattern. 

Consider first a very simple Client/Server system in which the Client 
requests services from the Server (Figure 3). Both the Client and the Server 
are composites which contain an unbound array of service components. Role 
request describes the behaviour of the Client, while role serve describes that 
of the Server. When receiving a request, the Server creates a service 
component with the statement new. Then, the reference to the service is 
transmitted to the Client through the private link reply. Notice that the type 
of the component service is not indicated, but is declared of a generic type 
any, allowing future refinement of the Client/Server architecture, as will be 
shown in Section 6, for providing different kinds of services. The name n is 
used in the role serve for taking account of the number of requests received, 
which will be also used in a subsequent example. 

component Client { 
interface 

request : Request( request) { 
spec is 

(reply )request!( reply). 
reply?( service ).Request( request); 

composition 
service[] : any; 

I 

component Server { 
interface 

serve : Serve( request) { 
names 

n : Integer:= 0; 
spec is 

request?(reply). 
(new service )reply!( service). 
n++.Serve( request); 

composition 
service[] : any; 

} 

Figure 3: Components Client and Server with their roles 

4. ATTACHMENTS 

The architecture of a composite is determined by the relations that its 
subcomponents maintain with each other. These relations are explicitly 
represented in LEDA by a set of attachments among the roles of these 
subcomponents. Attachments relate roles of several components, and they 
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are specified in the composite which contains these components. 
Attachments are set when the corresponding components and role instances 
are created, possibly dynamically, and can be modified during system 
execution. 

LEDA distinguishes among several kinds of attachments, which permit 
the specification of both static, reconfigurable, and dynamic software 
systems. 

Static attachments are those which are never modified once they are set. 
For instance, recall the components Client and Server from Figure 3. We can 
specify our Client/Server architecture as a composite which contains both 
components and connects their roles using a static attachment (Figure 4). 
The symbol used for indicating the attachment is<>. 

component ClientServer { 
interface none; 
composition 

client: Client; 
server : Server; 

attachments 
client.request(r) <> server.serve(r); 

} 

Figure 4: A simple Client/Server system 

On the other hand, reconfigurable attachments are used for architectures 
that present several configurations, i.e. those in which the interconnection 
patterns among components changes over time, and the roles connected 
depend on a certain condition . For instance, suppose that we have two Server 
components, and each request is assigned to one of them trying to balance 
their work load (Figure 5). 

component ReconfigurableClientServer { 
interface none; 
composition 

client: Client; 
server[2] : Server; 

attachments 
client.request(r) <>if (server[ I ].n <= server[2].n) 

then server[l ].serve(r) 
else server[2].serve(r); 

} 

Figure 5: A reconfigurable system, consisting of one Client and two Servers 

Finally, multiple attachments describe communication patterns among 
arrays of components. Each pair of interconnected components may use 
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private links in their communication, or these links may be shared by all the 
components involved. Thus, multiple attachments can be either shared or 
private. A shared attachment describes a 1 :M communication channel, while 
private attachments establish multiple 1: 1 communication channels. 

For instance, consider a more realistic Client/Server system in which 
several Clients are connected to a pool of Servers. The composite 
ServerPool (Figure 6, left) contains an array of Servers whose roles are tied 
together using a multiple shared attachment (represented by the '*' in the left 
part of the attachment), and exported as a single role serve (role exportation 
is described below). Each request will be served by one of the Servers non
deterministically. On the other hand, the attachment between the Clients and 
the ServerPool is also multiple (Figure 6, right), and all clients share the link 
r through which they request services. Notice that mobility is used to 
establish private reply links for each request, though all the Clients are 
connected to the ServerPool using a single request link. Such an example 
can be hardly specified using formalisms like CSP (and consequently with 
CSP-based ADLs like Wright), which shows the richer expressiveness of the 
7t-calculus when compared with other process algebras . 

component Server Pool { 
interface 

serve : Pool; 
composition 

server[] : Server; 
attachments 

server{*].serve(r) >> serve(r); 
} 

component MultipleClientServer { 
interface none; 

composition 
client[} : Client; 
pool : ServerPool; 

attachments 
client[*].request(r) <> pool.serve(r); 

} 

Figure 6: A Client/Server system, with multiple clients and a pool of Servers 

An additional form of attachment is that of role exportation. Usually, 
when dealing with a composite, some of the roles of its components are not 
used for the interconnection of these components, but to form the interface 
of the composite. Thus, we say that these roles are exported by the 
composite, which is indicated in LEDA using the operator>> instead of<>. 
We have already used this mechanism in Figure 6, left, where the roles of 
the Servers were exported to form the interface of the ServerPool. 

5. ARCHITECTURE PROTOTYPING AND 
VALIDATION 

The specifications written in LEDA can be used for prototyping. 
Attachments have a formal semantics (Canal et al., 1998b) which allows the 
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derivation of 1t-calculus prototypes from architectural specifications. These 
prototypes can be executed using a 1t-calculus interpreter like the MWB 
(Victor, 1994). Thus, specifications can be tested at an early stage of the 
development process, checking their conformance with system requirements. 

Apart from description and prototyping, LEDA specifications also serve 
for validation purposes. In particular, for determining whether a system is 
consistent, i.e. whether the behaviour of its components is compatible. 

As we usually want to connect components that match only partially, the 
relations of bisimilarity customarily used in process algebras are not well 
suited for our purposes. Thus, we have defined a relation of role 
compatibility in the context of 1t-calculus. A formal definition of 
compatibility and its properties is out of the scope of this paper, but it can be 
found in (Canal et al., 1998a). A proof of compatibility for every system 
attachment using this relation ensures that the corresponding components 
will be able to interact safely until they reach a well-defined final state. 
Thus, if a software system is built according to the specifications of the 
architecture, no failure will arise from the interaction in any attachment 
between its components. 

Obviously, local analysis of compatibility cannot ensure that the whole 
system is deadlock-free, since deadlock could arise from the global 
interaction of a set of components whose roles are compatible. However, 
compatibility serves for determining whether two components can be 
composed or plugged into each other, guaranteeing that the connector <> is 
safe. We consider that a system is consistent when each attachment in its 
architecture connects compatible roles, indicating behavioural conformance 
of the corresponding components. On the other hand, a failure detected when 
analysing an attachment stands for a mismatch in the behaviour of the 
corresponding components, usually leading to a system crash. 

6. EXTENSION AND REFINEMENT 

6.1 Extension of roles and components 

In order to promote effective reuse of both components and architectures, 
a mechanism of redefinition and extension for roles and components is 
required. In the object-oriented paradigm, reuse is achieved by inheritance 
and polymorphism. Data polymorphism is defined as the capability of an 
identifier to point or refer to instances of different classes, while inheritance 
refers to a relation among object classes by which an heir class inherits the 
features (methods and attributes) of its parent classes. Heirs can extend their 
parents by adding new features, and they may also redefine some of the 
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inherited features, usually under certain restrictions. Inheritance is a natural 
precondition for polymorphism, since it ensures that heirs will have at least 
the same features than their parents, and that they can replace them safely. 

A relation of inheritance will be also of use for specifications of software 
components. However, in our context the interface of a component is defined 
not only by the signature of its features (i. e. the signature of its roles), but it 
also includes the behavioural patterns described in the roles. Thus, role 
redefinition and extension must be restricted in order to preserve the 
behaviour specified in the parent role. We have defined a relation of 
inheritance among roles in the context of 7t-calculus. This relation defines 
the restrictions for polymorphism of behaviour, allowing the replacement of 
a role by a derived version, while preserving compatibility. Role extension in 
LEDA can be formally validated. Again, we refer to (Canal et al., 1998a) for 
a formal definition of role inheritance and its properties. 

Role extension can be used to (i) redefine, partially or completely, the 
parent role, giving a new specification for some of its agents; and (ii) extend 
a role, providing it with additional functionality. In both cases we must 
check, using the relation of inheritance, that the extended role is effectively 
an heir of the parent role. 

For instance, consider the role Serve of Figure 3. Its behaviour can be 
extended allowing clients to query the number of requests solved by the 
server, which can be used for statistics. 

role StatServe(request,statistics) extends Serve { 
adding 

statistics! ( n ). StatServe( request, statistics); 
} 

Figure 7: An extension of role Serve 

The notion of extension can be also applied to components. Derived 
components inherit their parent's specification, including roles, 
subcomponents and attachments. An heir component extends its parent by 
adding new roles, components, or attachments, or by redefining some of its 
parent's. In case of redefinition of a role or component, the redefined 
instance must be an heir of the original instance. 

Component extension can be implicitly achieved by architecture 
instantiation, which indicates the replacement of a component instance in a 
composite with another one whose class extends that of the former. 
Architecture instantiation can be used for incremental specification, 
description of families of software products sharing a common architecture, 
and also for dynamic replacement of a component in a software system. The 
syntax of instantiation is as follows: 
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derivedComponent : ComponentClass[subcomponent: DerivedSubcomponentClass]; 

which means that derivedComponent is an instance of ComponentClass in 
which we have replaced its subcomponent (which let's suppose was declared 
of a certain SubcomponentClass) by an instance of DerivedSubcomponent
Class, where DerivedSubcomponentClass must be an heir of Subcomponent
Class. 

When instancing an architecture, some of its attachments are modified, 
since some of its former components are replaced by derived versions. 
However, compatibility rechecking of the instanced architecture is not 
required, since role inheritance ensures the preservation of compatibility. 

6.2 Architecture Refinement 

Architectural descriptions can be used with different levels of abstraction 
during the development process. This property is commonly referred to as 
refinement. For example, we can begin with a high level specification of a 
system in which we describe only its top-level components, their interface, 
and how they are attached to construct the system. Then, refinement is 
applied to obtain a more detailed specification, by describing the internal 
structure or the behaviour of previously defined components, obtaining more 
complex specifications which come gradually closer to implementation. As 
we have seen, component extension is a useful mechanism for refinement, 
but other forms of refinement can be applied using LED A. 

In the Client/Server system in Figure 6, services were defined as generic 
components of type any. Thus, we have described an abstract Client/Server 
architecture which follows a simple protocol of requests and replies. We can 
obtain more specific architectures by describing the details of the service, i.e. 
describing the behaviour that both components follow during the service. 

component ReceiverClient extends Client { 
interface 

request : RequestSenders( request) extends Request { 
spec is 
(reply )request!( reply). 
( new receiver )reply?( service ).RequestSenders( request); 

composition 
receiver[] : Receiver; 
service[ J : Sender; 

attachments 
receiver[J.reader(w, wq) <> service[J.writer(w, wq); 

} 

Figure 8: Specialisation of a Client/Server, using Senders and Receivers 
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The ReceiverClient in Figure 8 is a specialisation of the Client in Figure 
3. Its role request is refined indicating that a component receiver is created 
each time the client requests a service. The service itself is refined, too, 
indicating that its type is now Sender instead of any, and a new attachment is 
included, connecting the roles of the receiver and the service. Components 
Receiver and Sender were specified in Figure 1, while its roles were 
described in Figure 2. 

Hence, we have refined our Client/Server architecture, obtaining the 
description of a system in which the service provided is a file transmission. 
We can use the mechanism of architecture instantiation for obtaining an 
instance of the refined architecture: 

refinedCS : MultipleClientServer[client: ReceiverClient, pool.server[].service[] : Sender]; 

Since role RequestSenders extends Request, compatibility with server's 
role Serve is ensured. On the contrary, the compatibility of the new 
attachment between the roles Reader and Writer, which was not present in 
the original architecture, must be checked. 

7. ADAPTORS 

Sometimes the behaviour of two components is not compatible, but these 
components can be adapted so they can collaborate with each other. This 
will be done using an adaptor, which acts as a glue allowing the construction 
of composites from components which are not strictly compatible. Adaptors 
are also used to modify the interface that a certain component exports to its 
environment. 

Adaptors are specified in 7t-calculus, using the same syntax as for roles. 
However, roles describe the interface of a component, and they are declared 
in the interface section, while adaptors are mainly used as a glue to tie the 
components of a composite, and they are declared in the composition 
section. 

In the preceding examples, servers are always prepared to receive 
requests, which is not a realistic assumption. The specification of a non
reliable server NRServer is shown in Figure 9, left. Observe how local 
choices, indicated by the combination of the sum operator and '!-transitions, 
specify that the NRServer may crash unexpectedly. 

Obviously, the behaviour of our NRServer is not compatible with that of 
Clients, which suppose that servers are always willing to attend their 
requests. However, using a simple adaptor restart we can build a fault
tolerant server pool (FTServerPool, Figure 9, right). Each time an NRServer 
crashes it is restarted by the adaptor (in fact, it creates a new NRServer). 
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Thus, the adaptor modifies the observable behaviour of the pool of 
NRServers, and the combination of roles NRServe and the adaptor Restart 
provides an interface which can be proved as a refinement of role serve in 
Figure 6. Thus, FTServerPool extends ServerPool, and its behaviour is also 
compatible with role Request. 

component NRServer { 
interface 

serve : NRServe(request,crash) { 
spec is 

J 

1:. request?( reply). 
(new service)reply!(service). 

NRServe( request, crash) 
+ 't.crash!().O; 

composition 
service[] : any; 

J 

component FTServerPool extends Server Pool { 
composition 

server[] : NRServer; 
restart : Restart( crash) { 
spec is 

crash?()( new server)Restart(crash); 

J 
attachments 

restart(e),server[*].serve(r,e) >> serve(r); 

J 

Figure 9: A fault-tolerant pool of servers, built from non-reliable servers 

Hence, we can instance the Client/Server architecture of Figure 6 
replacing its component ServerPool by an instance of FTServerPool: 

ftcs: MultipleClientServer[pool: FTServerPool]; 

Compatibility with client's role request is ensured by inheritance, and 
there is no need to recheck the attachment between the server pool and the 
clients. Thus, we obtain a specialised version of the Client/Server system in 
which we use non-reliable servers, but maintaining the properties of the 
original architecture. 

8. SYSTEM CONSTRUCTION AND EXECUTION 

We have already discussed how LEDA specifications can be used for 
system validation and prototyping, but we can go one step further, and use 
them also for obtaining an executable system. 

Using LEDA we can validate that each attachment in an architecture 
connects compatible roles. Our goal is now to translate this compatibility to 
the implementation level. First, each role is automatically translated into a 
state machine which encapsulates the behaviour of the corresponding 
component. These implementations of roles control the interaction of the 
corresponding components with the rest of the system. Thus, they are similar 
to IDL specifications, but augmented with the protocol that describes the 
behaviour of the components. 
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In tum, composites are responsible for the creation of components and 
for interconnecting their roles, following the communication patterns 
described in their attachments. Communication between roles is done using a 
process communication mechanism, (e.g. sockets). 

Finally, components must be implemented using a programming 
language. Typically each component specification will be implemented as a 
class or group of classes using an object-oriented language. Each component 
is connected to its roles, through which it communicates with the rest of the 
system. When a component requires to invoke a method of another one, it 
invokes the corresponding method in its own role, which will contact the 
role of the other component in order to invoke the method. 

Consider again the Client/Server system specified in Figure 3. 
Components Client and Server are implemented as classes, while their roles 
are translated into RoleRequest and RoleServe respectively (Figure 10, top) . 

invoke 

request () 

request (rep ly) 

inv oke 

r eques t () 

re turn 

servi ce 

reply . r ead (servi ce } 

re t ur n s e rvi c e 

rep l y (servi c e) 

return 

service 

[ r eturn s ervi ce I 
r epy. wri te (service ) 

r e quest () 

r equest . write (reply) 

reque s t. r ea d (reply ) 

s erver. request ( l 

Figure 10: Implementation scheme of the Client/Server architecture 

In order to obtain a service, the object Client invokes the method 
request() from its role RoleRequest. Then, RoleRequest sends the request to 
RoleServe through the appropriate channel. Next, RoleServe invokes the 
method request() from Server, and gets the service returned. The service is 
sent through a specific reply channel to RoleRequest, which in turns returns 
the service to Client. Thus, the implementations of Client and Server invoke 
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or are invoked by their roles, but they don't know the location of the objects 
which finally receive the invocation, nor they are responsible for establishing 
or managing the communication channels indicated in the architecture. 

This scheme for system implementation has several advantages. First, 
connections among components are encapsulated in the roles, which 
establish and modify them according to the interaction patterns specified in 
the architecture. Second, components are implemented as object classes that 
invoke or receive invocations of methods, but which are independent of the 
interaction mechanisms used in the architecture. Third, a component may 
have several implementations which can be interchanged without affecting 
the behaviour of the system. 

9. DISCUSSION 

In this paper we have presented LEDA, an ADL for the description of 
dynamic software architectures. In these systems, components interact 
following flexible patterns that can be modified during system execution. 
The basic unit in LEDA is that of components, which are represented by 
their interface, divided into a set of roles. These roles describe, using the 
1t-calculus, the behaviour of the corresponding components. Software 
architectures are specified in LEDA as sets of components related by 
attachments between their roles. The semantics of components and 
attachments is given using the 1t-calculus, a well-known process algebra, 
which allows us to use this formalism for architecture prototyping and 
validation of properties like behavioural compatibility. LEDA roles and 
components can be extended, adapting them to new requirements, but 
maintaining the compatibility of the original roles. Analysis of compatibility 
and inheritance can be both automated, which leads to the development of 
tools for the analysis of the specifications. Formal validation of compatibility 
and inheritance encourage both software quality and reuse, determining 
whether some existing software components can be used to build a larger 
system. 

In the last years several proposals related to the specification of software 
architectures have been presented. Although most of them are not formally 
founded, which limits their possibility of analysis, several works have 
already proposed the use of different formalisms for architecture 
specification. 

A first formalisation of the notion of compatibility is described in (Allen 
and Garlan, 1997), where CSP is used for determining compatibility in the 
ADL Wright. However, formalisms like CSP or CCS do not seem 
appropriate for the description of evolving or dynamic structures. At most, 
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CSP can be used in systems with a finite number of configurations, as it is 
shown in (Allen et al., 1998), but not in highly dynamic systems, where the 
1t-calculus is best suited. Furthennore, Wright does not address aspects of 
component and role extension or refinement, nor of architecture simulation 
or execution. 

Our approach differs from that of Allen and Garlan in other significant 
aspect: LEDA does not distinguish between components and connectors, nor 
between ports and roles. This distinction would complicate unnecessarily the 
language, specially the fonnalisation of compatibility and inheritance in 
1t-calculus. Besides, we consider that the distinction between components 
and connectors does not scale properly, since composition would lead to 
mixed composites with free ports and roles which could not be considered 
either as components nor as connectors. For these reasons, connectors are 
described in LEDA as specific classes of components, their behaviour being 
described by roles. 

The 1t-calculus has been used for describing the semantics of several 
computer languages. In fact, the operational semantics of the ADL Darwin 
(Magee and Kramer, 1996) is described using 1t-calculus, endowing this 
language with a mechanism of dynamic binding. However, type checking is 
restricted in Darwin to name matching, and the behaviour of components is 
not described, neither this language incorporates characteristics of extension 
or inheritance. On the contrary, our approach uses the 1t-calculus not only 
for semantics, but it integrates the calculus in the language. LEDA 
components and attachments are higher-level constructs that simplify the 
description of complex software systems, while LEDA roles take advantage 
of the expressiveness of the 1t-calculus for describing the behaviour of 
components. This allows us to state more precisely which are the relations 
between the components of a certain software architecture, and also to 
perfonn analysis of compatibility and inheritance. 

The notions of component subtyping and inheritance are present in 
several other ADLs, and recent work of (Medvidovic et al., 1998), addresses 
description and verification of behavioural conformance using the Z 
notation. On the contrary, our approach describes component's behaviour 
using state machines, and addresses what they call protocol conformance. 

We are currently working in the development of a Java run-time platform 
for LEDA, capable to use the information about component behaviour and 
architecture configuration present in the specifications to create, interconnect 
and remove the implementations of the components described using the 
language, thus obtaining executable applications. 

Our future work will be the application of LEDA to the specification of 
different industrial software systems, in order to determine the need for new 
forms of interaction in the language. Another task will be the development of 
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supporting tools, such as graphic editors or validation tools . All these tools 
should hide the difficulties inherent to the formal foundations of the 
language, making easier the specification of software systems in LEDA to 
those not acquainted with formal methods. 

REFERENCES 

Abowd, G., Allen, R., and Garlan, D. (1993). Using style to understand descriptions of 
software architecture. In Proc. ACM FSE'93. 

Allen, R., Doucence, R., and Garlan, D. (1998). Specifying and analyzing dynamic software 
architectures. In Proc. ETAPS'98, Lisbon. 

Allen, R. and Garlan, D. (1997). A formal basis for architectural connection. ACM Trans. on 
Software Engineering and Methodology. 

Canal, C., Pimentel , E., and Troya, J. (1997). On the composition and extension of software 
systems. In Proc. of FSE'97 FoCBS Workshop, pp. 50-59, Zurich. 

Canal, C., Pimentel, E., and Troya, J. (1998a). Compatibility, inheritance and extension of 
n-calculus agents. Technical Report LCC-ITI-98-13, Computer Science Dept., 
Universidad de Malaga. http://www.lcc.uma.es/-canaVLCC-ITI-98-13. 

Canal, C., Pimentel, E., and Troya, J. (1998b ). it-calculus semantics of an architecture 
description language. Technical Report LCC-ITI-98-17, Computer Science Dept., 
Universidad de Malaga. http://www.lcc.uma.es/-canal!LCC-ITI-98-17. 

Magee, J. and Kramer, J. (1996). Dynamic structure in software architectures. In Proc. ACM 
FSE'96, pp. 3-14, San Francisco. 

Medvidovic, N. and Rosenblum, D. (1997). Domains of concern in software architectures and 
architecture description languages. In Proc. USENIX Conf. on Domain-Specific 
Languages, Santa Barbara (USA). 

Medvidovic, N., Rosenblum, D. and Taylor, R. (1998). A Type Theory for Software 
Architectures. Technical Report UCI-ICS-98-14. Dept. Information and Computer 
Science, University of California, Irvine. 

Milner, R., Parrow, J. and Walker, D. (1992). A calculus of mobile processes. Journal of 
Information and Computation, 100:1-77. 

Nierstrasz, 0. (1995). Requirements for a composition language. In Proc. of ECOOP'94 
Workshop on Models and Languages for Coordination of Parallelism and Distribution, 
no. 924 in LNCS, pp. 147-161. Springer Verlag. 

Nierstrasz, 0 . and Meijler, T. (1995). Research directions in software composition. ACM 
Computing Surveys, 27(2):262-264. 

Pree, W. (1996). Framework Patterns. S!GS Publications. 
Shaw, M. and Garlan, D. (1995). Formulations and formalisms in software architecture. In 

van Leeuwen, J., editor, Computer Science Today, no. 1000 in LNCS, pp. 307-323. 
Springer Verlag. 

Shaw, M. and Garlan, D. ( 1996). Software Architecture. Perspectives of an Emerging 
Discipline. Prentice Hall. 

Victor, B. (1994). A verification tool for the polyadic n-calculus. Master's thesis, Department 
of Computer Systems, Uppsala University (Sweden). 



www.manaraa.com

Modeling Software Architectures and Styles with 
Graph Grammars and Constraint Solving 

Dan Hirsch, Paola Inverardi, and Ugo Montanari 
Departamento de Computai6n, Universidad de Buenos Aires, Ciudad Universitaria, Pab.l, 
(1428), Buenos Aires, Argentina, dhirsch@dc.uba.ar 
Dip. Di Mat. Pura ed Applicata, Universita dell 'Aquila, Via Vetoio, Localita' Coppito, L'Aquila, 
ltalia, inverard@univaq.it 
Dipartimento di Informatica, Universita di Pisa, Corso ltalia 40, (56125), Pisa, ltalia, 
ugo@di.unipi.it 

Key words: Architectural descriptions, graph rewriting, styles, dynamic architectures, 
reconfiguration 

Abstract: A software architecture style is a class of architectures exhibiting a common 
pattern. The description of a style must include the structure model of the 
components and their interactions (i.e., structural topology), the Jaws 
governing the dynamic changes in the architecture, and the communication 
pattern. A simple and natural way to describe a system is by using graphs, and 
as an extension of this, by using grammars to describe styles. The construction 
and dynamic evolution of the style will be represented as context-free 
productions and graph rewriting. To model the evolution of the system we use 
techniques of constraint solving already applied in the representation of 
distributed systems. From this approach we obtain an intuitive way to model 
systems, and a unique language to describe the style (but still a clear 
separation of coordination and configuration). With these we have a direct way 
of following the evolution of the system and proving its properties. 

1. INTRODUCTION 

A software architecture style is a class of architectures exhibiting a 
common pattern (Shaw, M. and Garlan, D., 1996). The description of a style 
must include the structure model of the components and their interactions 
(i.e., structural topology), the laws governing the dynamic changes in the 
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architecture, and the communication pattern. In the following we refer to all 
these aspects as a complete style description. A simple and natural way to 
describe a system architecture is by using graphs, and as an extension of this, 
by using grammars to describe styles. So a grammar will generate all 
possible instances of that style. This approach has first been proposed in (Le 
M'etayer, D., 1998). 

In our work we represent a system as a graph where edges (or 
hyperedges) (Drewes, F. et al., 1996) are components and nodes are ports of 
communication. The construction and dynamic evolution of the style will be 
represented as contextjree productions and graph rewriting. The productions 
that represent the style will be grouped in three sets. The first one contains 
the productions that correspond to the construction of the initial static 
configuration of the system. The second set contains the rules that model 
dynamic changes in the configuration of the system (create and remove 
components) and the third set contains the rules that model the 
communication pattern. 

To model the evolution of the system we need to choose a way of 
selecting which components will evolve and communicate. For this we 
propose a technique already applied in (Montanari, U. and Rossi, F., 1997) 
and (Montanari, U. and Rossi, F. , 1996) to represent distributed systems with 
graph rewriting and constraint solving. A graph represents a distributed 
system, where edges represent processes and nodes represent shared data. In 
order to evolve, one process may need to synchronize with adjacent 
processes on some conditions on the shared data. If they agree on these 
conditions, then all of them can evolve. This is modeled by a two phased 
approach where, context-free process productions are specified (a set for 
each process) with synchronization conditions for each of the possible 
moves. After that, context-sensitive subsystem rewriting rules are obtained 
by combining some context-free productions (this is called the rule-matching 
problem) (Corradini, A. et al., 1985). 

Applying one of these context-sensitive rules, allows for the evolution of 
a subpart of the system consisting of several processes (each with one of its 
context-free productions) that agree on the conditions imposed on the shared 
data. Applying the rule means making all such processes (and not a proper 
subset of them) evolve, each with one of its context-free productions. 

The solution to the rule-matching problem is implemented considering it 
as a finite domain constraint problem (Mackworth, A., 1988). In this paper 
we will not describe these techniques; the interested reader may refer to the 
references. In the case of software architectures we use constraint rules to 
coordinate the dynamic evolution of the system. This is done by using 
constraints on ports to represent communication between components and (if 
necessary) to control changes in the configuration of the system. One 
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difference from (Montanari, U. and Rossi, F., 1997), is that in our approach, 
we will rely on two basic types of communication paradigms: point-to-point 
and broadcast communication. These will be represented with two types of 
nodes. With point-to-point communication the rule-matching problem is 
easier; it has to choose only two rules (for each sender, one receiver) . In the 
case of broadcast the solution is the same as in (Montanari, U. and Rossi, F., 
1997). This allows to represent both types of communication at the same 
time. 

The use of hyperedge rewriting grammars and constraints to represent 
styles and model evolution gives us an intuitive way to model systems and a 
unique language to capture the style, but still with a clear separation between 
coordination and configuration. Besides we have a direct way of following 
the evolution of the system and proving properties and the inheritance of the 
distributed solutions for the rule-matching problem. Moreover, context-free 
hyperedge rewriting is natural for modeling the behavior of components 
independently of each other, and its generality can be used (if one wants to) 
to incorporate descriptions of more complex connector elements in the 
specification of a system (you just represent connectors as edges and their 
evolution as productions). 

A related work that uses graph grammars is (Le M'etayer, D., 1998). 
There, a dual approach is taken and architectural styles are represented as 
context-free graph grammars where nodes represent components and edges 
their communication links. But, in this case the grammar only specifies the 
static configuration of the system (referred to as the style). The dynamic 
evolution (create and remove components) is defined independently by a 
coordinator, and the rules of the coordinator are checked to preserve the 
constraints imposed by the grammar that defined the style. Also a CSP-Iike 
language for the individual entities is given to fit with the coordinator 
semantics. 

The main difference between the two approaches is that in our work we 
give a uniform description of the complete style with grammars (but still 
maintaining an independent description of components behavior). Also, we 
don't have a global coordinator of evolution; instead, each component 
defines its own evolution (Magee, J. and Kramer, J., 1996a). 

In (Le M'etayer, D., 1998), communication links are represented as 
edges, and components as nodes. We chose a dual approach, because we 
want the evolution of the style (including the communication pattern) to be 
modeled with the rewriting steps of the graphs. So, in this way hyperedges 
(and their associated nodes) are used only to represent components and the 
ports that they will share and use to communicate among them. A graph with 
this representation gives a simple view of the structure of an instance of 
architecture at a given state, separated from the application of the rewriting 
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rules that shows the evolution between states. In this way, a clearer 
representation of the system is obtained while a separation of configuration 
and evolution is achieved, which is a desirable property of software 
architecture description languages (Medvidovic, N., 1997). 

Another important point is that the evolution and communication pattern 
can be followed directly by the rewriting sequences on the graphs, 
analogously to what happens in the CHAM description of software 
architectures (lnverardi, P. and Wolf, A. , 1995). This also allows the 
verification of properties of the architecture, such as deadlock (Degano, P. 
and Montanari, U., 1987; Compare, D. eta!.,) . 

In section 2 basic notions of graph rewriting and constraint rules are 
introduced, then in section 3 we apply these notions to software architectures 
using some examples, and finally in section 4 we draw the conclusions and 
describe our future work. 

2. BACKGROUND 

In this section we introduce the basic notions of hypergraphs, 
hypergraph rewriting, and constraint productions. 

2.1 Graphs and Graph Rewriting 

DEFINITION [HYPERGRAPHS) 

We define an edge-labeled hypergraph, or simply a graph as a tuple G = 
< N, E, c, ext, labLN, fabLE> , where: 
1. N is a set of nodes. 
2. E is a set of edges. 
3. c: E is the connection function (each edge can be connected to a list 

of nodes). 
4. ext E N* is a set of external nodes. 
5. /abLE: E the labeling function of edges. 
6. labLN: N LN is the labeling function of nodes. 

A graph production rewrites a graph into another graph, deleting some 
elements (nodes and edges), generating new ones, and preserving others. In 
this paper we will just consider context-free productions, which rewrite a 
graph containing a single hyperedge, into an arbitrary graph, while 
preserving the (external) nodes connected by the rewritten hyperedge. 
Therefore, in a context-free production, no nodes are deleted. 
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DEFINITION [GRAPH PRODUCTIONS] 

Given a set of external nodes EN, a graph production p is a pair< L , R >, 
where: 
1. L is a graph containing only an hyperedge. 
2. R is a graph. 
3. The external nodes of Land Rare exactly those in EN. 

Context-free graph productions will be written as L 7 R, where L is the 
(graph containing only the) hyperedge to be rewritten and R is the graph to 
be generated. A production p = (L 7 R) can be applied to a graph G yielding 
H ( G =>pH) if there is an occurrence of Lin G. The result of applying p to G 
is a graph H which is obtained from G by removing the occurrence of L and 
addingR. 

DEFINITION [GRAPH REWRITING SYSTEM] 

A graph rewriting system is a pair GRS = < G0 , P >, where: 
1. G0 is a graph. 
2. P is a set of graph productions. 

A derivation for GRS is a finite sequence of direct derivation steps of the 
form G0 =>p1 G1 =>p2 ... =>pn Gn = H, where Pb ... , Pn are in P. 

To model coordinated rewriting, it is necessary to add some labels to the 
nodes in the left member of productions. Assuming an alphabet of 
requirements A, we need a partial function f nodes(L)----? A that associates 
conditions (or actions) to some of the nodes. In this way, each rewrite of an 
edge must match conditions with its adjacent edges and they have to move as 
well. For example, consider two edges that share one node, such that no 
other edge is attached to that node, and let us take one production for each of 
these edges. Each of these productions has a condition on that node (a and 
b). If a ;1: b, then the edges cannot rewrite together (using that rule). If a = b, 
then they can move, via the context-sensitive rule obtained from merging the 
two context-free rules (rule-matching problem). 

3. GRAPH REWRITING FOR SOFTWARE 
ARCHITECTURE STYLES 

Now we will apply the notions introduced in the previous section to the 
description of software architectures. Software architectures are represented 
as hyperedge graphs where edges are components and nodes are 
communication ports. Two edges sharing a node means that there is a 
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communication link between the two components. As we mentioned in the 
introduction, we have two types of nodes: point-to-point and broadcast 
communication. 

A software architecture style is described by a hyperedge context-free 
grammar. The productions of a grammar are grouped in three sets. 

The first set represents the construction of all possible initial 
configurations of the class of architectures modeled by the style. 

The second set represents the rules for the dynamic evolution of the 
configuration, this means create and remove components. 

The third set contains the rules that model the communication pattern of 
the architecture. This set contains productions to model the communication 
evolution for each type of component. These rules are constrained 
productions that during rewriting will coordinate for the evolution of the 
system. Also, some of the rules in the second set can be (if necessary) 
constrained. This can be used to model coordinated changes in the 
configuration. We will show this in the second example. 

Edge labels have two parts. One is the component name and the other is 
the status of the component that represents its different states during 
evolution. Edges are drawn as boxes, broadcast ports as full circles, and 
point-to-point ports as empty circles. Nodes are labeled with port names 
(port names are local to rules, and external nodes have to be matched when a 
production is applied). Constraints decorate nodes in bold letters, and appear 
on the right-hand part of a production. For point-to-point we have a CCS like 
notation for the constraints, where a node labeled as a means that the 
component is the sender of a message a and a node labeled a is its receiver. 
For broadcast, all nodes that have to coordinate are labeled with the 
constraint representing the message. 

Now we present three simple examples to show how a style is modeled. 

3.1 Client-Server 

The first example is a client-server case study based on the one used in 
(Le M'etayer, D., 1998). We have clients, servers and a manager. An 
instance of the style can have an initial configuration with any number of 
clients, any number of servers and one manager. Clients and servers 
communicate through the manager. Clients and manager are connected via 
the CR (client request) and CA (client answer) ports. Servers and manager 
are connected via the SR (server request) and SA (server answer) ports. In 
this example all nodes are point-to-point ports. 

As we said at the beginning of this section we grouped productions in 
three sets. The first set represents the construction of all possible initial 
configurations of the class of architectures modeled by the style. 
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For the client-server example these are the productions in figure I. This 
figure shows that all instances start with the manager and then clients and 
servers are attached to it. This is done by the application to the manager of 
the first and second rules in figure 1 (the dashed line is a shortcut to describe 
two productions for the manager) . Note that the status of all components at 
this level is (init), indicating that they are in a construction (or initialization) 
phase. 

Figure 2 shows an instance with two clients and one server generated by 
these productions. After the desired initial configuration is obtained, then 
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(init) rules are applied (last three in figure 1). These rules mean that 
the construction phase is over and that the system is ready to start to work. 
Now, you can apply the last two sets of rules for the evolution of the 
architecture. 

Figure 3 shows the dynamic rules. In this example we have two simple 
rules . The first one states that the manager accepts the incorporation of a 
new client in the system, and the second one is for clients that want to leave 
the system. 
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Figure 4. Client-server: communication pattern productions 
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Figure 4a shows the rules corresponding to the communication pattern. 
Note that all component specifications are independent from each other and 
that the only relation between them is by the communication coordination. 
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This is important for a better understanding and analysis of the system 
behavior. In this example all ports are point-to-point so, the manager will 
have to choose among the clients that want to make a request (obviously this 
is handled by the constraint resolution algorithms). In a broadcast 
communication all rules that want to rewrite and share nodes have to agree 
on the conditions imposed by the constraints. 

In figure 4b you can see how the constrained rules work with a client that 
sends a request, the manager, and a server that returns the answer. These 
components can be part of a bigger graph but we assume that they were 
already chosen by the constraint solving algorithm at each rewriting step. 
The three components start from an idle state. Then the manager and the 
client rewrite respectively to the per and wa states after having coordinated 
on the client request. The second rewriting is between the manager and the 
server (to wsa and pr states, respectively) when the manager forwards the 
request the server. The last two steps are from the server to the manager (to 
idle and psa states, respectively) delivering the answer, and from the 
manager to the client returning the answer to its request. At the end of the 
sequence they return to an idle state (the server already after returning the 
answer), where new communications can be performed or any of the 
dynamic productions can be applied. 

Note that the dynamic productions in figure 3 can be applied only when 
components are in an idle status (they cannot be in the middle of a 
communication). 

It is worthwhile mentioning that we choose the level of abstraction for 
the description of the communication pattern. For example, figure Sa is an 
alternative set of rules for the communication pattern, where there are two 
rewrites instead of four: one that sends the request from the client to the 
server (via the manager), and the other that returns the answer to the client 
(figure 5b). 

With this grammar we obtained a complete characterization of the style 
in a unique language and a clear identification of the steps that every 
architecture instance gives during its evolution. Also note that by analyzing 
the derivation tree it is possible to have all the computations of the system 
allowing the verification of properties of the architecture, such as deadlock 
(Degano, P. and Montanari, U., 1987). 

3.2 Remote Medical Care System 

This example is a simplification of a case study presented in (Balsamo, S. 
et al., 1998) for performance evaluation of a software architecture. We 
present here only a partial specification of the style, to show how constraints 
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Figure 5. Client-server: communication pattern productions-an alternative 

can be used to control an ordered evolution in the configuration of the 
system. This system is part of a project carried out by the University of 
L'Aquila at Parco Scientifico e Tecnologico d'Abruzzo, a regional 
consortium of public and private research institutions and manufacturing 
industries. 

The Teleservices and Remote Medical Care System (TRMCS) provides 
and guarantees assistance services to users with specific needs, like disabled 
or elderly people. It is composed of a set of Users, which are connected to a 
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Router which interacts with a Server. An external component, the Timer 
allows the modeling of time. 

The four types of units operate as follows: 

User sends either alarm (i.e., help requests) or check signals (i.e., control 
messages about the subsystem user state or the user's health state, 
respectively). 

Router accepts signals (control or alarm) from the users. It forwards the 
alarm requests to the Server and checks the behavior of the subsystem 
user though the control messages. 

Server dispatches the help requests. 

Timer sends a clock signal for each time unit. 
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Figure 6. TRMCS: static productions 

There is only one server in the system. A variable number of routers are 
connected to the server and a variable number of users are connected to each 
router. The timer controls all routers. Figure 6a shows the static productions 
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and figure 6b shows an instance of the system with two routers, and one user 
attached to the first one and two others to the second router. 

In the Client-Server example presented above, clients can leave the 
system independently of the other components. The only restriction, as it is 
modeled in the productions, is that they cannot leave the system if they are in 
the middle of a communication. In the TRMCS system, users have a similar 
behavior to the clients, but for routers the situation is different. In the case of 
a router, it is allowed to leave the system, but it cannot disappear without 
checking if there are users still connected to it. One possible action for the 
router if there are users connected to it, is to wait until all of them leave and 
then, when there are no users connected, it can leave too. These actions are 
described with the productions in figure 7. 
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Figure 7. TRMCS: dynamic productions 

These productions are part of the set of dynamic productions for the 
TRMCS. The first rule is for the user and it allows it to leave the system 
independently (i .e., it is not constrained). The second rule is for the router 
and it is constrained. The condition noUSER is imposed on the check port. 
A router and its users are connected to this port. This is a broadcast type of 
port, so a condition in it means that for this rule to be applied it must 
coordinate with all other edges connected to that port (i. e. the users). So, if 
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all neighbors agree on the condition, then everybody can rewrite. But in this 
case, the only one with this condition is the router and it cannot leave the 
system while users are attached to it. 

When all users connected to the router leave the system then the 
production with condition noUSER is satisfied and then it can be applied to 
the router. The rule can be applied because there are no neighbors, so the 
router is the only one that has to agree on the constraint. Note that, after the 
router leaves the system, the three isolated nodes that remain can be 
eliminated with a special action called end that functions as a type of 
garbage collection. This is an example of coordinated evolution, where 
constraints are used to control and coordinate the dynamics of a system. 

3.3 Connectors: Parallel Point-to-point 

Software architectures may require complex interactions among 
components. Usually, connectors may be defined as architectural building 
blocks to help model and specify these interactions. The modeling of 
connectors explicitly and independently, helps to achieve a higher level of 
reusability allowing to use already specified connectors in different styles 
and to create new connector types as the composition of basic ones. 

So, in this direction we propose to use the generality of the model we are 
presenting to obtain independent connector descriptions. Using the same 
language to specify connectors based on more basic ones, allows to 
incorporate them to the primitive set of communication types and reuse them 
successively in different style descriptions. 

In all the examples presented we use two basic types of communication: 
broadcast and point-to-point communication. In the next example we use the 
broadcast port as a basic type and specify with constrained productions the 
parallel point-to-point communication. The specification of a parallel point
to-point port allows for a set of adjacent components to perform parallel 
communications between pairs. This means that in a given port (the one we 
are specifying), for each sender a receiver (if there are available) is selected 
to accept the communication and if there are more than one pair willing to 
communicate, simultaneous interactions are allowed. 

Figure 8 shows the specification for a connector (edge C) from two to 
four components. In this figure all ports are broadcast ports. For two 
components broadcast and point-to-point are the same (figure 8a). For three 
components, figure 8b shows the three possible alternatives (with three 
components there are no parallel communications) and figure 8c shows the 
nine possible interactions that can take place between four components. In a 
similar way this specification can be generalized for n components. In this 
case, point-to-point communication is associative and commutative so once 
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we have the connector specification we can abstract from it and use the new 
connector as a new type of port. Also, we can mention that repeatedly 
composing the connector specification for three components, and the 
corresponding one for four components (only considering the rules for a 
single pair communication), in a sequential pattern, we obtain the simple 
point-to-point communication. In this way, an independent specification of a 
new connector is obtained and it can be reused in the description of other 
software architecture styles. 
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Figure 8. Parallel point-to-point connector 

4. CONCLUSIONS AND FUTURE WORK 

In this work we have presented a specification method for software 
architecture styles using hyperedge context-free graph grammars. Based on 
the rewriting system specified by the grammars we describe the style as a set 
of productions that model the initial structural topology of the architecture, 
the laws governing the dynamic changes, and its communication pattern. 

Among the benefits of this approach are: a simple description of systems 
with a unique language is obtained, the use of constraints to model 
coordination of components allows a clear description of component 
interactions and controlled dynamics, and the inheritance of the distributed 
solutions for the rule-matching problem. As we said, we propose to use a 
technique already applied in (Montanari, U. and Rossi, F., 1997) and 
(Montanari, U. and Rossi, F., 1996) to represent distributed systems with 
graph rewriting and constraint solving. This is modeled by a two-phased 
approach where, context-free process productions are specified (a set for 
each process) with synchronization requests for each of the possible moves. 
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After that, context-sensitive subsystem rewriting rules are obtained by 
combining some context-free productions. 

The solution of the rule-matching problem is implemented considering it 
as a finite domain constraint problem (Mackworth, A., 1988), where 
variables are associated with processes and constraints with ports. The 
domain of a variable is then the set of all context-free productions for the 
corresponding process, and each constraint is satisfied by the tuples of 
context-free productions (one for each adjacent process) whose 
synchronization requirements agree on the considered port. In this kind of 
constraint problem, a solution is thus a choice of a context-free production 
for each process, such that all synchronization requirements are satisfied. 
Usually, finite domain constraint problems are solved by a backtracking 
search over a tree of the possible alternatives for each variable. To deal with 
this type of problems many efficient techniques have been proposed, such as 
constraint propagation or local consistency algorithms (Mackworth, A., 
1988), (Dechter, R. and Pearl, J., 1988). As in (Montanari, U. and Rossi, F., 
1997), this kind of graph rewriting can be raised to a general framework, 
called the tile model (Gadducci, F. and Montanari, U., 1996), that permits a 
clear separation between sequential rewriting and synchronization. 

Also, context-free rules are a natural way for modeling the behavior of 
components independently of each other allowing a distributed 
implementation, and as we saw in the client-server example, constrained 
rules allows different levels of detail for the description of transactions 
(Bruni, R. and Montanari, U., 1997). This is a convenient property to model 
architectures in which components are required to configure themselves 
(Magee, J. and Kramer, J., 1996a). 

In this paper we model ports just as connections between components but 
as was shown in the examples the generality of the method can be used to 
incorporate descriptions of more complex connector elements in the 
specification of a system. If it is necessary complex connectors can be 
incorporated as a new type of edge. 

Another thing to note is that in the examples presented we did not include 
termination rules. Constraints and productions can be used to model local 
and coordinated termination and this will be important for the verification of 
properties on the derivation tree. 

We agree that the use of context-free rules limits the type of architecture 
styles that can be described, but we consider this as a first step on our work. 
With this type of rules, two separate edges already created cannot be bound 
later, so for example, an architecture instance that has a pipeline style cannot 
be converted, after its creation, into a ring. This is a great restriction that can 
easily be modeled in languages like • -calculus. But work like (Montanari, 
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U. and Pistore, M., 1995), shows that this type of calculus can be represented 
with graph rewriting (not context-free). 

Finally, the productions that we use are all rewriting rules (one thing is 
replaced by another), but an interesting extension is to incorporate 
refinement rules where the history of the system is remembered. It is worth 
mentioning that in the original paper (Degano, P. and Montanari, U., 1987) 
the partial ordering is generated with the past history of the derivation. This 
can be useful in the description of a bigger class of software architectures, 
specially those in which the organization of components and connectors may 
change during system execution (Magee, J. and Kramer, J ., 1996b ). 

In spite of the fact that context-free productions limit the classes of 
systems that can be described, it is clear that the description language 
proposed has very good properties for modeling reconfiguration and self 
organising architectures. It is our intention to continue the research in this 
direction for a deeper analysis of the subject. 
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Abstract: This paper describes our experience using UML, the Unified Modeling 
Language, to describe the software architecture of a system. We found that it 
works well for communicating the static structure of the architecture: the 
elements of the architecture, their relations, and the variability of a structure. 
These static properties are much more readily described with it than the 
dynamic properties. We could easily describe a particular sequence of 
activities, but not a general sequence. In addition, the ability to show peer-to
peer communication is missing from UML. 

1. INTRODUCTION 

UML, the Unified Modeling Language, is a standard that has wide 
acceptance and will likely become even more widely used. Although its 
original purpose was for detailed design, its ability to describe elements and 
the relations between them makes it potentially applicable much more 
broadly. This paper describes our experience using UML to describe the 
software architecture of a system. 

For these architecture descriptions, we wanted a consistent, clear 
notation that was readily accessible to architects, developers, and managers. 
It was not our goal to define a formal architecture description language. The 
notation could be incomplete, but had to nevertheless capture the most 
important aspects of the architecture. In this paper we start by giving an 
overview of the kinds of information we want to capture in a software 
architecture description. Then we give an example of a software architecture 
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description for part of particular system: the image processing portion of a 
real-time image acquisition system. The final section discusses the strengths 
and weaknesses of UML for describing architecture. 

We separate software architecture into four views: conceptual, module, 
execution, and code. This separation is based on our study of the software 
architectures of large systems, and on our experience designing and 
reviewing architectures (Soni, 1995). The different views address different 
engineering concerns, and separation of such concerns helps the architect 
make sound decisions about design trade-offs. 

The notion of this kind of separation is not unique: most of the work in 
software architecture to date either recognizes different architecture views or 
focuses on one particular view in order to explore its distinct characteristics 
and distinguish it from the others (Bass, 1998). The 4+ 1 approach separates 
architecture into multiple views (Kruchten, 1995). The Garlen and Shaw 
work focuses on the conceptual view (Shaw, 1996). Over the years there has 
been a great deal of work on the module view (Prieto-Diaz, 1986). There is 
other work that focuses on the execution view, and in particular explores the 
dynamic aspects of a system (Kramer, 1990; Purtilo, 1994). The code view 
has been explored in the context of configuration management and system 
building. 

The conceptual view describes the architecture in terms of domain 
elements. Here the architect designs the functional features of the system. 
For example, one common goal is to organize the architecture so that 
functional features can be added, removed, or modified. This is important for 
evolution, for supporting a product line, and for reuse across generations of a 
product. 

The module view describes the decomposition of the software and its 
organization into layers. An important consideration here is limiting the 
impact of a change in external software or hardware. Another consideration 
is the focusing of software engineers' expertise, in order to increase 
implementation efficiency. 

The execution view is the run-time view of the system: it is the mapping 
of modules to run-time images, defining the communication among them, 
and assigning them to physical resources. Resource usage and performance 
are key concerns in the execution view. Decisions such as whether to use a 
link library or a shared library, or whether to use threads or processes are 
made here, although these decisions may feed back to the module view and 
require changes there. 

The code view captures how modules and interfaces in the module view 
are mapped to source files, and run-time images in the execution view are 
mapped to executable files. The partitioning of these files and how they are 
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organized into directories affect the buildability of a system, and become 
increasingly important when supporting multiple versions or product lines. 

Each of the four views has particular elements that need to be described. 
The elements must be named, and their interface, attributes, behavior, and 
relations to each other must be described. Some of the views also have a 
configuration, which constrains the elements by defining what roles they can 
play in a particular system. In the configuration, the architect may want to 
describe additional attributes or behavior associated with the elements, or to 
describe the behavior of the configuration as a whole. 

In the next four sections, we show how we used UML to describe each of 
these four views, starting with the conceptual view and ending with the code 
view. To make the explanation clearer, we use an example from an image 
acquisition system. 

The image acquisition system acquires a set of digitized images. The user 
controls the acquisition by selecting an acquisition procedure from a set of 
predefined procedures, then starting the procedure and perhaps adjusting it 
during acquisition. The raw data for the images is captured by a hardware 
device, a "camera", and is then sent to an image pipeline where it is 
converted to images. The image pipeline does this conversion, first 
composing the raw data into discrete images, and then running one or more 
standard imaging transformations to improve the viewability of the images. 
The image pipeline is the portion of the system that we will use as an 
example. 

2. CONCEPTUAL ARCHITECTURE VIEW 

The basic elements in the conceptual view are components with ports through 
which all interactions occur, and connectors with roles to define how they 
can be bound to ports. The components and connectors are bound together to 
form a configuration. In order to bind together a port and role in a 
configuration, the port and role protocols must be compatible. Components 
can be decomposed into other components and connectors. These elements, 
their associated behavior, and the relations of the conceptual view are 
summarized in Table 1. 

Table 1. Elements of a conceptual architecture view 

Elements Behavior 

component 
port 
connector 
role 

component functionality 
port protocol 
connector protocol 
role protocol 

Relations 

component decomposition 
port-role binding (for 
configuration) 



www.manaraa.com

148 C. Hofmeister, R. L. Nord, and D. Soni 

Figure 1 is a UML diagram that describes much of the conceptual view 
for the image pipeline. It is represented by the ImagePipeline component, 
which has ports acqControl for controlling the acquisition, packetln for the 
incoming raw data, and framedOutput for the resulting images. 

The ImagePipeline is decomposed into a set of components and 
connectors that are bound together to form a configuration. The components, 
ports, and connectors are a stereotype of Class 1, but we use the convention of 
special symbols for ports and connectors (and leave off the stereotype for 
components) in order to make the diagrams easier to read. Roles are shown 
as labels on the port-connector associations. We also use the convention that 
when an association's multiplicity is not specified, it is assumed to be one. 

lmlgePipellne 

Figure 1. Conceptual configuration 

The multiplicities on the components, connectors, and bindings show the set 
of allowable configurations. Each acquisition procedure has a distinct set of 
processing steps, represented by the Imager component. So the diagram shows 
the general structure of an image pipeline, which all acquisition procedures 
adhere to. 

The first stage of the pipeline is the Framer, followed by one or more 
subsequent stages, represented by the Imager. Each of the stages is connected to 

"A stereotype is, in effect, a new class of modeling element that is introduced at modeling 
time. It represents a subclass of an existing modeling element with the same form 
(attributes and relationships) but with a different intent... To permit limited graphical 
extension of the UML notation as well, a graphic icon or a graphic marker (such as texture 
or color) can be associated with a stereotype." (UML, 1997) 
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the pipelineControl port via a Client/Server connector. The Imager component 
has a multiplicity of "1.. *", meaning that an acquisition procedure has one or 
more of these later stages. 

The Imager is bound to "1.. *" Client/Server connectors, but the association is 
one-to-one, so each Imager instance is bound to exactly one Client/Server 
instance. Each Client/Server instance is bound to the pipelineControl port of 
exactly one PipelineMgr, but pipelineControl is bound to all Client/Server 
instances in the pipeline. Similarly the "1.. *" ImagePipe connectors have a one
to-one association with the Imagers. Because the bindings also have 
multiplicities, we can conclude that there are the same number of Client/Server, 
Imager, and lmagePipe elements bound together in a legal configuration. 

We use the " {or}" annotation at the source side of the ImagePipe to show 
that an ImagePipe is either bound to the output of the first stage or a later stage. 
But while the output of the first stage (the Framer) is always bound to the 
lmagePipe, the later stages could be bound to framedOutput. When a later stage 
is bound to framedOutput, it is necessarily the last stage in the pipeline . 

.. 
<<protocol>> 

ReQuestoataPacmt 

ircomirg /reques!P<JJ:.kel 
pac ket(p:j) 

outgoirg 
subscribe 
des ubsc ri be 
requestP <JJ:. ket 

Figure 2. Protocol for packetln Port 

Figure 2 shows the protocol RequestDataPacket, which the packetln ports on 
the ImagePipeline and Framer follow. We have adopted the ROOM notation 
here, showing the incoming and outgoing messages, then either a sequence 
diagram or state diagram to show the legal sequences of these messages (Selic, 
1994; Selic, 1998). 

The resource budgets are attributes of the components and connectors. 
They can be described in the attribute box of the appropriate class in a UML 
diagram, in a table, or in text. 
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For the conceptual view, we represent components, ports, and connectors 
as stereotyped classes. Decomposition is shown with nesting (association), 
and bindings are shown by association. We use: 

UML Class Diagrams for showing the static configuration. 
- ROOM protocol declarations and UML Sequence Diagrams or State 

Diagrams for showing the protocols that ports adhere to. 
UML Sequence Diagrams for showing a particular sequence of 
interactions among a group of components. 

3. MODULE ARCHITECTURE VIEW 

In the module architecture view, subsystems are decomposed into 
modules, and modules are assigned to layers in accordance with their use
dependencies (Table 2). There is no configuration for the module view 
because it defines the modules and their inherent relations to each other, but 
not how they will be combined into a particular product. 

Table 2. Elements of the module architecture view 

Elements Behavior Relations 

module 
subsystem 
layer 

interface protocol module implements 
conceptual component 
subsystem decomposition 
module use-dependency 

Table 3 shows how the image pipeline's conceptual elements are mapped to 
module elements. Notice that ports, connectors, and components are sometimes 
combined into one module. This information could also be shown in a UML 
class diagram, with the mapping between conceptual and module elements 
shown as an explicit association. 

Table 3. Mapping between conceptual and module architecture views 

Conceptual element Subsystem or Module 

lmagePipeline 
acqControl, pipelineControl 
PipelineMgr,lmagePipe, Client/Server 
stageControl , imageln, imageOut 
Framer 
Imager 

SPipeline 
MPipelineAPI 
MPipelineControl, MlmageBuffer 
MlmageMgrAPI 
MFramer 
Mlmager 

The SPipeline subsystem is decomposed into the six modules shown in 
Figure 3. This decomposition is dictated by the modules' correspondence to 
the conceptual elements, and their decomposition. Again we use nesting to 
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show the decomposition, and we use stereotypes for each different type of 
element. 

We do not use the UML "component" notation for a module, because in 
the module view the modules are abstract, not the physical modules of 
source code. 

I 

«module>> 
MPipelineAPI 

«module>> 
MlrnageMgrAPI 

<<subsystel11>> 
SPipeline 

<<module>> 
M PipelineControl 

«module>> 
M lrnageBuffer 

«module>> 
MFrarrer 

«module>> 
Mlrnager 

Figure 3. Decomposition of SPipeline 

The use-dependencies among the pipeline modules are also derived from 
the conceptual elements' associations. These are shown in Figure 4. The 
MClient and MDataMgrAPI are not part of the SPipeline subsystem, but we 
included them in order to show all use-dependencies of the SPipeline 
subsystem. We use the UML "lollipop" notation to show the interface(s) of 
each module, and to make it clear that the modules are dependent on the 
interface of another module, not the module itself. 

Figure 4 also shows some of the layers of the system. These are based on 
the use-dependencies among modules and subsystems, so we often show 
use-dependencies between and within layers in the same diagram, as we did 
here. 

For the interface definition, we use a simple list of the interface methods. 
This information could be put inside the class definition in a UML diagram. 
We generally prefer to list it separately, using the class diagrams to focus on 
the relations among modules rather than a complete description of the 
modules. In the module view, we represent modules with a stereotyped class, 
and subsystems and layers with stereotyped packages. Decomposition is 
shown by nesting (association), and the use-dependency is a UML 
dependency. 

We use: 
- tables for describing the mapping between the conceptual and module 

views. 
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- UML Package Diagrams for showing subsystem decomposition 
dependencies. 
UML Class Diagrams for showing use-dependencies between modules. 
UML Package Diagrams for showing use-dependencies among layers 
and the assignment of modules to layers. 

I 

I «mcdul.,.> I 
Me lien! 

<<layer>> 
ApplicalionServicos 

« layer>> 
IIIIIQIIProoessirg 

Figure 4. Use-dependencies of SPipeline 

4. EXECUTION ARCHITECTURE VIEW 

The execution architecture view describes how modules will be 
combined into a particular product by showing how they are assigned to run
time images. Here the run-time images and communication paths are bound 
together to form a configuration. Table 4 lists the elements, behavior, and 
relations of the execution view. 

Table 4. Elements of the execution architecture view 

Elements Behavior 

run-time image 
communication path 

communication protocol 

Relations 

run-time image contains 
module 
binding (for configuration) 
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The execution configuration of the Image pipeline in Figure 5 indicates 
that there is always just one EC!ient process, but multiple pipelines can exist 
at one time. A pipeline has one process each for EPipelineMgr, 
ElmageBuffer, and EFramer, and one process each for additional pipeline 
stages. 

We again use a stereotype of the UML Class for run-time images. They 
are stereotyped with the name of the platform element, in this case 
<<process>> or <<shared data>>. We originally used the UML "active 
object" notation for a process, but now prefer to use a stereotyped class. One 
reason is that we often want to use classes rather than objects in a 
configuration diagram. A second reason is that active objects have a thread 
of control, whereas passive objects run only when invoked (UML, 1997). 
This distinction was not what we wanted to describe; we wanted to 
characterize the run-time image by its platform element (e.g. process, thread, 
dynamic link library, etc.) rather than convey control flow information about 
the elements. 

<<PrOCesS>> 1 <<process>> * 
ECIIenl EPipellneMgr 

I I 0 .. 1 
MCII&nl MPipellneControl 

IPC 1 1 

«rrodUe>> * / " I MPipelneAPI·r- 7 
* <<process>> * <<shMEdda.ta>> * <<process>> 

Efran11r ElmgeiiUIIer E"'-r 

I 1/ 1 <<module>> *1 «module>> J 
UlmgeMgrAPI 11 rtw 1 l Mllnilgellltfer J 1 rtw i_ M"'-MgrAPI 

shared shared 

I I 
I «module>> I memory memory <<module>> 

UllralaMgrAPI M.,_r 

I «module>> I 
LlfntiTJlr 

Figure 5. Execution configuration of the image pipeline 

This diagram uses nesting to show the modules associated with each run
time image. The modules have a multiplicity that is assumed to be one if 
none is explicitly shown. In the configuration in Figure 5, there are multiple 
modules MlmageMgrAPI, but at most one per process, and only in the 
EFramer and Elmager processes. There are also multiple modules 
MPipelineAPI in the configuration, but all of these reside in process EClient. 

The run-time images also have multiplicity, as do communication paths, 
which are labeled to show the communication mechanisms. This has the 
same implications as for the conceptual configuration, namely that with 
multiplicities on the run-time images, communication paths, and modules we 
can show all allowable configurations in a single diagram. 
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UML class diagrams cannot show dynamic behavior, so we use different 
diagrams to show the dynamic aspects of configurations. Figure 5 shows the 
configuration of the pipeline during an imaging procedure. The processes 
that implement the pipeline are created dynamically when the imaging 
procedure is requested, and are destroyed after the procedure has completed. 
A UML sequence diagram shows how the pipeline is created at the start of a 
procedure (Figure 6). 

For the execution view, we represent the run-time images as stereotyped 
classes, and the communication paths as associations. Module containment is 
shown by nesting (association). We use: 
- UML Class Diagrams for showing the static configuration. 

UML Sequence Diagrams for showing the dynamic behavior of a 
configuration, or the transition between configurations. 

- UML State Diagrams or Sequence Diagrams for showing the protocol of 
a communication path. 

:ECiient 
(module MPipelineAPI) 

create 

create 

create 

Figure 6. Image pipeline creation 

5. CODE ARCHITECTURE VIEW 

The code architecture view contains files and directories, and like the 
module view, does not have a configuration. The relations defined in the 
code view apply across all products, not just to a particular product. The 
code view elements and their relations are listed in Table 5. Modules and 
interfaces from the module view are partitioned into source files in a 
particular programming language. 

Table 6 shows this mapping for the MPipelineControl module and its 
interfaces: the public interfaces are each mapped to a file, and we have 
created an additional file for the private interface to the module. 
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Table 5. Elements of code architecture view 
Elements Relations 

source implements module 
source includes source 
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source 
intermediate 
executable 
directory 

intermediate compiled from run-time image 
executable implements run-time image 
executable linked from intermediate 

Table 6. Source files for module MPipelineControl 
Module or Interface Source File 

MPipelineControl 

IPipelineControl 
IStageControl 

CPipelineControl.CPP, 
CPipelineControiPvt.H 
CPipelineControl.H 
CStageControl.H 

<<cireclory>> 
<<Source» PipelineControl 

CPIPehneControl CPP __ _ 

' 
\ ... ' 

<<directory>> 
PipelineAPI 

<<Source:-> 
CPipeline.H 

<.::Source>> 
CPipelinePvt.H 

<<Source>> 
CPipelineControiPvt.H 

<<Source» 
CstageControi.H 

Figure 7. Include dependencies among source files 

<<directory>> 
lmageMgrAPI 

<<Source>> 
ClmageMgr.H 

<<Source>> 
ClmageMgrPvt.H 

The source files are organized into directories, as shown in Figure 7. We 
use the UML "component" notation to represent the files, and the package 
notation for directories. Both files and directories have stereotypes to clarify 
their meaning. In UML, the component symbol is used for "source code 
components, binary code components, and executable components" (UML, 
1997). We believe the intention of this symbol is closest to our notion of a 
file (whether source, intermediate, or executable). 
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Figure 7 also shows the include dependencies for the PipelineControl 
source files. We use the UML dependency notation for these relationships, 
with the stereotype <<include>> if the diagram contains more than one type 
of dependency. Source files can also have a "generate" dependency, for 
example when a preprocessor uses one source file to generate another. 

The run-time images from the execution view also have a relationship to 
elements in the code view, in this case to executable files. Table 7 shows 
how two of the run-time images in the image pipeline are mapped to 
executable files. Here the mapping is one-to-one, but if the run-time image 
contained dynamic link libraries, each of these libraries would be in a 
separate executable file. 

Table 7. Mapping between run-time image and executable file 
Run-time Image Executable File 

EPipelineMgr 
EFramer 

EPipelineMgr.exe 
EFramer.exe 

The executable files are also organized into directories (Figure 8). The 
relationship between executable files and source files is through intermediate 
files. An executable file has link dependencies to the object files it links in, 
and an object file has compile dependencies to the source files from which it 
is compiled. These dependencies are also shown in Figure 8. 

For the code view, we represent the source, object, and executable files 
as stereotyped classes, and the directories as stereotyped packages. The 
include, compile, and link relationships are shown as stereotyped 
dependencies. We use: 
- Tables to describe the mapping between elements in the module and 

execution views and elements in the code view. 
- UML Component Diagrams for showing the dependencies among source, 

intermediate, and executable files. 

6. DISCUSSION 

Table 8 summarizes the elements of our four architecture views and their 
corresponding UML Metamodel Classes and stereotype names, if any. For 
relations among the architecture description elements, we use UML 
associations and dependencies. We generally create a separate diagram for 
each kind of relation, but sometimes we combine them (e.g. the execution 
configuration diagram). 

We use UML Class/Object, Package, and Component Diagrams for the 
elements and their relations, sometimes including the interfaces and 
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attributes in these diagrams. Sequence Diagrams or State Diagrams are used 
to describe behavior. 

l 

<<d:rectory>> 

8 « executable» 
EPipellneMgr.exe 

I 
:<<link>> 

J 
------, <<cirectorv>> 

<<drectory>> 

8. IEFrmw --
EFramer.exe 

<<hnk>>,' : " .. «link>> 
/ : <<link>> " .. 

<<directory>> 

<<directory>> 

Figure 8. Dependencies among source, object, and executable files 

The configuration diagrams in the conceptual and execution views are 
UML Class/Object Diagrams, but we added some conventions to help define 
the semantics and improve the readability of the diagrams. 

One convention is to use nesting to indicate decomposition. This makes 
the structure easier to see, although it can make layout difficult for complex 
structures. With this convention we cannot show recursive or indefinite 
nesting, which could be easily described in a diagram that depicts 
decomposition as a labeled association (a line) between two objects. 

A semantic convention we use is that a configuration diagram describes 
the set of possible configurations at a single point in time. Systems generally 
have defined modes, e.g. start-up, shut-down, operational, diagnosis, 
recovery, etc. Each of these modes can have a different configuration, so 
should have a different diagram. In some modes (in our example, the 
operational mode) the configuration changes over time (in our case, 
pipelines are created and destroyed with each acquisition procedure). The 
dynamic behavior should be described separately. A sequence diagram 
works well to describe start-up and shut-down behavior. 
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Table 8. Summary of architecture description elements 
Element UML Metamodel Class 

component Class 
port Class 
connector Class 
role label on association 
port or role protocol Class 
module Class 
subsystem Package 
layer Package 
run-time image Class 

communication path association 
source Component 
intermediate Component 
executable Component 
directory Package 

Stereotype Name 

<<component>> 
<<port>> 
<<connector>> 

<<protocol>> 
<<module>> 
<<subsystem>> 
<<layer>> 
<<process>>, <<shared 
data>>, 
<<thread>>, etc. 

<<source>> 
<<object>> 
<<executable>> 
<<directory>> 

An important concern we have about using UML to describe software 
architecture is that the same notation can have a wide range of semantics. 
We use the same basic diagram, the UML Class/Object diagram to show 
most of the aspects of the architecture. We use stereotypes and special 
symbols to minimize the confusion between different views. 

The more traditional use of UML is for the design of implementation 
classes for a system. We are also concerned that by using the same notation 
to describe the software architecture, we run the risk of further blurring the 
distinction between the architecture and the implementation. This is another 
reason to consistently use particular conventions, stereotypes, and special 
symbols for these architecture diagrams. 

In summary, we found UML deficient in describing: 
correspondences: A graphical notation is too cumbersome for 
straightforward mappings such as the correspondence between elements 
in different views. This information is more efficiently described in a 
table (e.g. Table 3). 
protocols: The ability to show peer-to-peer communication is missing 
from UML. We used ROOM to describe protocols (e.g. Figure 2). 
ports on components: We used nesting to show the relationship between 
ports and components, but this is visually somewhat misleading. We 
would prefer a notation more similar to the lollipop notation for the 
interfaces of a module. 
dynamic aspects of the structure 

- a general sequence of activities 
UML worked well for describing: 
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the static structure of the architecture 
variability: e.g. the conceptual configuration in Figure 1 describes the 
structure of a set of pipelines. 
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a particular sequence of activities: e.g. the start-up behavior of an Image 
Pipeline (Figure 6). 
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Abstract: Software architecture descriptions are high-level models of software systems. 
Most existing special-purpose architectural notations have a great deal of 
expressive power but are not well integrated with common development 
methods. Conversely, mainstream development methods are accessible to 
developers, but lack the semantics needed for extensive analysis. In our 
previous work, we described an approach to combining the advantages of 
these two ways of modeling architectures. While this approach suggested a 
practical strategy for bringing architectural modeling into wider use, it 
introduced specialized extensions to a standard modeling notation, which 
could also hamper wide adoption of the approach. This paper attempts to 
assess the suitability of a standard design method "as is" for modeling 
software architectures. 

1. INTRODUCTION 

Software architecture is an aspect of software engineering directed at 
reducing the costs of developing applications and increasing the potential for 
commonality among different members of a closely related product family 
(Garlan and Shaw, 1993; Perry and Wolf, 1992). Software development 
based on common architectural idioms has its focus shifted from lines-of
code to coarser-grained architectural elements and their overall 
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interconnection structure. This enables developers to abstract away the 
unnecessary details and focus on the "big picture:" system structure, high 
level communication protocols, assignment of software components and 
connectors to hardware components, development process, and so forth 
(Garlan and Shaw, 1993; Kruchten, 1995; Luckham and Vera, 1995; Perry 
and Wolf, 1992; Soni, et al., 1995; Taylor, et al., 1996). The basic promise 
of software architecture research is that better software systems can result 
from modeling their important aspects during, and especially early in the 
development. Choosing which aspects to model and how to evaluate them 
are two decisions that frame software architecture research (Medvidovic and 
Rosenblum, 1997). 

Part of the software architecture research community has focused on 
analytic evaluation of architecture descriptions. Many researchers have come 
to believe that, to obtain the benefits of an architectural focus, software 
architecture must be provided with its own body of specification languages 
and analysis techniques (Garlan, ed., 1995; Garlan, et al., eds., 1995; Wolf, 
ed., 1996). Such languages are needed to demonstrate properties of a system 
upstream, thus minimizing the costs of errors. They are also needed to 
provide abstractions that are adequate for modeling a large system, while 
ensuring sufficient detail for establishing properties of interest. A large 
number of architecture description languages (ADLs) has been proposed 
(Allen and Garlan, 1997; Garlan, et al., 1994; Luckham and Vera, 1995; 
Magee and Kramer, 1996; Medvidovic, Taylor, et al., 1996; Moriconi, et al., 
1995; Shaw, DeLine, eta!., 1995; Vestal, 1996). 

Each ADL embodies a particular approach to the specification and 
evolution of an architecture. Answering specific evaluation questions 
demands powerful, specialized modeling and analysis techniques that 
address specific aspects in depth. However, the emphasis on depth over 
breadth of the model can make it difficult to integrate these models with 
other development artifacts, because the rigor of formal methods draws the 
modeler's attention away from day-to-day development concerns. The use of 
special-purpose modeling languages has made this part of the architecture 
community fairly fragmented, as revealed by a recent survey of architecture 
description languages (Medvidovic and Taylor, 1997). 

Another part of the community has focused on modeling a wide range of 
issues that arise in software development, perhaps with a family of models 
that span and relate the issues of concern. By paying the cost of making such 
models, developers gain the benefit of clarifying and communicating their 
understanding of the system. However, emphasizing breadth over depth 
potentially allows many problems and errors to go undetected, because lack 
of rigor allows developers to ignore certain details. Several competing 
notations have been used in this part of the community, but there now exists 
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a concerted effort to standardize methods for object-oriented analysis and 
design (Object Management Group, 1996). 

In our previous work, we described an approach to combining the 
advantages of specialized, highly formal methods of modeling architectures 
with general, less formal design methods (Robbins, et a!., 1998). This 
approach suggested a practical strategy for bringing architectural modeling 
into wider use, namely by incorporating substantial elements of architectural 
models into a standard design method, the Unified Modeling Language 
(UML) (Rational, 1997a). However, our technique is not without drawbacks: 
for each architectural approach and ADL, we introduced a somewhat 
specialized extension to UML. In particular, we relied heavily on UML's 
Object Constraint Language (OCL) (Rational and IBM, 1997) to specify 
architecture- and ADL-specific concepts. 

OCL constraints are highly formal. Their formality may hamper wide 
adoption of our technique, although end users of the enhanced UML meta
model typically will not need to write OCL constraints. Furthermore, OCL is 
a part of the standard UML definition and it is expected that standardized 
UML tools will be able to process it. However, OCL is considered an 
uninterpreted part of UML and UML tools may not support it to the extent 
needed for creating, manipulating, analyzing, and evolving designs. For this 
reason, in this paper we attempt to assess the suitability of UML "as is" for 
modeling software architectures. In particular, we focus on one of the 
architectural approaches we addressed previously (Robbins, et al., 1998), the 
C2 architectural style (Taylor, et al. , 1996). We use a simple meeting 
scheduler application to highlight the issues. In the process, we attempt to 
shed light on the relationship between architecture and design. 

The paper is organized as follows. The next section briefly describes 
UML. Section 3 briefly describes the example application, a meeting 
scheduler, used to illustrate our arguments throughout the paper. In 
Section 4, we introduce the C2 style and discuss a possible C2 architecture 
for the meeting scheduler application. Section 5 provides a "C2 style" UML 
design of the meeting scheduler. We discuss the results and key lessons 
learned in Section 6. Our conclusions round out the paper. 

2. OVERVIEW OF UML 

2.1 UML background 

A UML model of a software system consists of several partial models, 
each of which addresses a certain set of issues at a certain level of fidelity . 
There are eight issues addressed by UML models: 
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1. classes and their declared attributes, operations, and relationships; 
2. the possible states and behavior of individual classes; 
3. packages of classes and their dependencies; 
4. example scenarios of system usage including kinds of users and 

relationships between user tasks; 
5. the behavior of the overall system in the context of a usage scenario; 
6. examples of object instances with actual attributes and relationships in 

the context of a scenario 
7. examples of the actual behavior of interacting instances in the context of 

a scenario; and 
8. the deployment and communication of software components on 

distributed hosts. 
Fidelity refers to how close the model will be to the eventual 

implementation of the system: low-fidelity models tend to be used early in 
the life-cycle and are more problem-oriented and generic, whereas high
fidelity models tend to be used later and are more solution-oriented and 
specific. Increasing fidelity demands effort and knowledge to build more 
detailed models, but results in more properties of the model holding true in 
the system. 

UML is a graphical language with fairly well-defined syntax and 
semantics. The syntax of the graphical presentation is specified by examples 
and a mapping from graphical elements to elements of the underlying 
semantic model (Rational, 1997c). The syntax and semantics of the 
underlying model are specified semi-formally via a meta-model, descriptive 
text, and constraints (Rational, 1997b). The meta-model is itself a UML 
model that specifies the abstract syntax of UML models. This is much like 
using a BNF grammar to specify the syntax of a programming language. For 
example, the UML meta-model states that a Class is one kind of model 
element with certain attributes, and that a Feature is another kind of model 
element with its own attributes, and that there is a one-to-many composition 
relationship between them. 

UML is an extensible language in that new constructs may be added to 
address new issues in software development. Three mechanisms are 
provided to allow limited extension to new issues without changing the 
existing syntax or semantics of the language. (1) Constraints place semantic 
restrictions on particular design elements. (2) Tagged values allow new 
attributes to be added to particular elements of the model. (3) Stereotypes 
allow groups of constraints and tagged values to be given descriptive names 
and applied to other model elements; the semantic effect is as if the 
constraints and tagged values were applied directly to those elements. 
Another possible extension mechanism is to modify the meta-model, but this 
approach results in a completely new notation to which standard UML tools 
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cannot be applied. We discuss this approach in more detail in Section 2.2. 
Figure I shows the parts of the UML meta-model used in this paper. We 
have simplified the meta-model for purposes of illustration. 

Note: All classes are sti>classes of 
MOOelEiement (except McxlelEiement 
itself). This rehtionship is mt shown. 

Figure 1. Simplified UML meta-model, adapted from (Rational, 1997b). 

2.2 Our strategy for adapting UML for architecture 
modeling 

In (Robbins, et at., 1998) we studied two possible approaches to using 
UML to model architectures. One approach is to define an ADL-specific 
meta-model. This approach has been used in more comprehensive 
formalizations of architectural styles (Abowd, et at., 1995; Medvidovic, 
Taylor, et at., 1996). Defining a new meta-model helps to formalize the 
ADL, but does not aid integration with standard design methods. By defining 
our new meta-classes as subclasses of existing meta-classes we would 
achieve some integration. For example, defining Component as a subclass of 
meta-class Class would give it the ability to participate in any relationship in 
which Class can participate. This is basically the integration that we desire. 
However, this integration approach requires modifications to the meta-model 
that would not conform to the UML standard; therefore, we cannot expect 
UML-compliant tools to support it. 

The approach for which we opted instead was to restrict ourselves to 
using UML's built-in extension mechanisms on existing meta-classes 
(Robbins, eta!., 1998). This allows the use of existing and future UML
compliant tools to represent the desired architectural models, and to support 
architectural style conformance checking when OCL-compliant tools 
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become available. Our basic strategy was to first choose an existing meta
class from the UML meta-model that is semantically close to an ADL 
construct, and then define a stereotype that can be applied to instances of 
that meta-class to constrain its semantics to that of the ADL. 

Neither of the two approaches answers the deeper question of UML's 
suitability for modeling software architectures "as is," i.e., without defining 
meta-models specific to a particular architectural approach or extending the 
existing UML meta-model. Such an exercise would highlight the respective 
advantages of special- and general-purpose design notations in modeling 
architectures. It also has the potential to further clarify the relationship 
between software architecture and design. Therefore, in this paper we study 
the characteristics of using the existing UML features to model architectures 
in a particular style, C2. 

3. EXAMPLE APPLICATION 

The example we selected to motivate the discussion in this paper is a 
simplified version of the meeting scheduler problem, initially proposed by 
(van Lamsweerde, et al., 1992)and recently considered as a candidate model 
problem in software architectures (Shaw, Garlan, et al., 1995). We have 
chosen this problem partly because of our prior experience with designing 
and implementing a distributed meeting scheduler in the C2 architectural 
style, described in (Taylor, et at., 1996). 

Meetings are typically arranged in the following way. A meeting initiator 
asks all potential meeting attendees for a set of dates on which they cannot 
attend the meeting (their "exclusion" set) and a set of dates on which they 
would prefer the meeting to take place (their "preference" set). The 
exclusion and preference sets are contained in some time interval prescribed 
by the meeting initiator (the "date range"). 

The initiator also asks active participants to provide any special 
equipment requirements on the meeting location (e.g., overhead-projector, 
workstation, network connection, telephones); the initiator may also ask 
important participants to state preferences for the meeting location. 

The proposed meeting date should belong to the stated date range and to 
none of the exclusion sets. It should also ideally belong to as many 
preference sets as possible. A date conflict occurs when no such date can be 
found. A conflict is strong when no date can be found within the date range 
and outside all exclusion sets; it is weak when dates can be found within the 
date range and outside all exclusion sets, but no date can be found at the 
intersection of all preference sets. Conflicts can be resolved in several ways: 
- the initiator extends the date range; 
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some participants expand their preference set or narrow down their 
exclusion set; or 

- some participants withdraw from the meeting. 
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4. MODELING THE EXAMPLE APPLICATION IN 
C2 

4.1 Overview of C2 

C2 is a software architectural style for user interface intensive systems 
(Taylor, et al., 1996). C2SADEL is an ADL for describing C2-style 
architectures (Medvidovic, Taylor, et al., 1996; Medvidovic, Oreizy, et al., 
1996); henceforth, in the interest of clarity, we use "C2" to refer to the 
combination C2 and C2SADEL. In a C2-style architecture, connectors 
transmit messages between components, while components maintain state, 
perform operations, and exchange messages with other components via two 
interfaces (named "top" and "bottom"). Each interface consists of a set of 
messages that may be sent and a set of messages that may be received. Inter
component messages are either requests for a component to perform an 
operation, or notifications that a given component has performed an 
operation or changed state. 

In the C2 style, components may not directly exchange messages; they 
may only do so via connectors. Each component interface may be attached to 
at most one connector. A connector may be attached to any number of other 
components and connectors. Request messages may only be sent "upward" 
through the architecture, and notification messages may only be sent 
"downward." 

The C2 style further demands that components communicate with each 
other only through message-passing, never through shared memory. Also, 
C2 requires that notifications sent from a component correspond to the 
operations of its internal object, rather than the needs of any components that 
receive those notifications. This constraint on notifications helps to ensure 
substrate independence, which is the ability to reuse a C2 component in 
architectures with differing substrate components (e.g., different window 
systems). The C2 style explicitly does not make any assumptions about the 
language(s) in which the components or connectors are implemented, 
whether or not components execute in their own threads of control, the 
deployment of components to hosts, or the communication protocol(s) used 
by connectors. 
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4.2 Modeling the meeting scheduler in C2 

Figure 2 shows a graphical depiction of a possible C2-style architecture 
for a simple meeting scheduler system. This system consists of components 
supporting the functionality of a Meetinginitiator and several potential 
meeting Attendees and ImportantAttendees. Three C2 connectors are used to 
route messages among the components. Certain messages from the Initiator 
are sent both to Attendees and ImportantAttendees, while others (e.g., to 
obtain meeting location preferences) are only routed to ImportantAttendees. 
Since a C2 component has only one communication port on its top and one 
on its bottom, and all message routing functionality is relegated to 
connectors, it is the responsibility of MainConn to ensure that AttConn and 
ImportantAttConn above it receive only those message relevant to their 
respective attached components. 

Important 
AttConn 

Figure 2. A C2-style architecture for a meeting scheduler system. 

The Initiator component sends requests for meeting information to 
Attendees and ImponantAttendees. The two sets of components notify the 
Initiator component, which attempts to schedule a meeting and either 
requests that each potential attendee mark it in his/her calendar (if the 
meeting can be scheduled), or it sends other requests to attendees to extend 
the date range, remove a set of excluded dates, add preferred dates, or 
withdraw from the meeting. Each Attendee and ImportantAttendee 
component, in tum, notifies the Initiator of its date, equipment, and location 
preferences, as well as excluded dates. Attendee and ImportantAttendee 
components cannot make requests of the Meetinginitiator component, since 
they are above it in the architecture. 

Most of this information is implicit in the graphical view of the 
architecture shown in Figure 2. For this reason, we specify the architecture 
in C2SADEL, a textual language for modeling C2-style architectures 
(Medvidovic, 1996; Medvidovic, Taylor, et al., 1996; Medvidovic, Oreizy, 
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et al., 1996). For simplicity, we assume that all attendees' equipment needs 
will be met, and that a meeting location will be available on the given date 
and that it will be satisfactory for all (or most) of the important attendees. 

The Meeting/nitiator component is specified below. The component only 
communicates with other parts of the architecture through its top port. 

component Meetinglnitiator is 
interface 

top_domain is 
out 

in 

GetPrefSet (); 
GetExciSet (); 
GetEquipReqts (); 
GetLocPrefs (); 
RemoveExciSet (); 
RequestWithdrawal (to Attendee); 
RequestWithdrawal (to lmportantAttendee); 
AddPrefDates (); 
MarkMtg (d : date; I : loc_type); 

PrefSet (p : date_mg); 
ExciSet (e : date_rng); 
EquipReqts (eq : equip_type); 
LocPref (I : loc_type); 

bottom domain is 
out-null; 
in null; 

parameters null; 

methods 
procedure Start (); 
procedure Finish (); 
procedure SchedMtg (p : set date_rng; e : set date_rng); 
procedure AddPrefSet (pref : date_rng); 
procedure AddExciSet (exc : date_rng); 
procedure AddEquipReqts (eq : equip_type); 
procedure AddLocPref (I : loc_type); 
function AttendlnfoCompl () return boolean; 
procedure lncNumAttends (n : integer); 
function GetNumAttends () : return integer; 

behavior 
startup 

invoke_methods Start; 
always_generate GetPrefSet, GetExciSet, GetEquipReqts, 

GetLocPrefs; 
cleanup 

invoke_methods Finish; 
always_generate null; 

received_messages PrefSet; 
invoke_methods AddPrefSet, lncNumAttends, AttendlnfoCompl, 

GetNumAttends, SchedMtg; 
may_generate RemoveExciSet xor RequestWithdrawal xor 

MarkMtg; 
received_messages ExciSe!; 

invoke_methods AddExciSet, AttendlnfoCompl, GetNumAttends, 
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SchedMtg; 
may_generate AddPrefDates xor Remove ExciSe! xor 

RequestWithdrawal xor MarkMtg; 
received_messages EquipReqts; 

invoke_methods AddEquipReqts, AttendlnfoCompl, 
GetNumAttends, SchedMtg; 

may_generate AddPrefDates xor RemoveExciSet xor 
RequestWithdrawal xor MarkMtg; 

received_messages LocPref; 
invoke_methods AddLocPref; 
always_generate null; 

context 
boHom_most computational_unit; 

end Meetinglnitiator; 

The Attendee and lmportantAttendee components receive meeting 
scheduling requests from the Initiator and notify it of the appropriate 
information. The two types of components only communicate with other 
parts of the architecture through their bottom ports. 

component Attendee is 
interface 

top_domain is 
out null; 
in null; 

bottom_domaln is 
out 

in 

PrefSet (p : date_rng); 
ExciSe! (e : date_rng); 
EquipReqts (eq : equip_type); 
Witdrawn (); 

GetPrefSet (); 
GetExciSet (); 
GetEquipReqts (); 
RemoveExciSet (); 
RequestWithdrawal (); 
AddPrefDates (); 
MarkMtg (d : date; I: loc_type); 

parameters null; 

methods 
procedure Start(); 
procedure Finish (); 
procedure NoteMtg (d : date; I : loc_type); 
function DeterminePrefSet () return date_rng; 
function DetermineExciSet () return date_rng; 
function AddPrefDates () return date_mg; 
function RemoveExciSet () return date_rng; 
procedure DetermineEquipReqts (eq : equip_type); 

behavior 
startup 

invoke_methods Start; 
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always_generate null; 
cleanup 

invoke_methods Finish; 
always_generate null; 

received_messages GetPrefSet; 
invoke_methods DeterminePrefSet; 
always_generate PrefSet; 

received_messages AddPrefDates; 
invoke_methods AddPrefDates; 
always_generate PrefSet; 

received_messages GetExciSet; 
invoke_methods DetermineExciSet; 
always_generate ExciSe!; 

received_messages GetEquipReqts; 
invoke_methods DetermineEquipReqts; 
always_generate EquipReqts; 

received_messages RemoveExciSet; 
invoke_methods RemoveExciSet; 
always_generate ExciSe!; 

received_messages RequestWithdrawal; 
invoke_methods Finish; 
always_generate Withdrawn; 

received_messages MarkMtg; 
invoke_methods NoteMtg; 
always_generate null; 

context 
top_most computational_unit; 

end Attendee; 
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lmportantAttendee is a specialization of the Attendee component: it 
duplicates all of Attendee's functionality and adds specification of meeting 
location preferences. /mportantAttendee is thus specified as a subtype of 
Attendee that preserves its interface and behavior, but can implement that 
behavior in a new manner. 

component lmportantAttendee is subtype Attendee (int and beh) 
interface 

bottom_domain is 
out 

LocPrefs (I : loc_type); 
in 

GetlocPrefs (); 
methods 

function DeterminelocPrefs () return loc_type; 
behavior 

received_messages GetlocPrefs; 
invoke_methods DetermineLocPrefs; 
always_generate LocPrefs; 

end lmportantAttendee; 
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The MeetingScheduler architecture depicted in Figure 2 is shown below. 
The architecture is specified with conceptual components (i .e., component 
types). Each conceptual component (e.g., Attendee) can be instantiated 
multiple times in a system. 

architecture MeetingScheduler is 
conceptual_ components 

top_most 
Attendee; 
lmportantAttendee; 

internal null; 
bottom_most 

Meeting initiator; 
connectors 

connector MainConn is 
message_filter no_filtering; 

end MainConn; 
connector AttConn is 

message_filter no_filtering; 
end AttConn; 
connector lmportantAttConn is 

message_filter no_filtering; 
end lmportantAttConn; 

architecturaUopology 
connector AttConn connections 

top_ports 
Attendee; 

bottom_ports 
MainConn; 

connector lmportantAttConn connections 
top_ports 

lmportantAttendee; 
bottom_ports 

MainConn; 
connector MainConn connections 

top_ports 
AttConn; 
lmportantAttConn; 

bottom_ports 
Meeting initiator; 

end MeetingScheduler; 

An instance of the architecture (a system) is specified by instantiating the 
components. For example, an instance of the meeting scheduler application 
with three participants and two important participants is specified as follows . 

system MeetingScheduler_1 is 
architecture MeetingScheduler with 

Attendee instance Att_1, Att_2, Att_3; 
lmportantAttendee instance lmpAtt_1, lmpAtt_2; 
Meeting initiator instance Mtginit_1; 

end MeetingScheduler_1; 
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5. MODELING THE C2-STYLE MEETING 
SCHEDULER APPLICATION IN UML 
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The process of designing a C2-style application in UML should be driven 
and constrained both by the rules of C2 and the modeling features available 
in UML. The two must be considered simultaneously. For this reason, the 
initial steps in this process are to develop a domain model for a given 
application in UML and an informal C2 architectural diagram, such as the 
one from Figure 2. Such an architectural diagram is key to making the 
appropriate mappings between classes in the domain and architectural 
components. Furthermore, it points to the need to explicitly model 
connectors in any C2-style architecture. Another important aspect of C2 
architectures is the prominence of components' message interfaces. This is 
reflected in a UML design by modeling interfaces explicitly and 
independently of the classes that will implement those interfaces. 

Our initial attempt at a UML class diagram for the meeting scheduler 
application is shown in Figure 3. The diagram shows the domain model for 
the meeting scheduler application consisting of the domain classes, their 
inheritance relationships, and their associations. 

I Person j<J---
0 .• I Important I 

tlORSIJ"'OnTUCtsmm Attendee Attendee l 

ConflictsW111l 0 .. 0 .. • 
1 .. • t..• o.• o .. • 

Prefer• 

0 .. • 

I Location I I Date I 
1 1 f 

1 Prehn 0 .• 

Meeting 1 Exclude! 0 .. • 

Initiator t PrODOSO! 1 Meeting 

Invites 2 

Figure 3. UML class diagram for the meeting scheduler application. Details (attributes and 
methods) of each individual class have been suppressed for clarity. 

The diagram abstracts away many architectural details, such as the 
mapping of classes in the domain to implementation components, the order 
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of interactions among the different classes, and so forth. Furthermore, much 
of the semantics of class interaction is missing from the diagram. For 
example, the Invites association associates two Meetings with one or more 
Attendees and one Meetinglnitiator. However, the association does not make 
clear the fact that the two Meetings are intended to represent a range of 
possible meeting dates, rather than a pair of related meetings. 

Each class exports one or more interfaces, shown in Figure 4. The 
ImportantMtglnit and lmportantMtgAttend interfaces inherit from the 
Mtglnit and MtgAttend interfaces, respectively. The only difference is the 
added operation to request and notify of location preferences. 

«interface» <<interface>> 
Mtginit MtgAttend 

GetPretset O; Pre !Set (date_mg); 
Get&clSet Q; 
Remove&clSet Q; 

&clSet (date_mg); 
EquipReqts (equip_type); 

RequestWithdrawal (Attendee); WitdrawnQ; 
AddPrefDates Q; 

f <<Interface>> 
<<Interface>> ImportantMtgAttend 

ImportantMtginit 
LocPrefs (Joe_ type); 

GetLocPrefs O; 

Figure 4. Meeting scheduler class interfaces. 

Note that every interface element corresponds to a C2 message in the 
architecture specified in Section 4.2. All methods in the UML design will be 
implemented as asynchronous message passes, as they would in C2. Since 
C2 components communicate via implicit invocation, C2 messages do not 
have return values; this is also reflected in Figure 4. 

In order to model a C2 architecture in UML, connectors must be defined. 
Although connectors fulfill a role different from components, they can also 
be modeled with UML classes. However a C2 connector is by definition 
generic and can accommodate any number ant type of C2 components; 
informally, the interface of a C2 connector is a union of the interfaces of its 
attached components. UML does not support this form of genericity, so that 
the connectors specified in UML have to be application-specific. For that 
purpose, the connectors for the meeting scheduler application share the 
components' interfaces. Each connector can be thought of as a simple class 
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that forwards each message it receives to the appropriate components. 
Therefore, while the component class interface specifications, shown in 
Figure 4, correspond to the different C2 components' outgoing messages 
(i.e., their provided functionality), the connector interfaces are routers of 
both the incoming and outgoing messages, as depicted in Figure 5. 
Connectors do not add any functionality at the domain model level; we have 
thus chosen to omit them from the class diagram in Figure 3. 

<<interface>> 
AttConn 

GetPrefSet Q; 
GetFxclSet Q; 
RemoveFxclSet Q; 
Request Withdrawal (Attendee); 
AddPrefDates Q; 
PrefSet ( date_mg); 
FxclSet (date_mg); 
EquipReqts (equip_type); 
WitdrawnQ; 

f 
<<Interface>> 

ImportantAttConn 

GetLocPrefs Q; 
LocPrefs (loc_type); 

<<interface>> 
MainConn 

Figure 5. Application-specific UML classes representing C2 connectors. 

A refined class diagram for the meeting scheduler application is shown in 
Figure 6. The Attendee and lmportantAttendee classes are related by 
interface inheritance, which is depicted in Figure 4, but is only implicit in 
Figure 6 (and altogether omitted from Figure 3). We have omitted from 
Figure 6 the Location, Meeting, and Date classes shown in Figure 3, since 
they have not been impacted. We have also omitted the two superclasses for 
the components and connectors (Person and Conn, respectively). 

Note that the class diagram in Figure 6 is similar in its structure to the C2 
architecture depicted in Figure 2. The only difference is that the diagram in 
Figure 2 depicts instances of the different components and connectors, while 
a UML class diagram depicts classes and their associations. UML provides 
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several types of diagrams that depict class instances (objects). One candidate 
is UML's object diagrams; however, we choose to depict a collaboration 
diagram to further draw the contrast between UML and C2. 

Figure 6. UML class diagram for the meeting scheduler application designed in the C2 
architectural style. 

Figure 7 shows the collaboration between an instance of the 
Meetinglnitiator class (MI) and any instances of Attendee and 
lmportantAttendee classes: Ml issues a request for a set of preferred meeting 
dates; MC, an instance of the Main Conn class routes the request to instances 
of both connectors above it, AC and lAC, which, in tum, route the requests to 
all components attached on their top sides; each participant component 
chooses a preferred date and notifies any components below it of that choice; 
these notification messages will eventually be routed to Ml via the 
connectors. Note that, if Ml had sent the request to get meeting location 
preferences (GetLocPrefs in the lmportantMtglnit interface in Figure 4), MC 
would have routed them only to lAC and none of the instances of the 
Attendee class would have received that request 

The diagrams in this section, and particularly Figure 6, differ from a C2 
architecture in that they explicitly specify only the messages a component 
receives (via interface attachments to a component rectangle). UML also 
allows specification of messages a component sends; we believe those 
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messages to be obvious from the diagram and have thus chosen to omit them 
to simplify the diagrams. 

[ : Attendee =pl I: ImportantAttendee 1 U 

1s:GetPre!SetQ 14:GetPrefSetQ 

1 A1 : Att onn 1 1 lAC : ImportantAttConn I 

9 :PrefSet( date_rng) 8:PrefSet( 

13:GetPrefSetQ 12:GetPrefSetQ 

I MC : MainConn I 
11 

11 :GetPrefSetQ 

I MI : Meetinglnitiator 1 

Figure 7. Collaboration diagram for the meeting scheduler application showing a response to 
a request issued by the Meeting Initiator to both Attendees and lmportantAttendees. 

6. DISCUSSION 

The exercise of modeling a C2-style architecture in UML has been fairly 
successful. Part of the success can be attributed to the fact that many 
architectural concepts are found in UML (e.g. , interfaces, component 
associations, behavioral modeling, and so forth). On the other hand, the 
modeling capabilities provided by UML do not always fully satisfy the needs 
of architectural description. We discuss several major similarities and 
differences in this section. 

6.1 Software modeling philosophies 

Neither C2 nor UML constrain the choice of implementation language or 
require that any two components be implemented in the same language or 
thread of control. C2 limits communication to asynchronous message 
passing and UML supports this restriction. Both C2 and UML include 
specifications of messages that may be sent and received. 

Although we did not model details of the internal parts of a C2 
component or the behavior of any C2 constructs (components, connectors, 
communication ports, and so forth) in our UML specification, we believe 
that many of those aspects could be modeled with UML' s sequence, 
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collaboration, statechart, and activity diagrams. Existing ADLs, including 
C2SADEL, are often not able to support all of these kinds of semantic models 
(Medvidovic and Taylor, 1997). 

6.2 Assumptions 

Like any notation, UML embodies its developers' assumptions about its 
intended usage. "Architecting" a system was not an intended use of UML. 
While one can indeed focus on the different perspectives when modeling a 
system (discussed above), a software architect may find that the support for 
those perspectives found in UML only partially satisfies his/her needs. 

For example, in modeling the collaboration among C2 components 
shown in Figure 7, we were forced to assign a relative ordering to messages 
in the architecture. In effect, since all C2 components and connectors can 
execute in their own thread(s) of control, such an ordering cannot always be 
determined. Indeed, it is possible that message 4 would be sent before 
message 3. 

6.3 Problem domain modeling 

UML supports modeling a problem domain, as we have briefly shown in 
this paper. A C2 architectural model, however, often hides some of the 
information present in a domain model. For example, meeting, equipment, 
and location information is present in Figure 3, but is missing from the C2 
architecture specified in Section 4 and its corresponding UML diagram in 
Figure 6. Modeling all the relevant information early in the development 
lifecycle is crucial to the success of a software project. Therefore, a domain 
model should be considered a separate and useful architectural perspective 
(Medvidovic and Rosenblum, 1997; Tracz, 1995). 

6.4 Architectural abstractions 

Some concepts of C2, and software architectures in general, are very 
different from those of UML and object-oriented design in general. 
Connectors are first-class entities in C2. While the functionality of a 
connector can typically be abstracted by a class/component (Luckham and 
Vera, 1995; Magee and Kramer, 1996), C2 connectors have the added 
property that their interfaces are context-reflective. This property is designed 
into C2SADEL and C2's implementation infrastructure (Medvidovic, et al., 
1997) for all connectors, whereas the approach described in this paper 
requires specialized modeling of application-specific connector classes in 
UML. 
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The underlying problem is even deeper. Although UML may provide 
modeling power equivalent to or surpassing that of an ADL, the abstractions 
it provides may not match an architect's mental model of the system as 
faithfully as the architect's ADL of choice. If the primary purpose of a 
language is to provide a vehicle of expression that matches the intuitions and 
practices of users, then that language should aspire to reflect those intentions 
and practices (Shaw and Garlan, 1995). We believe this to be a key issue and 
one that argues against considering a notation like UML to be a 
"mainstream" ADL: a given language (e.g., UML) offers a set of 
abstractions that an architect uses as design tools; if certain abstractions 
(e.g., components and connectors) are buried in others (e.g., classes), the 
architect's job is made more (and unnecessarily) difficult; separating 
components from connectors, raising them both to visibility as top-level 
abstractions, and endowing them with certain features and limitations also 
raises them in the consciousness of the designer. 

6.5 Architectural styles 

Architecture is the appropriate level of abstraction at which rules of a 
compositional style (i.e., an architectural style) can be exploited and should 
be elaborated. Doing so results in a set of heuristics that, if followed, will 
guarantee a resulting system certain desirable properties. 

Standard UML provides no support for architectural styles. The rules of 
different styles have to be built into UML by constraining its meta-model, as 
we have done previously (Robbins, et al., 1998)]. Therefore, in choosing to 
use UML "as is", we have removed one shortcoming of our previous 
approach, only to introduce another. In particular, every C2 architecture 
designed in the manner we described in this paper adheres to the UML meta
model and, as such, can be understood by a typical UML user and 
manipulated with standardized UML tools. On the other hand, the process of 
modeling a C2 architecture in UML is heuristic- rather than constraint
driven. Therefore, there is no guarantee that the designer will always adhere 
to the rules of C2. For this reason, it may also be more difficult to provide 
support for automated translation of "C2-style" UML designs into C2SADEL 
for C2-specific manipulations. 

7. CONCLUSIONS 

We found this initial attempt at modeling a C2-style architecture in UML 
useful. It highlighted those UML characteristics that show potential for 
aiding architectural modeling, but also pointed out some of UML's 
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shortcomings in this regard. This experience can also serve as a solid basis 
for further study, both with other C2 architectures, as well as with other 
ADLs, e.g., Wright (Allen and Garlan, 1997), and architectural styles, e.g. , 
client -server. 

Before we can draw definitive conclusions about the relative merits of 
this approach and the approach described in our previous work (Robbins, et 
al., 1998), further research into the techniques described in the two papers is 
needed. One necessary step to integrate UML with other ADLs discussed in 
(Robbins, et al., 1998): Wright (Allen and Garlan, 1997), Darwin (Magee 
and Kramer, 1996), and Rapide (Luckham and Vera, 1995). Each of these 
ADLs has certain aspects in common with UML; these were expressed with 
UML's extension mechanisms. We intend to investigate whether they can 
also be expressed in UML without extensions. 

Our experience to date indicates that adapting UML to address 
architectural concerns requires reasonable effort, has the potential to be a 
useful complement to ADLs and their analysis tools, and may be a practical 
step toward mainstream architectural modeling. Using UML has the benefits 
of leveraging mainstream tools, skills, and processes. It may also aid in the 
comparison of ADLs because it forces some implicit assumptions to be 
explicitly stated in common terms. 
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Abstract: In theory, software architecture and component-based development make an 
ideal match: the concerns of software architecture are high level design, 
interaction, and configuration of components, while component-based 
development is centered on the implementation and specification of reusable 
components. 
Together, these concerns seem to be the yin and yang for the development of 
complex systems out of existing components. However, several authors have 
already explained that in reality, there is a gap between the two areas. In this 
paper, we investigate the relation between Java Beans and a software 
architecture description: may Java Beans simply be used as ready-to-use 
implementations of a software architecture? What restrictions do they impose 
on the software architecture? Where are the mismatches? 

1. INTRODUCTION 

As has been argued many times, today's complex large-scale software 
systems ask for a different kind of software engineering than small and 
simple programs. On the one hand, there is a need for very high-level design. 
The level of abstraction should be higher than that of objects, or procedures. 
Moreover, such a design should be a model of the system-in-use, not just a 
model of the implementation (Allen and Garlan, 1994). Software 
architecture is an answer for this need (we use "software architecture" in the 
sense of the definition of Garlan and Shaw (Garlan and Shaw, 1993): 
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"Structural issues include gross organisation and global control structure; 
protocols for communication, synchronization, and data access; assignment 
of functionality to design elements; physical distribution; composition of 
design elements; scaling and performance; and selection among design 
alternatives."). 

On the other hand, there need for the reuse of components. The 
ideal here is, for a developer, to be able to shop among different component 
providers, and build a system in the same way as building a vehicle out of 
Lego bricks and pieces. Several standards, both commercial and non
commercial, for component models have arisen, such as CORBA, ActiveX, 
and Java Beans. 

Software architecture seems a natural complement for reusable 
software components: existing component middleware technologies are 
component-centric, and they standardize external component properties. 
Software architectures are system-centric, with more emphasis on the 
connections, and the properties of the system as a whole. 

One of the problems of building systems out of existing components is 
the possibility of an "architectural mismatch" between components (Garlan 
et al., 1995). Components make implicit assumptions about the nature of the 
components (infrastructure, control model, data model), the nature of the 
connections (protocols and data model) and about the global architectural 
structure (for instance about the presence or absence of particular 
components or connections). As part of a solution for this problem, it has 
been suggested (Garlan et al., 1995) that these architectural assumptions 
could be made explicit using an Architecture Description Language (or 
ADL). Architectural descriptions could be used to understand the concepts 
embodied in component libraries (Perry and Wolf, 1992). 

However, there are problems to overcome. ADLs are created for the 
specification of software architectures, and software architectural styles. 
They have not been created with component standards like CORBA, 
ActiveX or Java Beans in mind. The two domains use similar, but 
incompatible models of components and component bindings, revealed when 
comparing the Interface Description Languages for components, with the 
possibilities of the ADL used for software architecture. Moreover, while the 
mapping of components at the software architectural level to components at 
the implementation level might be feasible, how other architectural elements 
should be mapped is unclear. 

Furthermore, an architecture describes the system as a whole, while 
reusable components make use of services provided by the middleware 
infrastructure and the operating system. In fact, these services should be 
modeled at the architectural level, to get a real mapping between both levels 
(Oreizy et al., 1998). 
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Another question is how software architecture and component-based 
development can be combined. One way of combining these domains is to 
start with the design of the system's architecture. The architecture should be 
refined until one is able to choose or build existing components, based upon 
the architectural specification. These components should be connected 
according to the architecture. Designing the system's architecture is, in this 
case, the specification; "filling in" the components is the implementation. 
However, when one first completes the software architecture without the 
components at hand in mind, the chance that one can really reuse them is 
very low. The "inevitable intertwining of specification and implementation" 
(Swartout and Balzer, 1982) is especially valid when reusable components 
are involved. 

Another way of combining software architecture and component-based 
development is to build a system using existing components, and describe 
the architecture of such a system in an Architecture Description Language. 
The description can be used for analysis. 

In this paper, we explore the possibilities of both ways of combining 
component-based development and software architecture, for the component 
model of Java Beans. On the one hand, we investigate how we can map a 
software architecture onto an application of connected Java Beans. We use 
the framework for classifying ADLs by Medvidovic and Taylor (Medvidovic 
and Taylor, 1997) to cover the different aspects that might or should be 
included in an architectural description of a system. On the other hand, we 
summarize the requirements for an ADL to be able to describe the 
architecture of an application built by connecting beans. 

In section 2, we will give a short overview of the features and concepts 
of Java Beans. In section 3, we discuss the (im)possibilities of mapping 
architectural elements onto Java Beans. In section 4, we do the same 
mapping in reverse. Related work is mentioned in section 5, and in section 6, 
we discuss how to carry on. 

2. JAVA BEANS IN SHORT 

Java Beans are pieces of software, written in Java, in such a way that it is 
possible to build applications by connecting beans, in a "bean-aware" 
application builder. Such an application builder is able to get information of 
the bean about its properties, methods, and the events it fires. The user of the 
application builder may change properties, and connect different beans 
through events, thus building an application. Everything is done through 
dragging and dropping, or by filling in property sheets. 
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In a bean's lifetime, one may discern three different stages. In the first 
place, a bean should be created. In this paper, we are not concerned with 
beans programming, and we will just assume the existence of a library of 
ready-to-use beans. In the second place, a bean is used during the design of 
an application. The application builder tool discovers its properties, methods 
and events, the user or developer instantiates the bean, customizes the 
instances, and connects instances of (the same or different) beans. Of course, 
a bean may be used multiple times during the design of different 
applications. The third stage is the existence (as an instance) in a running 
application. We will refer to the second stage described above as 'design 
time." A bean in a running application is referred to as "run time." 

According to the Java Bean specification (Hamilton, 1997), a Java bean 
is a reusable software component with at least 
- support for introspection. Beans are constructed in such a way that an 

application builder may discover a bean's properties, methods, and 
events by introspection. 

- support for properties to be inspected or changed: customization. 
Properties are a bean's appearance and behavior attributes that can be 
changed at design time. 

- support for events, for communication between beans. A bean that wants 
to receive events (a listener bean) registers its interest with the bean that 
fires the event (a source bean). Builder tools can examine a bean and 
determine which events that bean can fire (send) and which it can handle 
(receive). 

- support for persistence. Persistence enables beans to save their state and 
restore that state later. 
A bean interacts with its environment through its set of properties, its set 

of methods, and the set of events it fires. Properties are attributes that can be 
read and written. Methods are normal Java methods that can be called from 
outside the bean. Events that are fired by beans invoke methods in beans that 
have subscribed on the particular class of events. These beans adhere to the 
EventListener interface. An event-firing bean and an EventListener bean 
may be decoupled by placing an EventAdapter bean in between them. 

Some properties of event delivery for Java Beans are: 
- Event delivery is multicast: one event that is fired invokes an associated 

method in every bean that has subscribed on the event. 
- Event delivery is synchronous with respect to the event source: the 

associated method in the EventListener bean is executed in the thread of 
the event-firing bean. 

- The set of EventListeners for a certain event may be changed 
dynamically. 
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2.1 Example 

2.1.1 Connections with events 

Imagine a BallThrowing Bean. Throwing a ball is implemented using an 
event, for which a BallEventObject class is created. When one uses such a 
Bean in a bean-aware application builder, one may instantiate instances of 
the BallThrowing bean, and connect them through the BallEvent. A bean (a 
BallThrowing bean or any other that can handle BallEvents) is connected by 
stating that the bean listens to BallEvents sent by the BallThrowing bean, 
and by specifying what action should be taken when receiving a BallEvent. 

A BallThrowing bean class should have a list of BallEventListeners, and 
methods to add and remove objects to and from that list. These methods are 
used in the application builder, when connections are made and undone. 

A BallEventListener bean should have an action method that has a 
BallEventObject as an argument. 

public class BallThrower { 
private Vector ballCatchers =new vector(); 

public synchronized void addBallEventListener(BallEventListener c) { 
ballCatchers.addElement( c) ; 

} 

public synchronized void removeBallEventListener(BallEventListener c) 
{ 

ballCatchers.removeElement( c); 

public interface BallEventListener { 
void catchBall(BallEventObject ball); 

public class BallEventObject extends EventObject { 
} 

2.1.2 Properties 

A bean-aware application builder simply searches for set- and get
methods to find the properties of a bean. The BallThrower bean, for instance, 
could have the number of balls it possesses, as a property: 
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public void setNumber(Integer number) { 
this.number = number; 

} 

public Integer getNumber() { 
return number; 

} 

Sylvia Stuurman 

Changes to properties may be notified to other beans. Such a property is 
called bounded. A bean with a bounded property maintains a list of 
PropertyChangeListeners (beans implementing the PropertyCangeListener 
interface), and it sends a PropertyChangeEvent to those listeneres when the 
bounded property has been changed. 

A property may be constrained as well. In this case, the bean maintains a 
list of VetoableChangeListeners, which are able to check whether a value of 
the constrained property is within the constraints. The setProperty method of 
such a bean raises an exception when one of the listeners uses its veto. 

A bean-aware application builder recognizes that a property is bounded 
or constrained, and offers the user of the application builder the possibility to 
indicate which other beans will act as listeners. 

2.1.3 Introspection 

In the samples of a bean shown above, we have used conventional names 
and type signatures of methods and interfaces as a means for introspection. 
Bean-aware application builders look for set- and get-methods, and 
addeventlisteners and removeeventlisteners methods, to find the properties 
of a bean and the events with which it can be connected. A Java Bean may 
also explicitly specify its properties, events and methods, using a class 
implementing the Beanlnfo class. 

2.2 Status and Environment 

Because communication between beans consists of event notification 
and direct method invocation, it is necessary that beans run in the same 
address space, in this case in the same Java Virtual Machine. Another 
environmental aspect of beans is that they should assume that they are 
running in a multithreaded environment: several different threads may 
simultaneously deliver events, or call methods directly. 

Several extensions have been proposed: 
- InfoBus (Colan, 1998) from Lotus Development is already available. 

This extension offers a new type of connection between beans: data 
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flows . Beans may subscribe to certain kinds of data (based on a name). 
Other beans produce the data. Application builder tools are able to extract 
from a bean the names of the data it is able to produce. This 
communication mechanism is known as subscription-based 
communication (Boasson, 1996). This type of connection is attractive 
with respect to the introduction of on-line changes (Stuurman and van 
Katwijk, 1998). 

- JavaSpaces (Sun, 1998) is available as a beta version at the moment. 
JavaSpaces provides a distributed persistence and object exchange 
mechanism. It is comparable with InfoBus for communication between 
beans in different Java Virtual Machines. 

- An extensible run-time containment and services protocol has been 
proposed (Cable, 1998). This protocol supports extensible mechanisms 
that introduce an abstraction for the environment of a bean, enable the 
dynamic addition of arbitrary services to a bean' s environment, provide a 
mechanism through which a bean may interrogate its environment, and 
provide a mechanism to propagate an environment to a bean. In short, the 
notion of the context of a bean is introduced in this extension. 

- Another extension is the Java Beans Activation Framework (Calder and 
Shannon, 1998). This framework supplies the services of determining the 
type of arbitrary data, encapsulating access to data, discovering the 
available operations on a particular type of data, and instantiating a 
software component that corresponds to the desired operation. 

3. USING BEANS TO IMPLEMENT AN 
ARCHITECTURE 

The idea of using beans to implement a given software architecture looks 
promising and desirable: beans are components in the architectural sense of 
loci of computation and data storage. One has the multi-platform benefits of 
the Java language; and there is the possibility to have a visual image of the 
application, consisting of connected components, as a mirror of the software 
architecture it implements. The idea would be to look for (or build) beans 
that match the specification of the components of the given architecture, and 
connect them according to the given configuration. 

Which aspects of an architecture are specified depends on the ADL that 
is used. We will not adhere to one specific ADL, but check the aspects used 
in the classification framework for ADLs by (Medvidovic and Taylor, 1997). 
These aspects are: interface, types, semantics, constraints, and evolution of 
components and connections; composability, heterogeneity, constraints, 
refinement, scalability, evolution and dynamism of configurations. 
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When examining the possibility of a mapping between Java Beans and an 
ADL, we will mainly look at those aspects that are specific to Beans (as 
opposed to the general aspects of the Java language). Those aspects are the 
most interesting because they have been specified for the convenience of 
tool-builders. Next to bean-aware application builders, one may just as easily 
construct bean-aware software architecture tools . 

3.1 Components 

The interface of a component in the software architectural sense is the 
set of interaction points between the component and the external world. An 
interface specifies the services a component provides, and it might specify 
the needs of a component. The interface of a Java Bean is its set of 
properties, its methods, and the events it fires. This information may be 
extracted from a bean at design time, so one may use an application builder 
tool to expose the interface. Mapping the interface of a component, specified 
in an ADL, to the interface of a Java Bean seems rather straightforward, 
though, of course, not every aspect of an interface that one can specify in an 
ADL has a counterpart in Java Beans. 

ADLs may model abstract components as types, and instantiate them 
multiple times. Some ADLs allow abstract component types to be 
parameterized. A Java Bean may be regarded as a parameterized component 
type insofar as it can be customized. A bean may be instantiated as often as 
one needs. So, parameterized types are directly supported by Java Beans but 
not every imaginable component type can be implemented using a Java 
Bean. 

A software architecture specification may contain a model of the 
component semantics. In a Java Bean, however, semantics are not exposed. 
When using beans in an application builder, the user is obliged to rely on the 
documentation supplied with the beans. 

An ADL may specify constraints on the abstract state of a component, 
the implementation, or non-functional properties. With respect to the abstract 
state of a component, Java Beans have the notion of constrained properties. 
When such a property is changed another bean validates the change. A 
mapping between constraints on the abstract state of a component and 
constrained properties of a bean seems possible. 

ADLs may support design evolution through subtyping and refinement. 
A mapping between such a support and an implementation using Java Beans 
might be useful for prototyping. However, subtyping and refinement of Java 
Beans in an application builder is not supported. 
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In table 1, we summarize which aspects of components, described in an 
ADL, may be mapped to those aspects of Java Beans that are visible for 
bean-aware tools. 

Table 1 · Mapping components in a software architecture description to Java Beans 

ASPECT MAPPING 

interface Possible, beans support a subset 

types Possible, beans support a subset 

semantics Not possible 

constraints Possible, beans support a small subset 

evolution Not possible 

3.2 Connections 

In an application builder using Java Beans, one glues beans together by 
connecting them using event notification. An event of an event-firing bean is 
associated with a method of an event-listening bean. A special case is the 
notion of constrained properties. A bean with constrained properties is 
associated with a validator bean. Each time (at run-time) that a property is 
changed, the change is validated. 

InfoBus and JavaSpaces extend this type of connection with the 
possibility of asynchronous, anonymous data communication. Beans may 
produce data, and may subscribe to certain kind of data. Producers don't 
have to wait until every consumer has seen the produced data. Producers and 
consumers are unaware of each other. Other kinds of connections (create 
connections for instance) are possible, but cannot be made visible in an 
application builder, and are "hidden" in the code of the bean. 

The interface of a connection in a software architecture is a set of 
interaction points between the connection and the components attached to it. 
Each kind of connection that can be used for Java Beans has its own 
interface: events are of a certain class and should be connected to an 
eventsource and a set of eventlisteners; InfoBus connections are associated 
with a name and should be connected to a set of data producers and a set of 
data consumers. Of course, not every interface that one can specify in an 
architecture has a counterpart in a Java Beans application. 
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Some ADLs distinguish connection types from connection instances. 
Events in Java Beans are always of a certain class, that can be subclassed. 
So, for event-based connections, one may map the idea of a connection type 
to an event connection. 

Some ADLs provide means to express the semantics of connections. For 
the connections possible in a Java Beans application, one should specify the 
semantics of these connections once. Of course, in an architecture, one can 
specify connections with semantics that have no counterpart in a Java Beans 
application. 

Connection constraints may consist of adherence to interaction protocols, 
intra-connection dependencies, or usage boundaries. In general, Java Beans 
give no support to translate these kind of constraints. 

Some ADLs provide support for connection evolution, through subtyping 
or refinement. Again, Java Beans give no support. 

Table 2: Mapping connections in a software architecture description to Java Beans 

ASPECT MAPPING 

interface Possible, beans support a subset 

types Possible, beans support a subset 

semantics Not possible (one should first specify beans connections) 

constraints Not possible 

evolution Not possible 

3.3 Configurations 

With respect to composability, some ADLs support situations where an 
architecture becomes a component in a bigger architecture. Such a 
composition can be mirrored in Java Beans, where a composition of 
interconnected beans may be transformed into one new bean. 

Many ADLs offer the possibility to specify global constraints. In general, 
it will not be possible to map these constraints to visible properties of a Java 
Beans application. 

Darwin, Rapide, and C2 allow specification of dynamism in 
architectures. Insertion and removal of both components and connections is 
possible in Java applications, but one cannot extract information about this 
behaviour by introspection. 
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Table 3: Mapping configurations in a software architecture description to Java Beans 

ASPECT MAPPING 

composition Possible 

constraints Not possible 

evolution Not possible 

4. USING AN ADL TO DESCRIBE A BEANS 
CONFIGURATION 

193 

The previous section showed that not every software architecture can be 
mapped onto a configuration of Java Beans. Not every part of an architecture 
description is translatable into either a Java Bean or a connection between 
beans. When using beans to construct a system based on a certain software 
architecture, one should check the types of components and the types of 
connections. 

Automating such a process is only attractive when one conforms to the 
subset of architectures that can be implemented using beans. On the other 
hand, it seems to be the case that an application built by connecting Java 
Beans may be translated relatively easily into an architectural description. 
One should choose an ADL based on how much of the information, 
available in a beans application, can be described. In the remainder of the 
section, we make use of the classification of (Medvidovic and Taylor, 1997), 
for ADLs, and we take only those ADLs into account that are part of the 
survey : Aesop, MetaH, LILEANNA, ArTek, C2, Rapide, Wright, UniCon, 
Darwin, SADL and ACME. 

4.1 Beans 

The properties, methods and the events a bean can fire, should be 
translated into an interface specification. All ADLs support specification of 
component interfaces. 

The language should provide the means to specify parameterized types, 
with the properties that can be changed at design time as parameters. Only 
ACME, Darwin and Rapide make explicit use of parameterization. 

Bounded properties may be translated into constraints on the abstract 
state of a component. Rapide uses an algebraic language to specify 
constraints on the abstract state of a component. 
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I< bl 4 M a e : appmg aspects o fb eans to an ADL 
ADL IN1ERFACE PROPERTIES AS BOUNDED 

SPECIFICATION PARAMETER PROPERTIES 
Aesop yes no no 
MetaH yes no no 
LILEANNA yes no no 
ArTek yes no no 
C2 yes no no 
Rapide yes yes yes 
Wright yes no no 
UniCon yes no no 
Darwin yes yes no 
SADL yes no no 
ACME yes yes no 

4.2 Connections 

Connections between an event source and an event listener should be 
translated into a specification of a connection with the appropriate interface. 
The same applies for the dataflow connections of the InfoBus and 
JavaSpaces extension. This is possible in all of the surveyed ADLs. 

The semantics for the Java Beans-style event-based and dataflow 
connections should be expressed in the ADL. It should be possible to express 
other kind of connections too, when future extensions introduce new types of 
connections. Rapide, Wright, and UniCon support such specifications. 

T. bl 5 M a e : f appmg aspects o connectiOns o fB eans to an ADL 
ADL EVENTS DATAFLOW SEMANTICS 
Aesop yes yes no 
MetaH yes yes no 
LILEANNA yes yes no 
ArTek yes yes no 
C2 yes yes no 
Rapide yes yes yes 
Wright yes yes yes 
UniCon yes yes yes 
Darwin yes yes no 
SADL yes yes no 
ACME yes yes no 
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4.3 Configurations 

Since it is possible to compose beans into one bigger bean, an ADL used 
to describe a bean-based application should support such kind of 
composition. Most ADLs do support it. 

Because Java Beans is still developing, and more extensions are to be 
expected, an ADL should allow for such extensions. 

Table 6: Mapping aspects of configurations of Beans to an ADL 

ADL COMPOSITION 
Aesop no 
MetaH yes 
LILEANNA no 
ArTek no 
C2 yes 
Rap ide yes 
Wright yes 
UniCon yes 
Darwin yes 
SADL yes 
ACME yes 

4.4 Implicit Aspects 

Above, we described the possibilities of different ADLs to describe those 
aspects of Java Bean-based applications that are visible for "bean-aware" 
tools. However, some implicit aspects of Java Beans should be described 
too, when distilling the architecture of an application. To name a few: 
- Threads. Every Java Bean may run in its own thread. At the same time, 

its methods may be called by other beans, and executed in the thread of 
the caller. A software architecture description of a beans application 
should specify this aspect, though it is not available through 
introspection. 

- Create-connections. A bean may instantiate other beans at run-time. Such 
a connection should certainly be described, but again, information about 
these relationships is not available through introspection. 

- Run-time change of the configuration. Apart from the possibility to 
create new instances of beans at run-time, beans are also able to change 
the connections at run-time. This will especially be seen very often in 
applications based on the Activation Framework extension. 
At this moment, information about these possibilities is not available for 

application builder tools. However, because the run-time flexibility of the 
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Java system is one of its advantages, an ADL for the description of beans 
applications should preferably support the specification of dynamism in the 
configuration. These ADLs are Darwin, Rapide and C2. 

Table 7· Mapping implicit aspects of Beans to an ADL 
ADL RUN-TIME 

CHANGE 
Aesop no 
MetaH no 
LILEANNA no 
ArTek no 
C2 yes 
Rap ide yes 
Wright no 
UniCon no 
Darwin yes 
SADL no 
ACME no 

5. RELATED WORK 

Reuse of Off-The-Shelf components in combination with the C2 style has 
been explored in (Medvidovic et al., 1997). They constructed a Class 
Framework of reusable classes that can be used to implement C2 style 
architectures, and integrated several OTS components with the C2 style. 
This integration was done by wrapping OTS objects in C2 components, and 
mapping events into C2 messages and vice-versa. In this work, the C2 style 
is the point of departure, and reusable components are adapted in such a way 
that they can be used to implement C2 style architectures. 

A tool to detect architectural mismatches during design has been 
constructed by Abd-Allah (Abd-Allah, 1996). His method is based on the 
notion of "conceptual features", which can be used to detect architectural 
mismatches. The goal of this work is to enhance the possibilities of reusing 
components, by scanning them on assumptions with respect to these 
features. 

6. DISCUSSION 

In this paper, we have made a start on combining Java Beans and 
software architecture. 
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6.1 Combining Software Architecture and Beans 

As we have seen, it is highly improbable that a certain software 
architecture can be mapped to an application built by connecting existing 
beans unless the designer of the architecture has taken such an 
implementation into account. A more feasible approach to combine beans 
and software architecture is to build a system using beans, and describe the 
system's architecture using an ADL. In that case, by choosing beans as 
components, one restricts oneself to a certain subset of architectural 
elements. 

However, as we have seen, not all the necessary information to describe 
an architecture can be extracted from beans and their connections. Certain 
aspects are implicit, and can only been revealed by inspecting the code of the 
beans in use. Automating such a process is only feasible when beans adhere 
to standard conventions for the implementation of these aspects. In fact, this 
would be an extension to the Java Beans specification. 

One can imagine an intermediate approach: using beans, especially 
developed for this purpose, to construct the system's architecture, and 
implementing the system using beans that are specialized versions of the 
"design" beans. Such an approach would benefit of an extension where one 
can classify beans as being a specialization of another bean. 

Neither of these approaches comes for free: we have to extend the 
standard for Java Beans to achieve a tight relationship between the software 
architecture description of a system and its implementation using beans. On 
the other hand, the Java Beans specification already offers substantial 
support for extracting an architectural description: the property of 
introspection, meant for application builder tools, can be used for a 
translation into an ADL of the exposed features of a bean. 

6.2 Design for Change 

An attractive property of both approaches is that changes in the software 
are automatically handled at the architectural level. On-line change 
capabilities are needed in several domains (see for instance (Stankovic, 
1996)), and the ideal situation would be that such changes can be applied at 
the architectural level. 

Prerequisites for a system with on-line change capacities at the 
architectural level are: 
- The software architecture is reflected in the executable. Parts of the 

executable from which components can be instantiated are traceable and 
replaceable. 

- Components may be added, deleted or replaced, at execution time. 
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Bindings of components through connections occur dynamically. In other 
words, connections may be added, deleted or replaced at execution time. 
Instantiation of components and connections is possible from outside the 
system. 
The functionality of components is not directly dependent on other 
components. 
It is possible to analyze properties of the system at the architectural level. 
Before a change is applied, the architecture should be analyzed to 
guarantee that the changed system will meet the changed requirements. 
Obviously, using a method based on the combination of a software 

architecture description and a Java Beans application, it is relatively easy to 
build systems with on-line change capacities on the architectural level. 
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Abstract: The essence of architectural styles is component communication. In this paper, we 
relate architectural styles to adaptors in the Gen Voca model of software construction. Gen
Voca components are refinements that have a wide range of implementations, from binaries 
to rule-sets of program transformation systems. We explain that architectural styles can (I) 
be understood as refinements (like other GenVoca components) and (2) that they are general
izations of the 00 concept of adaptors. By implementing adaptors as program transforma
tions, complex architectural styles can be realized in GenVoca that simply could not be 
expressed using less powerful implementation techniques (e.g., object adaptors). Examples 
from avionics are given. 

1 INTRODUCTION 

Mcilroy and Pamas observed almost thirty years ago that software prod
ucts are rarely created in isolation; over time a family of related products 
eventually emerges (Mcilroy, 1968 and Pamas, 1976). Software design and 
development techniques then were aimed at one-of-a-kind products. While 
software design methodologies have improved significantly both in quality 
and sophistication, one-of-a-kind products are still the norm. However, it is 

I. This paper is derived from two ADAGE technical reports (Batory and Coglianese, 1993; 
Batory and Smaragdakis, 1995) that were sponsored by U.S. D.o.D. A.R.P.A. in cooperation 
with the U.S. Wright Laboratory Avionics Directorate under contract F33615-91C-1788. 
This research is sponsored in part by Microsoft, Schlumberger, the University of Texas 
Applied Research Labs, and U.S. D.o.D. A.R.P.A. under contract F30602-96-2-0226. 
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becoming increasingly apparent that product families are indeed very com
mon and methodologies are needed to accommodate their economical 
design and construction. 

A product-line architecture (PLA) is a blue print for building a family of 
related applications. A number of different approaches for designing PLAs 
have been under development for some time, each proffering many suc
cesses (Weiss, 1990; Cohen et al., 1995; Harrison and Ossher, 1993; Batory 
and O'Malley, 1992). Of these approaches, the GenVoca approach is distin
guished by components that export and import standardized interfaces 
(Batory and O'Malley, 1992; Smaragdakis and Batory, 1998). Applications 
of a product-line are assembled purely through component composition. 
Components themselves can encapsulate domain-specific "intelligence" 
that can, for example, automate domain-specific optimizations that are criti
cal to application performance. 

A fundamental issue in composing applications from components has to 
do with the way components communicate their needs and results. This is 
what we consider the essence of architectural styles: the separation of a 
component's computations from the means by which it communicates. As 
no single architectural style suffices for all applications, there needs to be a 
way in which styles can evolve (or be replaced) within or across application 
instances. 

In this paper, we explore the relationship of architectural styles and Gen
Voca. Gen Voca components are refinements that have a wide range of 
implementations, from binaries to rule-sets of program transformation sys
tems. Architectural styles can also be understood as refinements and treated 
just like other GenVoca components. Furthermore, style refinements are 
actually generalizations of the 00 concept of adaptors. By implementing 
adaptors as program transformations, complex architectural styles can be 
realized in Gen Voca that simply could not be expressed using less powerful 
implementation techniques (e.g., object adaptors). Examples from avionics 
are given to partially support this claim. 

2 COMPONENTS, ARCHITECTURAL STYLES, AND 
REFINEMENTS 

The term software architecture refers to an abstract model of an applica
tion that is expressed in terms of intercommunicating components. Compo
nents communicate via abstract conduits whose implementations are 
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initially unspecified. An architectural style is an implementation of a con
duit; the original vision of Garlan and Shaw allowed software architects to 
select different styles (conduit implementations), such as pipes, RPC, etc., 
that would satisfy application performance or functionality constraints. 
Some architectural styles could reveal lower-level components and con
duits, thereby allowing conduit implementations to be expressed in a pro
gressive or "layered" manner (Gorlick and Razouk, 1991 ). 

Mapping an abstract concept or declaration to a concrete (or less 
abstract) realization is a refinement. Just as architectural styles are refine
ments of communication conduits, component implementations can also be 
revealed as a progression of refinements. Such progressions are sometimes, 
but not always, equivalent to "layered" implementations. 

Refinements expose the implementations of components and conduits in 
a uniform way (which seems reasonable, since both are expressed as soft
ware). It is evident that a powerful model of software architectures can be 
created around the concept of refinements as primitive building blocks of 
applications. This is one of several basic ideas that underly the Gen Voca 
model of software construction. 

3 A MODEL OF PRODUCT-LINE ARCHITECTURES 

A premise of Gen Voca is that plug-compatible and interchangeable soft
ware "building blocks" can be created by standardizing both the fundamen
tal abstractions of a mature software domain and their implementations. 
The number of abstractions in a domain is typically small, whereas a huge 
number of potential implementations exist for every abstraction. Gen Voca 
advocates a layered decomposition of implementations, where each layer or 
component encapsulates the implementation of a primitive feature shared 
by many applications. The advantage is scalability (Batory, et al., 1993; 
Biggerstaff, 1994): libraries have few components, while the number of 
possible combinations of components (i.e., distinct applications in the 
domain that can be defined) is exponential. Gen Voca has been used to cre
ate product line architectures for diverse domains including avionics, file 
systems, compilers, and network protocols (Coglianese and Szymanski, 
1993; Heidemann and Popek, 1993; Hutchinson and Peterson, 1991). 

Components and realms. A hierarchical application is defined by a 
series of progressively more abstract virtual machines (Dijkstra, 1968). (A 
virtual machine is a set of classes, their objects, and methods that work 
cooperatively to implement some functionality. Clients of a virtual machine 
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do not know how this functionality is implemented). A component or layer 
is an implementation of a virtual machine. The set of all components that 
implement the same virtual machine is a realm; effectively, a realm is a 
library of interchangeable components. In Figure la, realms S and T have 
three components, whereas realm w has four. 

(a) S={a,b,c} (b) S:= a b c 

T={d[S),e[S),f[S)} T:= d s I e s I f s ; 

W={n[W),m[W),p,q[T,S)} W:= n WI m W I p I q T S; 

Figure 1: Realms, components, and grammars 

Parameters and refinements. A component has a (realm) parameter 
for every realm interface that it imports. All components of realm T, for 
example, have a single parameter of realm s.2 This means that every com
ponent ofT exports the virtual machine ofT (because it belongs to realm T) 
and imports the virtual machine interface of s (because it has a parameter of 
realms). Each T component encapsulates a refinement between the virtual 
machines T and s. Such refinements can be simple or they can involve 
domain-specific optimizations and the automated selection of algorithms. 

Applications and type equations. An application is a named compo
sition of components called a type equation. Consider the following two 
equations: 

Al d[b]; 

A2 f[a); 

Application Al composes component d with b; A2 composes f with a. 
Both applications are equations of type T (because the outermost compo
nents of both are of type T). This means that Aland A2 implement the same 
virtual machine and are interchangeable implementations of T. Note that 
composing components is equivalent to stacking layers. For this reason, we 
use the terms component and layer interchangeably. 

Grammars, product lines, and scalability. Realms and their compo
nents define a grammar whose sentences are applications. Figure la enu
merated realms s, T, and w; the corresponding grammar is shown in Figure 
1 b. Just as the set of all sentences defines a language, the set of all compo-

2. Components may have many other parameters in addition to realm parameters. In this 
paper, we focus only on realm parameters. 
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nent compositions defines a product-line. Adding a new component to a 
realm is equivalent to adding a new rule to a grammar; the family of prod
ucts that can be created enlarges automatically. Because huge families of 
products can be built using few components, Gen Voca is a scalable model 
of software construction. 

Symmetry. Just as recursion is fundamental to grammars, recursion in 
the form of symmetric components is fundamental to Gen Voca. More spe
cifically, a component is symmetric if it exports the same interface that it 
imports (i.e., a symmetric component of realm w has at least one parameter 
of type w). Symmetric components have the unusual property that they can 
be composed in arbitrary ways. In realm w of Figure 1, components n and m 

are symmetric whereas p and q are not. This means that compositions 
n[m[p]], m[n[p]], n[n[p]], and m[m[p]] are possible, the latter two show
ing that a component can be composed with itself. Symmetric components 
allow applications to have an open-ended set of features (because an arbi
trary number of symmetric components can appear in a type equation).3 

Design rules, domain models, and generators. In principle, any 
component of realm s can instantiate the parameter of any component of 
realm T. Although the resulting equations would be type correct, the equa
tion may not be semantically correct. That is, there are often domain-spe
cific constraints that instantiating components must satisfy in addition to 
implementing a particular virtual machine. These additional constraints are 
called design rules. Design rule checking (DRC) is the process of applying 
design rules to validate type equations (Batory and Geraci, 1997). A Gen
Voca domain model or product-line architecture (PLA) consists of realms of 
components and design rules that govern component composition. A gener
ator is an implementation of a domain model ; it is a tool that translates a 
type equation into an executable application. 

Implementations. A Gen Voca model is an abstract description of a 
product-line architecture. It expresses the primitive building blocks of a 
PLA as composable refinements (components). The model itself does not 
specify when refinements are composed or how they are to be implemented. 
Refinements may be composed statically at application-compile time or 
dynamically at application run-time. Refinements themselves may be 
implemented compositionally (e.g., COM binaries, Java packages, C++ 

3. We refer to virtual machines as "standardized interfaces". However, these interfaces are 
not immutable; they can change with the addition or removal of a component (Batory and 
Geraci, 1997; Smaragdakis and Batory, 1998). Thus, symmetric components can add new 
functionalities that are reflected in application interfaces. 
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templates), as metaprograms (i.e., programs that generate other programs 
by composing prewritten code fragments), or as rule-sets of program trans
formation systems (PTSs). Compositional implementations offer no possi
bilities of static optimizations; metaprogramming implementations 
automate a wide range of common and simple domain-specific optimiza
tions at application synthesis time; PTSs offer unlimited optimization possi
bilities. Choosing between dynamic and static compositions, and alternative 
implementation strategies is largely determined by the performance and 
behavior that is desired for synthesized applications. 

Separating PLA design from implementation provides a significant con
ceptual economy: Gen Voca offers a single way in which to conceptualize 
building-block PLAs and many ways in which to realize this model (each 
with known trade-offs). 

4 ARCHITECTURAL STYLES AS ADAPTORS 

4.1 Motivation 

An architectural style refers to the means by which components com
municate their needs and results, as well as a set of constraints that govern 
the overall constellation of an application's components. For example, com
ponents can communicate through pipes in the pipe-and-filter style; constel
lations are largely limited to linear chains of components. Our focus on 
architectural styles lies exclusively with component communication. Note 
that this definition of a "style" is not as broad as that in the treatment of 
architectures by Perry and Wolf (Perry and Wolf, 1992) (where a style can 
be any abstract architectural element and may cover as many aspects as an 
entire architecture), but follows a more constrained view taken by other 
researchers (Shaw and Clements, 1997; DeLine, 1996). 

The obvious first question is, why use different architectural styles? 
There are many reasons, some of which are: 

• Compatibility reasons. Most often, a style is fixed by convention or 
because the need to distinguish between computation and communica
tion had not become apparent at component implementation time. Thus, 
components need to adopt a special style to communicate with existing 
software. The scale of both components and interfaces may vary 
widely. Many standard protocols (interprocess communication, win
dowing application conventions, COM for ActiveX controls) can be 
viewed as alternative styles for connectors to some unit of functionality. 
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• Performance/portability reasons. Even simple decisions at the imple
mentation level can constitute stylistic dependencies: a piece of code 
could be inlined or made into a procedure. A set of parameters may be 
passed through global variables or procedure arguments. A service can 
be implemented as a static or dynamic library, or even a stand-alone 
server. Such decisions fundamentally affect the performance and porta
bility of a component. Distributed applications are a good example. 
Deciding whether a piece of functionality is local or accessed over a 
network can be viewed as a simple stylistic choice, albeit one that fun
damentally affects performance. Ideally the same component could 
adopt different styles and be used in vastly different applications. For 
instance, the same piece of functionality may be in the core of both an 
embedded system (with a primitive OS, small memory, and slow pro
cessor) and a high-end server system. The component should not have 
to be rewritten but should automatically adapt (through a style adaptor) 
to the capabilities of either runtime environment. 

4.2 Gen Voca and adaptors 

GenVoca components are designed a priori to communicate with their 
clients in one style. For example, application Al of Section 3 has compo
nent d communicating with component b via the s interface. What exactly 
the mechanisms and protocols are (e.g., local procedure calls, marshalled 
arguments, global-variables, etc.) is governed by the definition of the virtual 
machine s. But suppose we would like component d to communicate with b 

via another style - remote procedure calls - which we would encode as 
some interface G. Furthermore, we would like components d and b to 
remain unchanged, so that d's calls to interface s are translated (refined) 
into calls to interface G; similarly, invocations of G methods are translated 
(refined) into invocations of s methods forb to process, and vice versa. 

This can be accomplished using adaptors (Gamma, eta!., 1994). For our 
example, we need to add two components and one realm to Figure 1. Com
ponent s2g[Gl would translate (refine, adapt) s method invocations to G 

method invocations; s2g[Gl would be a new member of realms. Compo
nent g2s [Sl would do the opposite: it would translate (refine, adapt) calls to 
G into calls to s; g2s [Sl would be the (lone) component of a newly-created 
realm G. Figure 2 graphically illustrates the modification of Al to Al', 

where d indirectly communicates (via interface G) with b. 

Note the following. First, the essence of replacing one architectural style 
with another should not alter the semantics of the target application. We 
have indeed not altered the computations of Al in any way by rewriting it as 
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Al'/,--- -,, f$1' I :d' 
: 1 (a) d' imports an 
\, _ V G-style S interlace /_a; ____ _ 
1 g2s \ (b) b' exports an 
: :b• G-style S interlace 

\ b I 
' ... ___ _ 

Figure 2: Changing architectural styles Figure 3: Stylized component interfaces 

Al'; the only thing that has changed is the means by which components d 

and b communicate. The architectural style equation G-Style [x] = 
s2g [g2s [xll is the identity mapping, and algebraically Al = Al'. In gen
eral, we postulate that architectural styles are algebraic identity elements. 
Given the type equation of an application, it is possible to rewrite the equa
tion in many different ways using 'style' identities. Each equation would 
describe a different implementation of that application -i.e., the same fun
damental computations are performed in the same order, the only difference 
is the means by which components communicate. 

Second, one of the goals of component-based design is to avoid compo
nent replication in library development. Replication occurs, for example, 
when the computations of a component are fused with its communication 
style. Different encodings of a computation exist when multiple styles need 
to be supported. Unfortunately, this approach doesn' t scale. If there are n 
computations and s styles, then potentially n*s different components may 
be needed. Adding a new style may introduce n components; adding a new 
computation might introduce s components. 

Our model suggests a way to avoid such replication. Components and 
adaptors are designed to be orthogonal to each other; this gives them a mix
and-match quality that avoids the fusing of component computations with 
communication styles. In Figure 3, we can view application A' as a compo
sition of components d' and b', where d' communicates with b' via inter
face G (i.e., the computations of d and bare communicating via a "G" style). 
Algebraically, d' [x] = d [s2g [xll and b' = g2s [b]. 

This view of architectural styles as adaptors is not novel. Nevertheless, 
standard compositional implementations of adaptors (e.g., as objects, pro
cedures, or templates) have not always been up to the task. The use of adap
tors makes interface translations look conceptually trivial but the 
implementations of such translations may be very sophisticated. Composi-
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tional implementations (e.g., 00 object adaptors) are inadequate to equate 
architectural styles with adaptors. There are many architectural styles that 
cannot be implemented (or implemented efficiently) in this manner. (Con
sider the example given earlier, of a single component being used in both a 
high-end server and an embedded system.) This is not surprising: the use of 
a compositional mechanism (e.g., procedures or objects) is itself a stylistic 
dependency! 

In contrast, our approach focuses on conceptualizing building-blocks of 
product-line architectures as refinements. The advantage of refinements is 
that they are not limited to compositional implementations. In fact, many of 
the useful expressions of styles as adaptors employ metaprogramming tools 
(software generators) . Generators have control over components that 
exceeds the limits of languages. For instance, code fragments can be fused 
together (Smaragdakis and Batory, 1997) or specialization hooks can be 
eliminated from the generated code if they are not used. Even very simple 
"generators" (like the Microsoft MFC and ATL wizards for adapting soft
ware to the style of Windows applications, ActiveX controls, etc.) are much 
more powerful than a simple collection of compositional components. It is 
this flexibility of generators that allows us to equate architectural styles with 
("intelligent") adaptors. 

A significant consequence of using software generators is that the struc
ture of the generated program may look nothing like the structure of its 
specification. Hence, even though Gen Voca is a layered model, it is not con
strained to building layered implementations. GenVoca just offers the 
"vocabulary" for specifying product-lines. Generators are compilers that 
translate such specifications into their concrete realizations. A layered spec
ification may well be describing programs with non-layered architectural 
styles (e.g., client-server, blackboard, etc.). 

5 AN EXAMPLE FROM AVIONICS 

ADAGE was a project to realize a GenVoca-based product-line architec
ture for avionics (in particular, navigation) software (Coglianese and Szy
manski, 1993; Batory and Smaragdakis, 1995). While the details of the 
model are not germane to this paper, the central idea is that navigation com
ponents communicate by exchanging state vectors - i.e., run-time objects 
that encode information about the position of an aircraft at a particular point 
in time. Different components perform common computations on state vec
tors (e.g., filtering, integration, etc.). This section overviews an approach 
that was prototyped for ADAGE. 
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For the purposes of our paper, we will study a very simple type equation, 
E = Main[A[B[Clll, that is a linear chain of components. The Main compo
nent encapsulates the application that is periodically executed; the remain
ing components perform computations on state vectors. Computations 
proceed bottom-up; that is, component c outputs a vector that is processed 
by B; B's vector is processed by A; Main displays the contents of AS vector. 
The specific computations will be abstracted into a set of uninterpreted 
algorithms that will allow us to explore the impact of using different archi
tectural styles. Each component exports a read-vector method that a higher
level component can call. Although there are many other methods, the cen
tral idea of architectural styles can be conveyed with the rewriting/packag
ing of this one method; other methods can be treated in a similar manner. 
Note that our examples are deliberately idealized with complicating details 
omitted. 

We will denote the read-vector computation of component c to be algo
rithm c ( >; that is, whenever the read-vector computation of c is called (no 
matter how the read-vector method is expressed), algorithm c < > is invoked. 
Similarly, the read-vector computation of component B is algorithm 
b(x:TYPE_C), where TYPE_c is the type of vector output by component c. 
The read-vector computation of A is algorithm a(x:TYPE_B), where TYPE_B 
is the type of vector output by component B. 

5.1 Example styles 

There are many ways of encoding the computations of E as one or more 
Ada tasks. Many reflect minor differences in programming styles. In this 
section, we present three very different implementations of E - executive, 
layered, and task - each with its own unique architectural style. Every 
implementation executes exactly the same domain-specific computations in 
the same order; the only difference is how the components of E communi
cate with each other (and hence are encoded). Later, we will explain how 
each of these implementations could be "derived" or "generated" using 
Gen Voca architectural-style adaptors. 

Executive implementation. The most common way in which the com
putations of E are realized in avionics software is as an executive (also com
monly known as time-line executive). The state vector that is output by each 
component is stored in a global variable; read-vector methods are encoded 
as procedures that read and write global state vectors. The Main task exe
cutes read-vector methods in an order that reflects a bottom-up evaluation 
of E. An Ada representation of an executive encoding of E is depicted in 
Figure 4. 
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-- global state vectors 

vec_a 'l'YPE_A; 
vec_b 'l'YPE_B; 
vec_c TYPE_C; 

-- read-vector for component C 

procedure READ_C is 
begin 

vec_c • c(); 
end; 

-- read-vector for component B 

procedure READ_B is 
begin 

invec : TYPE_A; 
invec • vec_c; 
vec_b • b( invec ); 

end; 

-- read-vector for component A 

procedure READ_A is 
begin 

invec : TYPZ_B; 
invec • vec_b; 
vec_a • a(invec); 

end; 

-- main task 

task body MAIN is 
begin 

x : integer; 
loop 
bottom-up evaluation of E 

READ_C; 
READ_B; 
READ_A; 

compute x till next cycle 
delay x; 

end loop 
end; 

Figure 4: The "Executive" Style 

-- component read functions 

function READ_C return TYPE_C is 
begin 

return c(); 

end; 

function READ_B return TYPE_B is 
begin 

invec : TYPE_ B; 

invec • READ_C; 
return b(invec); 

end; 

function READ_A return TYPE_A is 
begin 

invec : 'l'YPE_ B; 

invec • READ_B; 
return a(invec); 

end; 

-- main task 

task body MAIN is 
begin 

x : integer; 
vec_a : TYPE_A; 
loop 

vec_a • R!!AD_A; 
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-- compute time x till next cycle 
delay x; 

end loop 
end; 

Figure 5: The "Layered" Style 

Layered implementation. A typical layered implementation of Main 

would permit Main to call only the methods of component A; As methods, in 
tum, would call methods of component B, and B's methods would call those 
of c . State vectors are returned as method results; there are no global vari
ables. An Ada representation of a layered encoding of E is depicted in Fig
ureS. 

Task implementation. A third and very different implementation of E 

would be to realize each component as an Ada task; state vectors would be 
exchanged between tasks. Figure 6 depicts a task encoding of E . 
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-- components aa tasks task TASX_A ia 

task TAS!t_C is 
entry READ_C(vec_c : out TYPZ_C); 

end; 
task body TAS!t_C is 
begin 

loop 
accept READ_C(vec_c out TYPZ_C) do 

vec_c • c() ; 
end; 

end loop 
end 

task TASX_B is 
entry READ_B(vec_b out TYPZ_B); 

end; 
task body TASX_B 
use TASX_C is 
begin 

loop 
accept READ_B(vec_b : out TYPZ_B) do 

invec : TYPZ_C; 

-- read vector from TASX_C 
TASX_C.READ_C(invec) 
vec_b • b(invec); 

end; 

end loop 
end; 

entry READ_A( vec_a : out TYPZ_A ) ; 

end; 
task body TAS!t_A 
begin 

loop 
accept READ_A(vec_a:out TYPZ_A) 
do 

invec : TYPZ_B; 

-- read vector from TASX_B 
TASX_B.READ_B(invec); 
vec_a • a(invec); 

end; 

end loop 
end 

--main task 

task body MAJ:N 
use TASX_A is 
begin 

x : integer1 
invec : TYPE_A; 
loop 

- - read vector from TASX_A 
TASX_A.READ_A(invec); 

-- compute time x till next cycle; 
delay x; 

end loop 
end; 

Figure 6: A transducer/task style 

Note that all three of the above examples are semantically equivalent 
(i.e., they each perform exactly the same computations in the same order), 
and are syntactic transformations of each other. The only code that is 
shared among all three are the algorithms c <> , b < x: TYPE_ c) , and 
a(x : TYPE_Bl ; the differences are simply in the packaging of these algo
rithms in a particular architectural style. 

There are several trade-offs involved in choosing one of the above 
styles. Not all of them are apparent in our presentation of these styles as 
Ada code fragments . Nevertheless, we will try to outline here the trade-offs 
between the "executive" and "task" implementations. 

Time-line executive is the easiest runtime implementation to write. The 
programmer needs to set a timer interrupt for the basic system cycle. When 
the timer goes off, a predefined set of procedures that implement the appli
cation functions get called. The main advantage of this style is its predict
ability. Application functions will run in a fixed pattern. Adding the 
maximum time for each function yields the maximum time for the cycle. 
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The simplicity of the dispatcher (no scheduler is needed) results in a low 
overhead, quite predictable OS when no real-time alternative exists. The 
down side to the executive style is that it is too simplistic. The data used by 
the system is fundamentally produced at different rates. Computations need 
to run at a variety of rates. Data consumers need information with another 
set of rates and latencies. If some unit needs to operate at a rate different 
than the basic cycle, the system will become more complex. Adding and 
deleting functions or changing the timing requirements forces one to mod
ify code throughout the system. In all, the code is partitioned more to satisfy 
timing than based on objects or functional cohesion. A second problem 
arises from the linear nature of the executive's calling sequence. Data is not 
passed from one part of the cycle to the next. Rather the majority of state 
information is stored in global data. Without formal data-flow analysis, it is 
easy to use data in global variables that have not yet been updated for the 
current cycle. 

Tasking architectures have been designed to overcome the brittle, error
prone nature of time-line executives. Modem schedulers permit analysis to 
prove that all processing deadlines will be met. Thus data can be produced 
at the required rates. Tasks can be added and the effects of their load on the 
system can be calculated. The disadvantage of the task style is that it is dif
ficult to implement and generally has a higher overhead. 

In the next section, we explain how computations and "style" adaptors 
can be packaged as Gen Voca components. 

5.2 Packaging adaptors as components 

As mentioned earlier, both components and adaptors that represent 
architectural styles can be unified by the concept of consistent refinements. 
An implementation of refinements that can synthesize the examples of 
Section 5.1 are metaprograms and rule-sets of program transformation sys
tems (PTS). A metaprogram is a program that generates another program 
by composing code fragments; a rule-set of a PTS is a set of tree rewrite 
rules that, when applied, progressively transform one program into another. 
For both metaprograms and PTS, programs are manipulated as data. We 
will explain our implementation using a metaprogramming approach. Later 
in Section 5.3.2, we motivate the generalization to rule-sets of PTSs. 

Our model assumes that components communicate in a predetermined 
"standard" style. Any other style would be obtained through the use of 
adaptors. For this to be possible, each avionics component will be repre
sented as a metaprogramrning protocol - each component can query the 
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capabilities and properties of adjacent components to determine what code 
should be generated. In particular, this allows each component to determine 
(a) the global variables that are to be used, (b) the protocol on how a com
ponent's current state vector is to be obtained, (c) when component methods 
are to be executed, and (d) what interface "wrapper" should surround the 
source code of domain-specific computations. Each of these capabilities 
will be expressed as methods that return code fragments. 

5.2.1 An executive component 

Let's look at how component A might be represented as a metaprogram. 
Let's assume that the "standard" style in our model is executive (any style 
will do). So our implementation of component A will encapsulate both A's 
fundamental computations as well as its executive encoding. The following 
explains a set of methods that A (as well as Band c) would implement: 

• global-variable method: This method outputs the declaration of any 
global variable of a component. Component A would output "A_ vee : 
TYPE_A; ". That is, it would output a standard name for its global vari
able (A_vec) and its declaration. In addition, the global-variable method 
of the component beneath A would be invoked, thereby generating a 
chain of global variable declarations originating from multiple compo
nents. Consider equation E. When the global-variable method for A is 
called, the following declarations would be generated: 

vec_a TYPE_A; 
vec_b TYPE_B; 
vec_c TYPE_C; 

• get-current-vector method: This method outputs a statement that 
assigns local variable invec to the current vector of the given compo
nent. For component A, the statement "invec = vec_a;" is produced, 
meaning that the current vector of A is in global variable vec_a. 

• interface-generation method: This method generates a component's 
read-vector method in executive style. Component A produces a param
eterless procedure where the body of the procedure invokes algorithm 
a(x:TYPE_B): 

procedure READ_A is 
begin 

invec : TYPE_B; 
--- set invec to appropriate value 
vec_a a(invec); 

end 
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Note that the above procedure is incomplete, because invec has yet to be ini
tialized. The assignment statement that initializes invec is produced by invok
ing the get-current-vector method of the component that lies 
immediately beneath A. Again consider equation E . The read procedure that is 
generated by calling interface-generation for component A is: 

procedure READ_A is 
begin 

invec TYPE_B; 
invec vec_b; 
vec_a a(invec); 

end 

• compute-vector method: The computation of a new state vector in 
executive style is distinct from returning its result. To compute A's new 
vector, we must first compute the state vector of the layer immediately 
below A (by calling its compute-vector method). We then generate the 
call "READ_A; ". For equation E, the calls that would be produced by 
invoking the compute-vector method of A is : 

READ_C; 
READ_B; 
READ_A; 

This sequence of calls is included in the task-loop of Main of Figure 4. 

Note when the type equation E is created, one is actually composing 
metaprogramming implementations for each of E's components. When the 
generator executes E, it produces/generates the executive source code of 
Figure 4. In the next section, we will show how a layer-style adaptor can be 
written. 

5.3 A layer-style adaptor 

A metaprogramming adaptor intercepts method calls for code genera
tion and replaces them with different calls. Here are the refinements for a 
layer-style adaptor called layer:4 

• global-variable method: To make component A appear to be in a lay
ered architectural style, A will have no global variables. When the glo
bal-variable method of the layer adaptor is called, a dispatch to the 
global-variable method of the component immediately below A is 

4. Note that x = layer [x] is an architectural style identity. 
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called (thereby skipping the call of AS global-variable method). So, the 
variable declarations generated for the equation E' = layer[A[B[C]]] 

would be: 

vec_b : TYPE_B; 
vec_c : TYPE_C; 

That is, components B and c are still in executive style (and thus have global 
variables), but A is not. 

• get-current-vector method: To obtain the current vector in layered 
style, A would output the assignment statement "invec = READ_A; " , 

where READ_A is a function that returns AS current state vector. 

• compute-vector method: The computation of a new state vector in lay
ered style occurs whenever its READ_A function is called. Thus, the 
compute-vector method of a layer adaptor generates no code and has a 
null body. An example of this method will be given shortly. 

• interface-generation method: AS read-vector method in layered style 
involves the generation of a parameterless function that returns AS state 
vector: 

function READ_A return TYPE_A is 
begin 

invec : TYPE_B; 
--- invoke compute-vector 
- - - set invec to appropriate value 

return a(invec); 
end 

The above function is incomplete, because the computation of the state vector 
from the component beneath A must be performed and local variable invec 
must be initialized. The code for the latter is produced by calling the com
pute-vector method, and the code for the latter is produced by calling the 
get-current-vector method of the component beneath A. As an example, the 
code generated for the equation E' = Main [layer [A [B [C]]] would be: 

function READ_A return TYPE_A is 
begin 

invec TYPE_B; 
READ_C; 
READ_B; 

end 

invec = vec_b; 
return a(invec); 

compute-vector before referencing 

variable invec equals vec_b 
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5.3.1 A task-style adaptor 

A task-style adaptor (called task) would have the following methods: 

• global-variable method: There are no global variables in task archi
tectural styles. The global-variable method of a task adaptor simply 
returns the result of the global-variable method of the component 
beneath A. 

• get-current-vector method: To obtain the current vector in task-style, 
A would output the assignment statement "TASK_A . READ_A(invec); " , 

which assigns variable invec a value via a task call. 

• compute-vector method: As with the layer-style adaptor, the computa
tion of a new state vector in task-style occurs whenever its task read
vector method is called. Thus, the compute-vector method of a layer 
adaptor has a null body. An example will be given shortly. 

• interface-generation method: AS read-vector method in task style 
generates an Ada task:5 

task TASK_A is 
entry READ_A ( vec_a out TYPE_A ) ; 

end; 
task body TASK_A 
begin 

end 

loop 
accept READ_A( vec_a : out TYPE_A ) do 

i nvec : TYPE_B; 
--- invoke compute- vector 
--- set invec to appropriate value 

vec_a = a(invec); 
end; 

end loop 

As an example, the code generated for the equation E' 

Main[task[A[B[C]]] l would be: 

task TASK_A is 
entry READ_A( vec_a out TYPE_A ); 

end; 

5. Readers may note that the Ada uses clause specifies tasks that can be called from within 
a task. The list of such tasks could be produced by an additional method -uses-tasks 

method - that all components would need to implement. 
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task body TA 
begin 

loop 
accept READ_A( vec_a out TYPE_A ) do 

invec : TYPE_B; 
READ_C; 
READ_B; 
invec vec_b; 
vec_a a(invec); 

end; 

end loop 
end 

5.3.2 Recap 

Given the above model of components and adaptors, the type equations 
for Figures 4-6, which are equivalent to equation E, are: 

Figure4 = Main[A[B[C]]]; 
FigureS = Main[layer[A[layer[B[layer[C]]]]]]; 
Figure6 = Main[task[A[task[B[task[C]]]]]]; 

It is not difficult to imagine that metaprogramming adaptors for other 
architectural styles - such as table dispatching, file filters, and Weaves 
(Gorlick and Razouk, 1991) - can be created by following the above 
approach. It is also not difficult to see that different architectural styles can 
be intermixed within the same type equation. Thus, a version of E that 
implements A as a task, Bin layered style, and c in executive style would be 
E* = Main[task[A[layered[B[Clllll . The source that would be gener
ated from this equation is shown in the Appendix. 

Readers may have noticed that more compact code could be generated 
in our examples. For example, the invec variable could easily be removed 
from many of our generated procedures. While this is a trivial optimization, 
it is symptomatic of inefficiencies that can arise in metaprogramming 
implementations of components and adaptors. Optimizations requiring code 
movement and variable elimination are extremely difficult to express in 
metaprograms. If such optimizations are crucial for producing efficient 
code, then rather than implementing components and adaptors as metapro
grams, a better way would be to implement them as rule-sets of program 
transformation systems (where such optimizations are possible and can be 
expressed easily). Again, this is possible in a GenVoca model because the 
basic model remains unchanged; it is only the implementation the generator 
(and the domain model components) that are affected. 
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6 CONCLUSIONS 

Product-line architectures are becoming progressively more important. 
Isolated designs of individual software products are being replaced with 
designs for product-lines that amortize the cost of both building and design
ing families of related products. A critical aspect of product-line designs 
involves architectural styles. Different applications of a product family may 
require the use of different styles as the basis of component communication. 
Simple and comprehensible models of product lines demand the inter
changeability of architectural styles. 

In this paper, we have explored the relationship of architectural styles 
and Gen Voca models . Our approach outlined first steps towards viewing 
architectural styles as adaptors (Gamma, et al., 1994). Since GenVoca rep
resents applications as equations (i.e., compositions of components), adap
tors have a particularly appealing representation as algebraic identities. 
That is, the ability to replace one architectural style with another is ele
gantly expressed by rewriting an equation using an algebraic identity. More
over, the central concept of Gen Voca- namely building blocks of product 
line architectures are refinements - was unaffected. Both components and 
adaptors are examples of refinements. 

We presented deliberately simplified examples of avionics software that 
were coded in different architectural styles. We explained how metapro
gramming implementations of components and adaptors could achieve the 
effect of synthesizing these examples through component composition. 
This demonstrated the important effect that adaptors and components could 
be designed to be orthogonal to each other, thereby admitting a mix-and
match capability that is both desirable and characteristic of Gen Voca 
designs. 

Most approaches to architectural styles do not adopt the wholistic view 
that we have taken, namely that one designs components and adaptors to 
work together to achieve a mix-and-match capability. Typically approaches 
begin with pre-existing components; the task is to develop tools that will 
alter the architectural styles by means of component unwrapping and/or 
rewrapping. While this approach will achieve success, we believe that an 
approach that integrates component and adaptor designs will yield stronger 
results and less fragile tools in developing product line architectures of the 
future. 
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APPENDIX - SOURCE FOR 
Main[task[A[layered[B[C]]]]] 

-- global state vectors 
vec_c : TYPE_C; 

procedure READ_C is 
begin 

vec_c = c(); 
end; 

function READ_B return TYPE_B is 
begin 

invec TYPE_B; 
READ_C; 
invec = vec_c; 
return b(invec); 

end; 

task TASK_A is 
entry READ_A ( vec_a out TYPE_A ) ; 

end; 
task body TASK_A 
begin 

loop 
accept READ_A( vec_a 

end 

invec 
invec 
vec_a 

end; 

end loop 

- - main task 

task body MAIN 
use TASK_A is 
begin 

TYPE_B; 
READ_B(); 
a(invec); 

x : integer ; 
invec : TYPE_A; 
loop 

TASK_A.READ_A(invec); 

out TYPE_A ) do 

-- compute time x till next cycle; 
delay x; 

end loop 
end; 
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Abstract: Architectural styles have enjoyed widespread popularity in the past 
few years, and for good reason: they represent the distilled wisdom of 
many experienced architects and guide less experienced architects in 
designing their architectures. However, architectural styles employ 
qualitative reasoning to motivate when and under what conditions they 
should be used. In this paper we present the concept of an ABAS 
(Attribute-Based Architectural Style) which includes a set of 
components and connectors along with their topology, but which adds 
to this a quality attribute specific model that provides a method of 
reasoning about the behavior of component types that interact in the 
defined pattern. We will define ABASs in this paper, show how they 
are used, and argue for why this extension to the notion of architectural 
style is an important step toward creating a true engineering discipline 
of architectural design. 

1. INTRODUCTION 

An architectural style (as defined by Shaw and Garlan (Shaw and Garlan, 
1996) and elaborated on by others (Buschmann, et al., 1996)) includes a de
scription of component types and their topology, a description of the pattern 
of data and control interaction among the components and an informal 
description of the benefits and drawbacks of using that style. Architectural 
styles are important since they differentiate classes of designs by offering 
experiential evidence of how each class has been used along with qualitative 
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reasoning to explain why each class has certain properties."Use the pipe and 
filter style when reuse is desired and performance is not a top priority" is an 
example of the type of description that is a portion of the definition of the 
pipe and filter style. The purpose of this paper is to move the notion of 
architectural styles toward having the reasoning (whether qualitative or 
quantitative) based on quality attribute-specific models. We call these 
enhanced architectural styles, Attribute-Based Architecture Styles (ABASs) 
and we view them as the next generation in the development of architectural 
styles. 

We define an ABAS as a triple 
1. the topology of component types and a description of the pattern of data 

and control interaction among the components (as in the standard 
definition), 

2. a quality attribute specific model that provides a method of reasoning 
about the behavior of component types that interact in the defined 
pattern, and 

3. the reasoning that results from applying the attribute specific model to 
the interacting component types. 
Thus, to further use the pipe-and-filter example, a pipe-and-filter 

performance ABAS would be one that has a description of what it means to 
be a pipe or a filter and how they would legally be connected, a queuing 
model of the pipe-and-filter topology together with rules to instantiate the 
model, and the results of solving the resulting queuing model under varying 
sets of assumptions. 

Software architecture styles are useful during both design and analysis. 
Styles are useful during design because the software architect can choose a 
style based on an understanding of the desired quality goals of the system 
under construction. The goal of those cataloguing architectural styles 
(Buschmann, et al., 1996) is to provide a handbook that the software 
architect can use as a reference to have design options with known qualities 
from which to choose. 

In this paper, we make two points. The first (rather obvious) point is that 
architectural styles are also useful in analysis. When analyzing a system, the 
recognition of the use of pipe and filter, for example, leads to questions 
about how performance is handled and about the assumptions that the filters 
make that might impact their reuse. The second point (somewhat less 
obvious) is that when considering architectural styles as analysis tools, 
focussing on particular quality attributes (McCall, 1994) leads to the ability 
to attach known analytic models for these attributes to the architecture being 
analyzed. This in tum leads to the ability to predict the effect of particular 
architectural decisions and changes to the architecture. Thus, instead of the 
designer having vague guidance about a particular style's effect on 
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performance, the designer is given a model, its analysis, and its explicit 
connection to aspects of the architectural style so that the designer can 
answer questions such as "What is the effect on performance of moving a 
particular piece of functionality from one component to another within a 
pipe and file based architectural design?" 

In the remainder of this paper, we discuss the roots of the ABAS concept, 
the pieces of an ABAS, the types of attribute models that exist and how they 
would be used in constructing an ABAS, an extended pedagogical example, 
and an example drawn from our experience using ABASs in architectural 
analysis that shows how ABASs work in practice. 

2. MOTIVATIONS 

The motivation for ABASs comes from three different sources: 
l. architectural styles, such as those catalogued by Shaw and Garlan in 

(Shaw and Garlan, 1996) and by Buschmann et al in (Buschmann, et al., 
1996) 

2. analytic models of quality attributes, such as rate monotonic analysis for 
performance (Klein, et al., 1993) or Markov models for availability 

3. architecture evaluation questionnaires, such as those used by AT&T 
(Maranzano, 1993) 
ABASs are a kind of architectural style, and hence they build squarely 

upon the foundational work of Shaw and Garlan, as well as the similar work 
of the design patterns community (Gamma, et al., 1994). However, in each 
of these cases, the kinds of reasoning that the architectural styles support is 
heuristic. For example, in describing the layered style, Shaw and Garlan 
write "if a system can logically be structured in layers, considerations of per
formance may require closer coupling between logically high-level functions 
and their lower-level implementations". While this is important information 
for the designer who is considering using this style, it does not give the 
designer a principled way of understanding when a specific number and 
organization of layers will cause a performance problem. The answer to this 
dilemma lies in our second influence, analytic models of quality attributes. 

Mature analytic models exist for several quality attributes that are of 
central concern to complex software systems, such as performance, 
reliability and, to a lesser extent, security. These models not only provide a 
way to establish a more precise understanding of, for example, 
"considerations of performance", but also can allow the analyst to associate 
particular measurable performance criteria with architectural choices. This 
gives the designer a way to rigorously experiment with, and plan for, 
architectural quality requirements. 



www.manaraa.com

228 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

However, analytic models are typically quite general and it requires a 
substantial amount of training to be able to use them effectively. Frequently, 
when we perform architectural evaluations, we need to be able to assess a 
design's effectiveness and risk within a 2 or 3 day period. This leads to the 
our third motivation. A proven technique for aiding in risk assessments of 
architectures, first used widely by AT&T' s software architecture validation 
exercises (Maranzano, 1993), is a questionnaire or checklist. A proven set of 
questions can help organize the line of reasoning and investigation into an 
architecture, and can provide a first insight into problem areas. These 
questions can be a first approximation for an analysis, and can lead the 
analyst in probing the architecture. 

3. MODELING ARCHITECTURAL DECISIONS 
USING AN ABAS 

One of the reasons for focusing attention on an architecture is to highlight 
and analyze critical early design decisions. Translating these decisions into 
some modelling framework that supports predictive reasoning at the 
architecture level is key for attaining the potential benefits of focusing on the 
architecture. The structure of an ABAS reflects this goal of mapping an 
architecture style onto an attribute-modelling framework. This notion is 
represented by Figure 1. 

Architectural decisions * Attribute Model Parameters 
Architectural properties I 

Stimuli t 
Actual behaviors Quality Attribute Models 

l 
Predicted behaviors 

? 

? 
Desired behaviors ======== 

Figure 1. Mapping architectural models to attribute models 

The left side of the figure says that architectural decisions directly and/or 
indirectly affect the behavior ultimately manifested by the architecture. That 
is obvious, but what is less clear is how to characterize those behaviors and 
to understand how they compare with the desired behaviors. For example, 
allocating functionality to a collection of processes (a subset of the 
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architectural decisions that a designer will make) that are in tum allocated to 
processors (more architectural decisions) result in a set of process execution 
times (that is, architectural properties). Architectural properties in 
conjunction with stimuli such as message arrival rates ultimately lead to the 
performance behavior that will be exhibited. The actual behavior of the 
system is unknowable without constructing the system and so we use models 
of the behavior as a method of characterizing the actual behaviors. 

We can, of course, "hope" that the actual behavior will satisfy the desired 
behavior, but there is no way to know unless some type of model is used. 
The architecture abstraction needs to be mapped to some other abstraction 
that is more supportive of reasoning. For example, if the goal is to reason 
about reliability, the salient features of the architecture (such as redundancy) 
need to be mapped onto reliability models (such as Markov models). At this 
point the behaviors predicted by the models can be compared with the 
desired behaviors. Such reasoning can become the basis for comparing 
architectures and for making decisions regarding the form of the final 
software architecture. 

3.1 The Structure of an ABAS 

We define an ABAS to have five parts: 
1. Problem description - describes the design problem that the ABAS is 

intended to solve, including the quality attribute of interest, the context of 
use, constraints, and relevant attribute-specific requirements. 

2. Quality attribute measures - a condensation of what was discussed in 
the problem description, but in specific terms pertinent to the measurable 
aspects of the quality attribute model. This includes a discussion of 
stimuli: events that cause the architecture to respond or change. 

3. Architectural style - a description of the architectural style in terms of 
component, connections, properties of the components and connections, 
and patterns of data and control interactions. 

4. Quality attribute parameters - a condensation of what was discussed in 
the architectural style section but in specific terms relevant to the 
parameters of the quality attribute model. 

5. Analysis - a description of how the quality attribute models are formally 
related to the elements of the architectural style and the conclusions 
about architectural behavior that are drawn via the models. 
Note that these parts rely on a description of the architectural style and on 

a description of a quality attribute. Describing quality attributes is discussed 
in the next section. 
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4. QUALITY ATTRIBUTE MODELS PARAMETERS 

To assess an architecture for adherence to quality requirements, those 
requirements need to be expressed in terms that are measurable or at least 
observable. We call these the quality attribute measures. These parameters 
depend on properties of the architecture, called quality attribute parameters, 
and on the stimuli. The quality attribute parameters are the adjustable 
parameters of the architecture that determine whether the dependent 
parameters will satisfy the quality requirements. Stimuli are the events to 
which the architecture will have to respond. 

Consider performance: performance is concerned with timeliness, usually 
measured as either latency or throughput. Therefore two quality attribute 
measures are: 
- Latency - time from the occurrence of an event until the response to that 

event is complete; expressed in units of time. 
- Throughput - the rate at which the system can respond to events; 

expressed in terms of transactions (or responses) per unit time. 
The stimuli are changes of state to which the architecture must respond. 

For performance the arrival pattern of an event is important. It can be one of: 
- Periodic - there is a fixed interval between event arrivals. 
- Sporadic - there is a bound on how short the interval between arrivals 

can be. 
- Stochastic- arrivals can be described probabilistically. 

When a stimulus occurs, the system responds to it by using its resources 
to carry out computations or transmit data. Multiple concurrent stimulus 
responses require an arbitration or scheduling policy to resolve conflicting 
requests. Thus we think of performance-related architectural parameters in 
terms of the resources that are needed, the policies for allocating resources, 
and properties of how the resources are requested and used. Therefore 
quality attribute parameters include: 
- Resource characteristics - include the type of resource such as CPU or 

network and characteristics such as processor speed or network 
bandwidth. 

- Resource scheduling policy - includes CPU scheduling, CPU allocation, 
and bus and network arbitration; and queuing policies. 

- Resource usage - includes the priority of processes and messages, 
preemptability of response and magnitude of use such as execution time. 
ABASs map a characterization of architectural properties onto quality 

attribute parameters, and then map (via modelling) quality attribute 
parameters and stimuli onto predicted behaviors. Models such as those for 
scheduling and queuing provide the basis for relating quality attribute 
parameters (such as queuing policies and execution time estimates) to 
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quality attribute measures (such as latency and throughput). Some 
parameters such as execution time might not be easily quantifiable at the 
architecture level. In this case execution time budgets can be assigned, which 
then become derived requirements for fleshing out the details of the 
component. This is further illustrated in the next section in which we discuss 
a sample ABAS for reliability. 

For other attributes such as reusability or modifiability, where there are 
no universal quality attribute measures, scenarios can used to provide 
context dependent measures. (Kazman, et al., 1996) 

5. ABASs 

We will illustrate the notion of an ABAS by an example. We are 
currently collecting, documenting, and testing many such examples in the 
hope of creating an engineering handbook of ABASs. The example given 
here uses a form of redundancy known as analytic redundancy as a means of 
achieving high levels of availability. First, we will lay out a portion of the 
relevant attribute model1• 

5.1 Reliability/ Availability Attribute Model 

Reliability is usually measured in terms of mean time to failure (MTTF). 
Availability is usually measured in terms of the long-run fraction of time that 
a system is working. Component failures (and faults)2, and repair (or 
recovery) are the stimuli of concern. Architecture parameters include fault 
detection and fault containment and recovery strategies. An attribute model 
for reliability/availability looks as follows3: 

Quality attribute measures 
- Steady state availability - fraction of time that the system is working 

(that is, not in a failed state) 
- Reliability- usually measured in terms of mean time to failure 
- Faults detectable- passive failures (detectable via time-out 

mechanisms), active failures , timing failures, semantic failures 

1 An attribute model does not have to be developed for every ABAS. Only one attribute model 
is needed per attribute and it is then applied to all ABASs for which that specific attribute 
is relevant. 

2In this paper we do not distinguish between failures and faults. 
3This is not meant to be a complete attribute model, but rather one that focuses attention on 

architectural decisions. 
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Stimuli •• characterized in terms of the types of failures and repairs and 
their rates. 

Quality attribute parameters 
- Detection- mechanisms for detection of failures such as voting, post

condition checking, and deadline detection 
- Recovery - mechanisms for recovering from failure including forward 

and backward recovery mechanism 
- Modes - A system can operate in various degraded modes and the 

availability/reliability of each mode of operation have to be calculated 
separately. 

5.2 Simplex ABAS 

We will now describe the documentation that accompanies an ABAS by 
means of an example of a particular ABAS, called Simplex. 

5.2.1 Problem Description 

The purpose of this section is to describe the architectural design 
problem being addressed or in other words the goals of the architecture. 4 

The Simplex (Sha, et al.) ABAS focuses on the problem of software 
reliability in control systems. In particular, Simplex addresses the problem of 
tolerating software faults introduced as a consequence of upgrading control 
algorithms. Simplex also addresses the problem how to take advantage of 
redundancy to increase reliability while avoiding "common mode" software 
failures. 

To illustrate the problem consider, "the update paradox", as described in 
(Sha, eta!., 1996). Consider the case in which a component is replicated to 
ensure its reliability. Each replica performs its calculations and sends its 
results to a voter. If the results do not agree (to within a specified tolerance), 
the voter "votes for the majority". 

Let's say that a key algorithm is updated which will yield a different 
output value than the older algorithm. Here's the paradox: if the new 
algorithm is placed in a minority of the replicated components then it will be 
voted out and have no effect; if it's placed into a majority of the replicated 
components and is faulty, the bad output will used. 

There are two problems highlighted by the upgrade paradox. First of all, 
even components that have been implemented by different groups and hence 
have different implementations can suffer from common mode failures . 
Hence the first problem is, how to introduce redundancy to ensure the proper 

"7he text in italics in this section is commentary for the reader, and is not part of the ABAS. 
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level of reliability/availability without introducing common mode failures? 
The second problem is, how do you upgrade a system without compromising 
its reliability/availability? 

5.2.2 Quality Attribute measures and Stimuli 

Based on the desired architectural behavior, the stimuli of the 
reliability/availability attribute model, and the problem description there are 
set of specific issues that should be highlighted. These issues are raised in 
this section. A checklist of such issues would include those that follow. 

The availability/reliability issues of concern for this ABAS are: 
- What types of faults need to be tolerated by the architecture 
- What the levels of (degraded) service are 
- What the reliability/availability is for each level of service 

Types of faults: the goal of this architecture is to handle timing faults 
(e.g., timing overruns), semantic faults (wrong output values) and system 
faults (such as memory overruns due to bad pointers). 

Reliability of service levels: There is a specified desired level of 
availability for the upgraded or higher performance level of service and 
specified level of reliability for the baseline level of service. 

5.2.3 Architectural Style 

This section starts by identifying the relationship between this ABAS and 
other similar ABASs. In this case the Simplex ABAS is an instance of a more 
general pattern. 

Simplex is an architectural style which belongs to a general family of 
reliability styles that could be called redundancy styles. The general pattern 
for a redundancy style is shown in Figure 2 below. The pattern, from a 
reliability point of view, consists of multiple redundant components. Data 
flows into one or more redundant components, which then send their output 
to another component (or possibly components) responsible for detecting 
failures, switching to a working component and possibly initiating recovery 
of the failed component. 

The Simplex style, as shown in Figure 3, is an instance of the redundancy 
style in which the redundant components are processes. The components 
don't necessarily receive the same input or generate the same output. 
Moreover, the components are not all peers. The components are 
analytically redundant, meaning they are redundant with respect to the 
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general effect their output has in controlling their environment, but not 
necessarily redundant in the algorithms used or the output produced. 5 

input 

(oetector) 

(Switcher) ___. output 

Figure 2: A redundancy-specific architectural style 

--•• output 

y Safety/ 

Figure 3: The Simplex architectural style 

The "leader" component, the other redundant components (Rl and R2) 
and the "safety" component are analytically redundant. The "leader" is 
typically the upgraded version of a critical component. All components 
execute concurrently. The leader's output is used if it passes the acceptance 
test applied by the decision and switch unit. The acceptance test is based on 
a model of the controlled environment and the ability of the safety 

5You can think of the relationship between power steering and mechanical steering as analytic 
redundant. Both mechanisms have the same effect on the environment, that is, they change 
the direction of the wheels, but the mechanisms used, the output produced, and their 
performance are all different. 
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component to recover from actions of the other components. If the leader 
doesn't pass this test a new leader is picked (either Rl or R2). The "safety" 
component is a simple, highly reliable analytically redundant component that 
is used as a last resort. The safety might be used to affect a recovery to the 
point where one of the other (more able) components can once again take 
over. Note that the decision and switch component receives a copy of the 
input and uses it as a basis for performing its acceptance test. 

The Simplex style assumes that mechanisms exist to bound the execution 
time of the components, thereby preventing timing overruns. Another 
(related) style would address performance issues. The Simplex style also 
assumes that the concurrent units are processes with address space protection 
thereby preventing the propagation of system faults such as memory 
overruns. 

5.2.4 Quality attribute parameters 

Based on the architecture parameters of the reliability/availability 
attribute model and on the pattern of interactions, there are set of specific 
issues that should be raised to refine the pattern. 

The quality attribute parameters of concern for this ABAS are: 
- Analytic redundancy (possibly different input; different implementation; 

possibly different output) is the form of redundancy 
- A leadership based "voting" mechanism is used. 
- Estimates are needed for failure rates and repair rates of the various 

components. We assume that the failure rates for the decision unit and 
the safety component are very low in comparison to the failures rates of 
the other components. 

5.2.5 Analysis 

This section ties together the preceding sections. It discusses how to use 
the architectural decisions and properties and the stimuli to model the 
architectural behavior. 

To model the availability of this style you have to make estimates of the 
failure rates and repair rates of the components to calculate the availability 
of the system. Reliability growth models can be used for obtaining estimates. 
In addition, it can be very illustrative to compare one architecture style to 
another simply by making assumptions about the various failure and repair 
rates. This is the approach we will use. 

The first step in this section is to map the architectural decisions and 
properties into a quantitative or qualitative model that helps you to predict 
the architectural behavior. 
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Modelling a Simpler Problem 
Before discussing the analysis of the Simplex style we'll first take a look 

at a similar style, the majority voting style.6 This is the style that we used in 
the problem description to illustrate the update paradox. For this style there 
are three redundant components7• At least 2 or the 3 components must 
produce results that agree, otherwise the system has failed. When the system 
is working (in this case controlling some aspect of its environment, for 
example, the trajectory of a missile or the temperature and pressure of a 
chemical process) it is performing at a constant level of service. The system 
can be in one of three states: 3 working components, 2 working components, 
or failed. If F failures per year occur and a component repair takes on the 
average 1/R years then the Markov model shown in Figure 4 can be used to 
calculate the availability (that is, the proportion of time that the system is not 
in the failed state). 

Figure 4: A Markov model for majority voting 

The representation of a Markov model in Figure 4 can be viewed as a 
state diagram. State "3" represents the state in which 3 components are 
working, state "2" represents the state in which 2 components are working 
and the grey state is the failed state. The transition arrows are labelled with 
failure (F) and repair (R) rates. Since each component fails independently 
with an average rate of F, 3 components fail with an average fail rate of 3F 
and hence the label for the transition from state "3" to state "2". 

The steady state solution of the Markov model yields the long-term 
proportion of time that the system is in each state. Therefore the availability 
of the majority voting case is the proportion of time in which the system is in 
state "3" or state "2", and hence not in the failure state. 

More information about Markov models can be found in standard texts 
on probability. Our goal is to illustrate the mapping from architectural 
parameters to a predictive model and to show how the model provides the 
motivation for the characterization of the ABAS. In this case the predictive 

6 The majority voting style would probably have its own entry in a handbook of ABASs and 
be referenced in the Simplex ABAS. 

7This is known as Trimodular redundancy (TMR). However, majority voting is not restricted 
to 3 components. 
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model is a mathematical model. In other ABASs qualitative reasoning 
techniques might also be used. For this case we use the model to gain an 
understanding of how the availability varies as a function of the assumed 
failure and repair rates, not to get absolute availability estimates. The trends 
of the majority voting style will then be compared with Simplex style. 

Modeling Simplex 
The Simplex style achieves relatively high levels of availability of the 

high performance (e.g., a very precise algorithm) variant by using a highly 
reliable but lower performing (e.g., a less accurate algorithm) variant to 
recover from faults. To illustrate the concept consider a system with two 
redundant controllers (R 1 and R2), a safety controller, and a monitoring and 
decision unit. The Simplex style preserves the total number of active 
components, but allocates functions to components differently depending on 
their states, and hence the components have different failure properties. The 
Markov model for this style is shown in Figure 5. 

Figure 5: Markov model for Simplex 

The system starts in state "2" with two high performance controllers, the 
outputs of which are compared. If they agree we assume that they're correct 
(that is, we assume no common mode failure, but rather random failures). If 
they disagree, one is picked. If the right one is picked the model transitions 
from state "2" to state "1 ". If the wrong one is picked the model transitions 
from state "2" to state "Kl ", where Kl stands for the a state in which the 
safety component becomes active. Since one of the high performance 
controllers continues to work, the transition from "K1" to "1" is relatively 
quick and thus has a quick repair (QR) rate. We assume that QR=n*R, for 
some n greater than 1. If a failure occurs while in state "1", the system also 
transitions to the safety controller, but in this case the repair rate is that of a 
"normal" repair (i.e. a software or hardware fix). 

The final objective is to gain insight into the architecture by using the 
model as a basis of reasoning. 
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A key to the availability properties of this style is the relatively quick 
repair rate (QR) from state "K1" to state "1". To see this imagine that QR is 
so quick that virtually no time is spent in state "K1". In this case the model 
in Figure 5 closely approximates the model in Figure 6, below. The 
availability properties of the model shown in Figure 6 are better than for 
majority voting (shown in Figure 4) due to the higher transition rates for ma
jority voting. The higher transition rates for majority voting are a 
consequence of needing a majority of the redundant components to agree in 
order to detect a failure, whereas this style uses a semantic check of the 
output for failure detection. 

14-:--0 
Figure 6: An approximate Markov model for Simplex 

6. USING ABASs 

We have applied ABASs on a real-world system during an enactment of 
the Architecture Tradeoff Analysis Method (ATAM) (Kazman, et al., 1998). 
During the course of the architectural analysis, ABASs relevant to several 
properties (availability, performance, and modifiability) were applied to aid 
in the understanding of the system and the consideration of design 
alternatives. 

The system being evaluated-which we will call LAOB (Leader And 
One Backup) here8-comprises a collection of independently operating 
nodes (computers), communicating via a radio network, with a single node 
acting as leader. The leader has the responsibility to plan the activities of the 
other nodes. To perform this planning, it must accumulate and maintain data 
concerning the states of the other nodes. 

Because the availability of the system is critical, we used a reliability 
ABAS to map the quality attribute parameters (i.e. the architectural 
decisions, such as the mechanisms for detection and recovery) and the pre
dicted stimuli (e.g. failure of a node) onto the quality attribute measures (i.e. 
the predicted behavior) of the system via a reliability model. The resulting 
analysis was used to understand how well the system will meet its 

Bne actual name, developing organization, and details of this application are proprietary, but 
their suppression does not affect the analysis. 
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availability goals and to inform decisions for refining the architecture. In 
particular, by looking at the system via ABASs, we were able to detennine 
that its reliability had not been adequately addressed in either requirements 
or implementation. 

Quality Attribute Measures: Based on the reliability/availability 
attribute model presented in Section 5.1, the quality attribute measure of 
interest for this ABAS is its steady-state availability. 

Stimuli: The stimuli of interest for this ABAS are hardware or software 
failures of the nodes. 

Structure: The structure of the ABAS is shown in Figure 7. 
Communication takes place exclusively between the leader and the other 
nodes (i.e. the nodes do not communicate with each other). If the leader fails, 
a node pre-designated as a backup must reconfigure to take on the planning 
responsibilities of the leader and must acquire any additional data it needs to 
begin perfonning the leadership responsibilities. Also, another node must be 
identified to act as the new backup. 

/ 
8 

• • • 

\ 
E) 

Figure 7: The ABAS-relevant structure of the LAOB system 

Quality Attribute Parameters: The quality attribute parameters of 
interest in this style are: 
- The mechanism used for detecting the failure of the leader: In the LAOB 

system, the lack of communication between the backup and the leader 
signals that the leader has failed. 
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- The mechanism for recovering system operation: When the leader fails, a 
designated backup takes over. The backup must acquire whatever data it 
requires to begin acting as leader and reconfigure itself. 

- The failure and repair rates for the leader and the other nodes: The failure 
rates for the leader and the other nodes may be different as the leader has 
different responsibilities and is executing different software. The repair 
rates will need to include the time required for a node to take over as 
leader and the time required for a node to take over as backup. When we 
speak of repair, we are referring to the repair of the system, returning it to 
a functioning state from a non-functioning one. Individual nodes that 
have failed do not get repaired during the execution of the system. 
Analysis: From our generic reliability ABAS we know that we can 

model this system using a Markov model. Figure 8 shows the Markov model 
for a three node system (it is easily generalized to more nodes). Each state in 
the model is labelled with a triple: (number of leaders active/number of 
backups active/total number of nodes active). F1 is the failure rate of a leader, 
Fb is the failure rate for the backup node, F0 is the failure rate for another 
node, R1 is the repair rate for the leader (i.e. the reciprocal of the time taken 
to transform a backup into the leader) and Rb is the repair rate for a backup 
(i.e . the reciprocal of the time taken to transform another node into a 
backup). The model makes the assumption that the transformation of the 
backup into leader and the transformation of another node into backup are 
sequential. 

The steady-state availability can now be computed as the probability of 
the system being in a state in which a leader is active (four of the eight 
states). Based on expected failure and repair rates, the model can be used to 
understand how well the system will meet its availability goal. 

Figure 8: A Markov model for a reliability ABAS 
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Reasoning about the system in the context of the reliability ABAS led us 
to a consideration of other architectural alternatives for the LAOB system. 
The primary alternative considered was the use of multiple backups to tum 
the LAOB into a LAMB (Leader And Many Backups), where each of the 
backups would maintain the state necessary to quickly take over upon failure 
of the leader. 

This alternative will result in better availability due to a reduced repair 
time, but at a cost of higher utilization of the radio network. Since the radio 
network had a relatively low bandwidth, this was not a trivial consideration: 
keeping additional backups informed of the state of the leader meant 
additional transmissions and retransmissions. The performance issues for the 
LAOB/LAMB system alternatives were considered using a separate ABAS, 
one for communicating processes, and the confluence of these two ABASs 
identified an architectural tradeoff, since higher levels of availability meant 
higher utilization of the network. 

The purpose of this example is not to present the design decisions made 
for this system, or even the details of the analysis, for they are not the point 
of this paper. The point is that a consideration of ABASs led us to ask 
questions of the system: reliability ABASs made us ask questions about 
failures and recovery of components and their effects on the predicted level 
of system availability; performance ABASs made us ask questions about 
resource characteristics and resource utilization and their effects on the 
predicted level of system response times. Using these models, we could play 
with different architectural alternatives, constantly gauging the performance 
of these alternatives against the system's requirements. For example, we 
could explore versions of the LAMB system with varying numbers of 
backups and with different strategies for keeping them synchronized with the 
leader. Strategies include: 
1. The backups could be passive recipients of updates, not worrying about 

any missed information until they are called upon to become the leader. 
In this case they would not be guaranteed of being true functional 
replicas of the leader. 

2. They could be active recipients, requesting re-sends of any missed 
packets (they could identify missed packets via noting holes in the packet 
number sequence, for example). In this case they will be functional 
replicas of the leader most of the time, but at the cost of additional 
communication with the leader. 

3. A single backup could be an active recipient and all other backups could 
be passive recipients. When the primary backup was called upon to 
become the leader, it would designate a new primary backup and 
negotiate with it to provide it with any missed packets, at the cost of 
additional communication at switchover time. 



www.manaraa.com

242 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

The various strategies each have different availability and performance 
implications-<lifferent bandwidth requirements, different time to repair, 
different probabilities of failure-and these can be modelled analytically 
before committing to one strategy for prototyping or implementation. 
Perhaps more importantly, these analyses can be used to find architectural 
tradeoff points-critical areas of the design with respect to some qualities of 
interest-and these can become the focus of additional analysis or 
prototyping as a means of mitigating the risk of building a large, complex 
software-intensive system. 

7. CONCLUSIONS 

An ABAS is an extension of the notion of an architectural style. To make 
architectural styles more rigorous, we associate analytic models of quality 
attributes with them, in much the same way that Allen and Garlan associate 
formal semantics with architectural elements to better describe the 
correctness of a design (Allen and Garlan, 1994). So, an ABAS has 
associated with it a set of analytic models (such as performance or reliability 
models) that allow a designer to predict its behavior with respect to some 
desired quality attributes . ABASs provide to the designer a pre-analyzed 
structural framework, an analysis, and a mapping between the structure and 
the analysis. 

Associated with the mapping from architectural style to analytic model 
are two related processes: 
1. from a design perspective, there are a set of decisions that accompany 

turning a style into an implementable design. For example, when 
decomposing a system's functionality into a set of processes, there is an 
allocation of functionality to each process, and an allocation of processes 
to processors. For a performance style we might also make decisions such 
as choosing the priorities of the processes. 

2. from an analysis perspective, there are a set of questions that accompany 
an architectural style that aid in understanding the style. These questions 
will ask about the allocation, for example, of processes to processors, their 
communication mechanisms, the speeds of their connections. 
If these questions relate to designs that are repeated over and over again 

within an organization, then they are often organized into checklists 
(Maranzano) that are employed during architectural reviews. The answers to 
the questions form the input to the attribute models. This is the key linkage 
that comprises the reasoning behind an ABAS: architectural parameters-the 
things that you can change when you do architectural design-are explicitly 
related to parameters in an analytic model. In solving the model, we are then 
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modeling the expected behavior of the architecture. The results of this model 
solving can then be compare back to the expected behavior. 

We envision, and are actively working on, a handbook with many 
ABASs that can be looked to for pre-packaged design and/or analysis 
wisdom. This is the start of an attempt to make architectural design more of 
an engineering discipline; one where design decisions are made upon the 
basis of known properties and well-understood analyses, rather than the 
currently popular practice of "patch-and-pray". 
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Abstract: We present a formal description of softwate atchitectures for softwate reuse to 
support a view of systematic softwate reuse as the plugging of components 
into an architecture. The components ate object descriptions in the object 
calculus. Interconnection between the components is defined via 
synchronisation morphisms within a framework based on category theory. 
Component composition is defined via the pushout construction, giving the 
atchitecture as a "calculated" component, from which the atchitecture's 
properties may be derived. We show that the architectures described ate 
reusable in our Reuse Triplet that forms the motivation for our on-going work 
on systematic softwate reuse. This work provides further support for the 
suggestion that category theory provides the appropriate level of mathematical 
abstraction to describe softwate atchitectures. 
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1. INTRODUCTION 

This work is motivated by a view of reuse-in-the-large that emphasises 
the reuse of software architectures. The importance of high-level abstraction 
to the success of reuse has been highlighted in the literature (Krueger, 1992; 
Biggerstaff and Richter, 1987). That the highest payoffs are to be expected 
from reusing high-level artefacts such as architectures has been well 
articulated by some authors e.g., (Krueger, 1992). The systematic reuse of 
analysis and design knowledge (encapsulated in software architectures) with 
potentially very high payoffs could help move reuse practice up towards the 
highest levels on a reuse maturity model. 

In order to make reuse-in-the-large a reality, however, we need to have 
suitable ways of representing and reusing these large-grain software 
artefacts. Efforts have been made to find suitable ways of representing 
software architectures for reuse (Terry, et al., 1994; Gamma, et al. , 1995; 
Tracz, 1995). However, one important problem still remains, namely how to 
find a good formal basis for component composition and interconnection in 
software architectures. 

There are a number of formalisms in the literature for describing software 
architectures e.g., Darwin (Magee, et a!., 1993) and Wright (Allen and 
Garlan, 1995). In the Darwin model a software architecture is described by a 
collection of Darwin components, each of which provides services to or 
requests services from its environment. Darwin components interact by 
having their service requests connected to appropriate service provisions. 
This is done by binding their corresponding ports. To instantiate a Darwin 
architecture, one simply instantiates its components. 

In the Wright model an architecture is a collection of computational 
components together with a collection of connectors, that describe the 
interactions between the components. The Wright model differs from the 
Darwin model in that in the former, a connector is an explicit semantic 
entity. To instantiate a Wright architecture one instantiates the components 
and the connectors. 

Fiadeiro and Maibaum (Fiadeiro and Maibaum, 1996) suggest that 
category theory provides the right level of mathematical abstraction to 
describe software architectures. Indeed they show that the category theory 
approach subsumes the Wright model of architectural description. It could be 
shown too that much of the Darwin model is similarly subsumed. We thus 
have a level of abstraction that appears to subsume other known architectural 
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models, and appears to be suitable for performing formal analyses of 
software architectures in. Here we limit ourselves to issues of reusability. 

We view systematic software reuse (SSR) as the process of identifying an 
appropriate reuse software architecture (RSA) and reuse software 
components (RSCs) and plugging the latter into the former. The RSA is a 
template with slots into which RSCs may be plugged. The template may be 
viewed as an abstraction of a family of systems with slots to be 
appropriately filled in for each specific system. We may express this view of 
reuse as the expression SSR = RSA (f) RSCs relating the Reuse Triplet 
(RSA, plugging, RSCs) or diagrammatically as in Figure 1. The plugging 
operator (<fl) takes a collection of reuse components and plugs them into the 
reuse architecture. The relationship between the RSA, RSCs and the target 
systems determines whether we are emphasising the reuse of RSAs or RSCs. 
In (Mugisa, 1997) we apply this view of reuse to well-known examples of 
reuse. 

Slots for reuse components 

Reuse architectul viewed as an 
abstraction of a family of systems 

Reuse component to be pi ugged 
into a slot in the reuse architecture 

Figure 1. A view of reuse: SSR = RSA $ RSCs 

In this paper we present a framework for a formal description of RSAs 
and RSCs. We have used the framework to describe the pattern-oriented 
software architectures of (Buschmann, et al., 1996). Here we will have space 
enough for presenting only one (simple) architecture. However, we have 
treated plugging and many of the more sophisticated examples discussed in 
the literature (Mugisa, 1998). We re-package the architectural patterns of 
(Buschmann, et al., 1996) at a level of abstraction that is consistent with our 
Reuse Triplet view. These architectural patterns interest us because the 
concept of a software pattern is deeply rooted in software reuse. After all a 
pattern recurs in several different applications from which it is abstracted. In 
describing architectural design patterns we are describing software 
architectures that have a high level of reusability. 
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One simple popular definition of a pattern is "a solution to a problem in a 
context." In (Gamma, et al., 1995) design patterns have been presented as 
"descriptions of communicating objects and classes that are customised to 
solve a general design problem in a particular context." Alexander, who 
initiated the pattern concept, has this to say about the patterns that he used to 
describe architectures of buildings (Alexander, et al., 1977) "Each pattern 
describes a problem that occurs over and over again in our environment, and 
then describes the core solution to that problem, in such a way that you can 
use this solution a million times over, without ever doing the same thing 
twice." Alexander's concept of a pattern is what we are interested in for 
systematic software reuse. The other two views tell us how to express 
patterns. 

There are three parts to a pattern: context, problem, solution. We present 
the context as a domain theory in the object calculus. The problem is a 
specification in this domain theory; effectively as an extension of the domain 
theory. The solution takes components of the context domain theory and 
refines them to an appropriate level of detail. The underlying formal 
framework is provided by the object calculus : an appropriate temporal logic 
to express the properties of the basic components and category theory for 
interconnecting them and synchronising behaviours. 

As an illustrative example, we apply our framework to the pipeline 
pattern from (Buschmann, et al., 1996). This and other architectures also 
appear in Mary Shaw's "popular architectural styles" (Shaw, 1995) and in 
Shaw and Garlan's "an emerging taxonomy of architectural styles" (Shaw 
and Garlan, 1996). It is difficult to present a more difficult example because 
of limitations of space, but the example used is examined in various 
versions, with the formalism helping to pinpoint the architectural differences 
and their resulting consequences/properties. 

We would like to describe architectural styles in a way that enables us to 
reason about them so that we can determine interesting properties about 
them. Our motivation in doing this is well expressed by Mary Shaw (Shaw, 
1995b): " ... although many design idioms are available, they are not clearly 
described or distinguished, and the consequences of choosing a style are not 
well understood." 

Each software architecture will consist of roles for processing 
components and in some cases connecting components (connectors) to 
interconnect the processing components. We shall see how the type of 
processing and connecting components used affects the resulting 
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architectural style. In all cases the interconnection between the components 
(either between processing components or between a processing component 
and a connector) will be described within a category of these components as 
suggested in (Fiadeiro and Maibaum, 1996). The instantiation of roles by 
reusable components is also expressed via morphisms in the underlying 
category (Fiadeiro and Lopez, 1997). A role is essentially a place holder for 
a processing component as seen from the connector. This is the view from a 
Wright connector (Allen and Garlan, 1995), for example. 

We present each component as a theory description in the object calculus. 
Each of these theories is encapsulated as an object in the sense of (Fiadeiro 
and Maibaum, 1992). Each component then becomes an object description 
and at the same time a theory presentation following the spirit (if not the 
style) of (Fiadeiro and Maibaum, 1991, 1996). 

2. INTERCONNECTING COMPONENTS 

We present our architectures as interconnections of computational and 
connecting components. These components are viewed as theory 
descriptions represented as objects in Fiadeiro and Maibaum's object 
calculus (Fiadeiro and Maibaum, 1992). The interconnections are presented 
as diagrams in a category of these theory descriptions. Let us begin with 
some basic definitions and propositions. 

DEFINITION 2.1 : a-comp 

The components that are the basic building blocks of our architectures 
are object descriptions as defined in (Fiadeiro and Maibaum, 1992) and we 
call each of them an a-comp (abstract component). An a-comp is a (• , F) 
pair, where • is the component signature and F are the axioms of the 
component description. 

A typical a-comp has the structure given in Figure 2, but there are 
variations. • = (<data_ types>, <action_list>, <attribute_list>) and F = 
(<axioms>). An a-comp is treated as an object. 
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Component a_comp_name 
data types <data_types> 
actions <action_list> 
attributes <attribute_list> 
Axioms <axioms> 

End 

Figure 2. Structure of an a-comp specification 

DEFINITION 2.2 : sub-object 

Given two objects objt = (• Ft) and objz = (• 2, F2), obj1 is a sub-object 
of obj2 iff the behaviour described by object obj2 is an extension of the 
behaviour described by object objt. in the sense that the principle of 
substitutability holds between them. The behaviour of an a-comp (which is 
an object) is constrained by the axioms F of the ( • , F) pair. "The principle of 
substitutability says that if we have two classes, A and B, such that class B is 
a subclass of class A (perhaps several times removed), it should be possible 
to substitute instances of class B for instances of class A in any situation 
with no observable effect" (Bud, 1997). The term subtype is also used to 
describe this relationship. This sub-object relation is a form of inheritance 
for extension, possibly after renaming. It is the inverse of the sub-class 
relation. This definition should make subsequent discussion of 
synchronisation based on sharing a common sub-object more intuitive and 
less confusing. We have the following: 

- the signature of obj2 ( • 2) extends a signature isomorphic to the signature 
of objt (• t) 

- F2 is an extension of Ft. taking into account any renaming that may have 
been introduced 

- obj2 is a sub-type of obj1 , possibly after renaming 

These concepts are expressed through the morphisms of the underlying 
category. 

PROPOSITION 2.3 : Category a-COMP 

The a-comps and sub-object morphisms between them constitute a 
category a-COMP. A sub-object morphism transforms the source object into 
a sub-object of the target object. 

- sub-object morphisms compose, as does inheritance 
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- there is an identity sub-object morphism - each a-comp is a sub-object of 
itself 

- the sub-object relation is associative, as is inheritance for extension 

The morphisms may use renaming and so the sub-objects may only be so 
identified after reverse renaming. We model component composition as a 
pushout construction within category a-COMP. In Figure 3 component 
COMP3 is the result of synchronising components COMP1 and COMP2 on 
their common sub-object SUB, through sub-object morphisms f, g, h and k. 
SUB is shared by both COMP1 and COMP2, which coalesce around it to 
formCOMP3. 

SUB 

COMPI COMP2 

k 

PUSHOUT 

Figure 3. Pushout construction in category a-COMP 

DEFINITION 2.4 : Interconnection 

The style of interconnection that we present here was motivated by the 
one used in (Fiadeiro and maibaum, 1992). The interconnection of a-comps 
is governed by the following : 
- two components interconnect on a shared sub-object 
- the shared sub-object has complementary (or dual) behaviour, e.g a plug 

and a socket, and it is this duality that makes the interconnection intuitive 

This style of interconnection is used elsewhere, e.g., in binding 
requirements to provisions in the Darwin component abstraction (Magee, et 
al., 1993). We can view the Provide and Request ports in a Darwin 
component interconnection as manifestations of a shared sub-object - a 
provide/request port. 
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PROPOSITION 2.5 : Communication via Ports 

All communication between a component and its environment will be 
channelled through its communication ports. This is a common model. We 
use two kinds of ports : ports for message passing (e.g., purely for data 
transfer) and (possibly implicit) ports for object invocation (see below). A 
port's put and get actions transfer data to and from the port ' s channel, 
respectively, as defined in Object Port below. The port may be viewed as a 
wrapper around the ubiquitous channel. Channel of T is a channel type 
capable of transferring data of type T. 

Object Port 
data types Data, channel of Data 
actions get(Data), put(Data) 
attributes d : Data; ch : channel of Data 
axioms 

get( d) => Xd = ch 
put( d) => Xch = d 

End 

This port abstraction enables synchronous communication as in CSP 
(Hoare, 1985) , Occam (INMOS, 1988) and Manna and Pnueli ' s ("no 
buffering") channels (Manna and Pnueli, 1992). Asynchronous 
communication is via a buffer between the communicating components. 

DEFINITION 2.6 : Object Invocation 

Object invocation here follows the CORBA request semantics (OMG, 
1996) which states that "when a client issues a request, a method of the 
target object is called. The input parameters passed by the requester are 
passed to the method and the output parameters and return value (or 
exception and its parameters) are passed back to the requester." We use 
action request(service-request) for the action of the source (client) object. 
The argument (service-request) contains the requested service (or method) 
and parameters. In response, the target object will provide the requested 
service (if it can) and return results via its arguments. We use action invoke 
for the entire operation covering the request and the response. 

Each invocation can in fact be adequately modelled by DMS 
synchronisation (definition 2.8), with service requests going from DMS-C1 's 
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output port to DMS-C2's input port and results going in the opposite 
direction (see the OMS synchronisation diagram in Figure 5). However, 
when there are several concurrent service requests, the model becomes 
messy and the invoke abstraction clears away the details. The result is MIS 
synchronisation as defined elsewhere (Mugisa, 1998). 

2.1 We have three sub-objects 

We use three types of sub-objects to interconnect the a-comps in our 
architectures. They correspond to the three ways in which we bind the 
components. These are Single Port Message-Passing Synchronisation 
(SMS), Double Port Message-Passing Synchronisation (OMS) and Multi
Port Invocation Synchronisation (MIS). SMS-Sub, DMS-Sub and MIS-Sub 
are such minimal sub-objects that can represent a component's ports. 

Object SMS_Sub 
data types Port 
attributes p : Port 

End 

Object DMS_Sub 
data types Port 
attributes p b P2 : Port 

End 

SMS-Sub has one port. When used as a synchronising sub-object it takes 
on both input and output roles in the interconnected components in order to 
effect message passing from one component to the other. See SMS 
synchronisation morphisms for details. 

DMS-Sub is the 2-port (input/output) version of SMS-Sub. It encapsulates 
two SMS-Sub sub-objects. 

Object MIS_Sub 
data types Service 
attributes qb ... , qn: Service 

End 

Sub-object MIS-Sub contains services that are mapped to service-requests 
or to service-provisions. The requests are serviced by the provisions after 
synchronisation. This sub-object synchronises those components that are 
linked by object invocation. 
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2.2 Synchronisation morphisms 

The pushout construction synchronises the components on their common 
sub-object around which they coalesce to form the pushout. There are 
several structures that the pushout of two a-comps in category a-COMP may 
have including the structure shown in the component <pushout_name> 
below. Here we discuss SMS and DMS synchronisation morphisms. 

DEFINITION 2.7 : SMS Synchronisation Morphisms 

These define the interconnection of two SMS a-comps by synchronising 
them on their common SMS sub-object as shown in Figure 4. The sub-object 
morphisms /J : {p0 - out} and !2 : {p0 - in} identify in and out as 
synchronisation points for the two components, while morphisms g1 and g2 

are synchronisation morphisms on the sub-objects identified by f 1 andf2. The 
synchronisation may be expressed by identifying (or coalescing) the two 
sub-objects as follows:f1 : [out - p'} andf2: [in - p'}. Here is the structure 
of an SMS a-comp (SMS_COMP). 

Component SMS_COMP Component pushout_name 
data types Data, Port Inherit a_compl, a_comp2 
actions Synchronisation Axioms 
attributes in, out : Port; d : Data Set of Synchronisation 
Axiom Axioms 

Relevant behavioural axioms End 
End 

Figure 4 is the interconnection diagram for SMS a-comps SMS-Cl and 
SMS-C2 yielding pushout SMS-C3. (In SMS-Cl, the get action on port out is 
suppressed, i.e., axiom -,(SMS.Cl.out.get) holds. Similarly, axiom -, 
(SMS.C2.in.put) holds for SMS-C2 to make in an input port.) So we actually 
use a specialisation of SMS_Sub in SMS-Cl (and SMS-C2); this is an 
example of a different form of reuse through inheritance, well known in 
object-oriented programming and design. This disabling property is 
maintained by the morphism g1 (and g2) as a property of the resulting 
system. The two components will synchronise on their respective ports, i.e., 
SMS-Cl.out.put = SMS-C2.in.get. This means that SMS-Cl's output action 
and SMS-C2's input action become synchronised, thus effecting data flow 
between the two components. This is what interconnecting these two 
components is supposed to achieve. Synchronisation is expressed, in push-
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out component SMS_C3, by action sync on the relevant ports and by 
appropriately unifying actions on these ports. 

We have introduced the colon notation as an alternative to qualification 
by the dot notation. We write A : Exp to mean that symbols in expression 
Exp are qualified by object A. Therefore we may write SMS_Cl : out.put(d) 
as shorthand for SMS_Cl.out.put(SMS_CJ.d). 

Figure 4. SMS synchronisation diagram 

DEFINITION 2.8 : DMS Synchronisation Morphisms 

These define the interconnection of two OMS a-comps by synchronising 
them on their common OMS sub-object as shown in Figure 5. A OMS a
comp is the double port version of an SMS a-comp. Sub-object morphisms 
f1 : {p1 - out1 ; p2 - inJ} and fz: {p1 - in2 ; P2- out2 } identify in2) and 
(inl> out2) as pairs of synchronisation points for the two components, while 
morphisms g1 and g2 are once again synchronisation morphisms in the sense 

Component SMS_C3 
Inherit SMS_Cl, SMS_C2 
Synchronisation Axiom 

sync(SMS_Cl.out, SMS_C2.in) 
SMS_CI : out.put(d) SMS_C2 : in.get(d) 

End 

described in definition 2.7. 

In the diagram of Figure 5, a-comps DMS-Cl and DMS-C2 are 
interconnected to yield pushout DMS-C3. Action suppression applies as for 
SMS ports. 
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The synchronisation diagrams here (in Figures 4 and 5) are interpreted as 
follows: 
- morphisms f1 and f2 are sub-object morphisms 
- morphisms g1 and g2 are sub-object and synchronisation morphisms, 

coalescing the components on the sub-objects identified by f1 and f2• 

- the pushout (X-C3) (where X is SMS or DMS) inherits both X-Cl and X
C2 and then coalesces them around their common sub-object. It adds 
synchronisation axioms that translate the synchronisation morphisms (g1 

and g2) into "equivalence" axioms relating the synchronised attributes 
and actions. 

In both cases the pushout is calculated as an a-comp that extends the 
inherited theories as discussed above. 

Component DMS_C3 
Inherit DMS_Cl, DMS_C2 
Synchronisation Axiom 

sync(DMS_Cl.outh DMS_C2.in2) 

sync(DMS_Cl.inh DMS_C2.out2) 

DMS_Cl : out1.put(d1) <=> DMS_C2 : in2.get(d1) 

DMS_Cl : in1.get(d2) = DMS_C2 : out2.put(d2) 

End 

Figure 5. OMS synchronisation diagram 
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2.3 Asynchronous interconnection of components 

In the SMS and DMS Synchronisation diagrams presented above the 
interconnection between X-C1 and X-C2 is synchronous, requiring the two 
components to rendezvous in order to communicate. In order to decouple 
them we interconnect them asynchronously through a buffer, for example as 
Manna and Pnueli have done in (Manna and Pnueli, 1992). We may use the 
same synchronisation diagrams to depict asynchronous binding if either X
Cl or X-C2 is a buffered connector. This is how we get the asynchronous 
connection of Filter] to Filter2 via Pipe] in Figure 6. 

For asynchronous DMS inter-connection we have the equivalent of two 
pipes going in opposite directions. The details are in (Mugisa, 1998). 

2.4 A comparison between synchronous and 
asynchronous inter-connection of components 

It has been stated by C.A.R. Hoare (Hoare, 1978) and others that 
synchronous communication is the more basic form of communication on 
top of which asynchronous communication may be implemented as buffered 
synchronous communication. The trade-off between synchronous and 
asynchronous inter-connection of components is in decoupling the connected 
components which must nevertheless separately rendezvous with their 
buffered connector. We have to depend on the properties of the connector to 
guarantee that we get the desired asynchronous behaviour from the same 
components that give us the desired synchronous behaviour. 

Manna and Pnueli (Manna and Pnueli, 1992) point out that synchronous 
communication offers some advantages over the asynchronous version 
because the execution of a synchronous communication immediately 
provides the sender with an acknowledgement that the communication has 
taken place, whereas in the asynchronous case such an acknowledgement has 
to be explicitly "programmed". The liveness axioms in our buffered 
connectors give us the same guarantees as the synchronous case except for 
the delay. On the other hand the asynchronous connection with unbounded 
buffering gives the decoupled components freedom to exercise independent 
behaviour without giving up the general properties of the synchronous case 
except for the introduction of the delay as mentioned above. 
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3. THE PIPELINE ARCHITECTURE 

The "ball of mud" class of architectures is one of those covered in 
(Buschmann et al., 1996). The ball-of-mud is to be transformed into an 
organised structure (or a system) by decomposing it into interacting and co
operating sub-systems. The mode of interaction is strongly linked to the 
chosen architecture. In our setting, a system is defined by an architecture and 
a set of sub-systems that are instances of more abstract sub-tasks. The ball
of-mud general context is presented below as a domain theory (object 
B_O_M_Context) that states that a system is constructed by plugging a set of 
sub-tasks into an architecture. The plug action replaces an abstract 
architectural sub-task by a concrete system sub-task. 

Object B_O_M_Context 
data types Sub_ Task, System, Architecture 
actions plug( Architecture, set ofSub_Task 
attributes arch : Architecture 
Axioms 

'V sys: System . 3subs : set of Sub_Task. sys =plug( arch, subs) 
End 

In this paper we examine only one ball-of-mud architecture known as the 
pipeline (or pipe-and-filter) architecture. Shaw and Garlan in (Shaw and 
Garlan, 1996) have this to say about pipes and filters : 

"In a pipe-and-filter style each component has a set of inputs and a set of 
outputs. A component reads streams of data on its inputs and produces 
streams of data on its outputs. This is usually accomplished by applying a 
local transformation to the input streams and computing incrementally, so 
that output begins before input is consumed. Hence components are 
termed filters. The connectors of this style serve as conduits for the 
streams, transmitting outputs of one filter to inputs of another. Hence the 
connectors are termed pipes." 

Buschmann et al. in (Buschman et al. , 1996) distinguish between active 
and passive filters and present four pipeline scenarios depending on whether 
the filters are passive-push (triggered by an active data source), passive-pull 
(triggered by an active data sink), passive/active-pull/push (triggered by an 
active filter pulling and pushing) or the more typical all active-pull-compute
push. The passive filters are triggered into a push/pull by direct calls or by 
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data from neighbouring components. This removes the need for pipes and 
makes the resulting pipelines less interesting for reuse. We shall stick to the 
more reuse-friendly UNIX-like pipelines of active filters connected by pipes. 

In the pipeline architecture the sub-tasks (filters) are arranged 
sequentially; the output of one sub-task is the input of the next one in the 
sequence. A pipe component asynchronously connects neighbouring filter 
components. This system may be specified by the diagram of Figure 6. 
Specifications for all the components of this architecture are presented in the 
next few sections. The pipeline context given by object Pipeline_Context 
below, simply states that all sub-tasks are filters and that all connectors are 
pipes. 

Object Pipeline_ Context 
Inherit B _ 0 _M_ Context 
data types Filter, Pipe 
Axioms 

Sub_Task ...... Filter 
Architecture. Connector _type ;::; Pipe 

End 

Figure 6. Specification of a system as a pipeline of filters and pipes (asynchronous) 
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3.1 The components 

Component Filter below encapsulates our filter a-comp. The liveness 
axiom guarantees the desired get-process-put sequence of actions. 
Component Pipe, the connector, contains a buffer defined as a queue with 
actions getq and putq. The safety axioms respectively initialise the buffer, 
guarantee the absence of an unsolicited response from the buffer and protect 
buffer update. The second has been included only for emphasis. In our 
setting it is redundant because it is a consequence of the locality principle 
(Fiadeiro and Maibaum, 1991, 1992), that states that only the actions 
declared for an object can change the values of its attributes. For Pipe , this 
may be stated as (getq v putq) v ((Xq = q)" (Xin = in)" (Xout =out)" 
(Xd =d)). The liveness axiom promises a guaranteed response from the non
empty buffer. 

Component Filter 
data types Data, Port 
actions process(Data) 
attributes in, out : Port; d : Data 
Axioms 

process( d) => Xd =processed( d) 
liveness 

in.get(d) => F(process(d) A XFout .put(processed(d))) 
End 

Component Pipe 
data types Buffer, Data, Port 
actions getq, putq 
attributes in, out : Port; q: Buffer; d: Data 
Axioms 

getq =>in.get(d) 1\ Xq = q@ Xd 
putq => q * [] 1\ q = Xd :: Xq 1\ 

Xd = hd(q) 1\ XFout.put(Xd)}} 
safety 

beg=> q = [] 
-.getq 1\ -. putq => Xq = q 
-.(getq 1\ putq) 

live ness 
q * []=> F(out.put(first(q))) 

End 
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Instead of a buffered pipe we could have a single item mailbox thus 
allowing the consumer filter to lag behind its producer filter by at most one 
data item. This is discussed in section 3.2.2. 

Yet another alternative is to have a synchronous pipeline with no pipe 
connecting the filters. The filters would then be synchronised directly, thus 
having to rendezvous in order to communicate. Section 3.2.3 has the details. 

3.2 Interconnection diagrams 

There are three versions of the interconnection diagram corresponding to 
the three ways of connecting the filters discussed above. We discuss in full 
the asynchronous version with a buffered pipe and then show how the other 
two differ from it. 

3.2.1 Asynchronous interconnection diagram 

To interconnect a Filter a-comp with a Pipe we use SMS synchronisation 
of definition 2.7. Figure 6 is the categorical diagram that shows how two 
Filter components are connected by a Pipe in this way. 

Components Filpipe and Pipefil are the local pushouts of the left-hand 
side and the right-hand side of the interconnection, respectively. They are 
instantiations of component SMS-C3 specified earlier. 

Component Filpipe 
data types Filter, Pipe 
attributes Filter] :Filter; Pipe] :Pipe 
Synchronisation Axioms 

sync(Filterl.out, Pipel .in) 
Filter] : out.put(d) getq 

End 

Component FPF is the pushout of the diagram in which Pipe] is the 
common sub-object of Filpipe and Pipefil. This component is a pushout of 
two other pushouts and not of simple components. This difference is 
reflected in the structure of its specification as a component that coalesces 
two structured components (pushouts) around a connector component as 
sub-object. The synchronisation axiom reflects this. FPF is also the colimit 
of the larger (Filterl, Pipel, Filter2) diagram. All FPF components are 
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similarly connected as suggested in Figure 6 to define a final colimit (not 
shown) for the entire diagram. 

Component FP F 
Instances Filpipe, Pipefil 
Synchronisation Axioms 

Filpipe.Pipel = Pipefil.Pipel 
End 

3.2.2 Asynchronous interconnection via a single item mailbox 

We take a single item mailbox to be equivalent to a buffer of size 1. We 
define component Mailbox_Pipe similar to component Pipe with buffer 
replaced by mbox, the single item mailbox type. This connector enables the 
source filter to lag behind the target filter by only one item, i.e., no new item 
may be delivered until the previous item has been collected by the target 
filter. 

Component Mailbox_Pipe 
data types mbox, Port 
actions getm, putm 
attributes in, out : Port; m : mbox 
Axioms 

getm => m = [] 1\ in.get(m) 
putm => m * []/\ out.put(m) 1\ Xm = [] 

safety 
beg=> m = [] 
-.getm 1\ -.putm => Xm = m 

liveness 
m * []=> F(out.put(m)) 

End 

3.2.3 Synchronous interconnection 

A synchronous interconnection of two filter a-comps is a direct 
synchronisation of the a-comps. For a transfer of data to take place the two 
a-comps must rendezvous directly. This would be an instance of SMS 
synchronisation and is described by Figure 7. This is really like composing 



www.manaraa.com

A Frameworkfor Describing Software Architectures for Reuse 263 

two functions directly. The tight coupling between the two filter components 
is evident from the second binding axiom of component FF. 

Component FF 
data types Filter 
attributes Filter 1, Filter2 : Filter 
Synchronisation Axioms 

sync( Filter ].out, Filter2.in) 
Filterl : out.put(d) Filter2: in.get(d) 

End 

Figure 7. Synchronous pipeline connection diagram 

3.3 The pipeline architecture has the pipeline property 

In a pipeline connection, if a data item appears at the input port of the 
first (left) processing component it will eventually appear at the output port 
of the second (right) processing component. We would like to prove that 
equation (1) below holds in component FPF. We use the shorthand colon 
notation introduced earlier as an aid to readability. We get the definitions of 
get and put from proposition 2.5. From the definition of get we get (1) and 
from Filter's liveness axiom we get (2). From (1), (2), the synchronisation 
axioms of Filpipe and getq for Pipe, the value at port Filter J.in through 
attributed and port Filterl.out has been added to buffer Pipe.q. From Pipe's 
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liveness axiom we shall get (3). From Pipefil's synchronisation axiom and 
Filter2's liveness axiom we shall eventually get (4) which is what we are 
required to prove. 

Filterl : in.get(d) Fout.put(processed(Filterl :processed(d))) (1) 

Filter! : Xd = in.ch (2) 

Filterl : F(process(d) 1\ XF(out.put(processed(d)))) (3) 

Pipe : Fout.put(first( q)) ( 4) 

Filter2 : Fout.put(processed(Filterl :processed( d))) (5) 

Furthermore, it can be proved (using queue operations getq, putq) that 
because we have used a queue to buffer incoming data in the connector, 
incoming data will be in the order in which it is output by the previous filter 
in the pipeline. 

Since component FPF can be reduced to the structure of Filter, if we 
combine the sequence of Filterl.process, the buffer operations and 
Filter2.process into one process, thus also hiding the buffer attribute (and of 
course its actions) then we get a Filter. So we can extend the pipeline to any 
length we want. 

3.4 The architecture 

Figure 6 represents the pipeline as an object (the colimit) and as an 
asynchronous connection of filters. Let us call it component Pipeline_Arch. 
Two other similar figures for the mailbox and synchronous connections can 
be deduced from Figure 6, giving three versions of the architecture. Let us 
call their representative objects Pipeline_Arch_Buffered, 
Pipeline_Arch_Mailbox, Pipeline_Arch_Synchronous. We therefore have the 
following expression for the pipeline architecture: 

Pipeline_Arch ::= Pipeline_Arch_Buffered I Pipeline_Arch_Mailbox 
Pipeline_Arch_Synchronous 
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3.5 Is the pipeline architecture reusable? 

If the pipeline architecture, Pipeline-Arch, is an RSA in the Reuse Triplet 
then it can be reused by plugging in appropriate RSCs. In Figure 8 RSCs 
RealFilter1 and RealFilter2 are plugged into the two Filter slots of a pipeline 
RSA to produce resultant component RealFP F. The plugging morphisms are 
k1 and k2• A similar diagram for the synchronous version, can be deduced 
easily. 

The plugging operator must satisfy the requirement that important 
properties of the RSA are preserved after each slot instantiation. We shall 
not go further into this topic here, but it has been covered at length in 
(Mugisa, 1998) under plugging. Figure 8 appears to contain objects from 
two categories - the category a-COMP and the category of instantiations of 
a-comps, ie, programs (Fiadeiro and maibaum, 1995, 1997). The existence of 
a functor between the two categories suggests a way forward. 

An alternative way of showing that the pipeline architecture is indeed 
reusable is to focus on the connector as the central piece in the architecture 
and to view the components it connects together as its parameters or roles (as 
the roles of (Allen and Garlan, 1995; Fiadeiro et al., 1997)). We may then 
show that the connector is reusable by constructing a diagram in which a role 
(Filter) is mapped to its instantiation (Rea/Filter) and completing the 
diagram with its pushout, component RealFPF. See Figure 8. 

In the plugging diagram of Figure 8, morphisms k1 and k2 are the 
instantiation morphisms of connector PIPE's roles. Morphisms k11 , h1 and 
k12 on the left and k2" h1' and k22 on the right serve to plug the slots in the 
RSA using the given instantiations. Of course, there is also a role in the 
connector, ie the buffer. An instantiation of this role by an appropriate buffer 
implementation would result in an enlarged system (described by a new 
colimit extending realFPF). Alternatively, one could regard the buffer as an 
already implemented part of the architecture (hence, describing a less 
reusable architecture) and represented in the architecture description by the 
image of the program under the functor that maps programs to their 
corresponding (minimal, canonic) specifications (Fiadeiro and Maibaum, 
1995, 1997). 
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ReolfPF 

Figure 8. Instantiating a pipeline connection 

3.6 Linking context, problem, and solution 

We would like to fit Pipeline_Arch within the Pipeline_Context domain 
theory and be reassured that all the pieces fit together consistently. 

mapping data types: B_O_M_Context.Sub_Task ..... Pipeline_Context.Filter 

defining data types : Pipeline_Context.Filter; ::= Component Filter 

problem: System::= plug(subtas1 .. subtask,., Architecture) 
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solution: B_O_M_Context.Architecture ::=Object Pipeline_Arch 

The result of all this is given below in Object Pipeline_Context_Solution 
and in Figure 9. 

Odgioru '"""'"' Brui_Of_MOK! Coot<>t(SlT"k·1"''"") 

Pip<liO< '""""' Pip<liO<_Coot"t(T"' A"hi1ture) 

Pip<lio<_ Coot<xt_SoMioo(F "· Pip<liO<\h) 

Solution : lnterConnection{Filter, Pipe, sub-object} = Pipeline_Arch 

Figure 9. Linking context, problem and solution 

Object Pipeline_Context_Solution 
Inherit Pipeline_ Context 
data types Filter, Pipeline_Arch 
Axioms 

Pipeline_Context.Filter ...... Filter 
Architecture ...... Pipeline_Arch 

End 

4. RELATED WORK 

Shaw and Garlan in (Shaw and Garlan, 1995) discuss the inadequacy of 
present formalisms to deal adequately with important issues of software 
architecture. They give examples of Wright and Darwin. We mentioned 
these formalisms in our introduction. Whereas Wright (with its CSP base) 
permits static checks such as deadlock freedom as Allen and Garlan did in 
(Allen and Garlan, 1995), it does not appear to be suitable for issues of 
dynamic architecture, component composition and interconnection. On the 
other hand much of the strength of Darwin (with its TT-calculus base) is in 
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being able to deal with issues of dynamic configuration of architectures as 
for example Magee and Kramer have done in (Magee and Kramer, 1996). 

The work of Abowd, Allen and Garlan (Abowd et a!., 1993) also 
attempts to formalise and reason about software architecture. We think that 
the chosen formalism, Z (Spivey, 1992), is not appropriate. The notion of 
structure in Z (which revolves around the schema) is rather weak and is not 
suitable for studying what is, after all, a problem of structure. The notion of 
schema is used more to talk about the textual structure of a specification 
rather than inherent structure and interconnection as in 'configuring a system 
out of components'. Also Z does not allow us to talk about behaviours (of 
components), only about input/output specification of individual operations. 
To allow us to talk about behaviour, we would need a version of Z that 
incorporated a temporal logic. 

In an effort to find a formalism that adequately deals with 
interconnection and composition of components for software architecture, 
Fiadeiro and Maibaum in (Fiadeiro and Maibaum, 1995, 1997) suggested 
category theory and showed how it subsumed Wright. The work reported in 
this paper builds on that of Fiadeiro and Maibaum. Our categorical 
framework also uses as its foundation the work of Joseph Goguen on 
interacting objects (Goguen, 1991, 1992), especially the principle that 
"interconnecting systems corresponds to taking colimits in the category of 
systems, where sharing is indicated by inclusion maps from shared parts 
into the systems that share them" (Goguen, 1992). Corresponding to 
Goguen's systems and inclusion maps are what we have called components 
and sub-object morphisms between them. The general nature of Goguen's 
categorical framework (as expressed in (Goguen, 1992)) has made our 
successful application of it to issues of software architecture less surprising 
than it might have been. 

The Kestrel Institute's SpecWare (Srinivas, 1995) is a tool that supports 
the modular construction of formal specifications and the stepwise and 
componentwise refinement of such specifications into executable code. 
Srinivas and McDonald in (Srinivas and McDonald, 1996) report that one of 
the formal foundations of SpecWare is category theory. They report that the 
language of category theory has produced for SpecWare a highly 
parameterised, robust and extensible architecture that can scale to system
level software construction. The colimit operation is their main tool for 
composing structures, in particular by "gluing" together parts that have 
overlaps. We use the same operation here to define interconnection of 
components of an architecture (which are themselves formal specifications) 
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via our sub-object morphism. The operation is the same - "glue" together 
components along the sub-component that they share. 

Rapide's architecture view of "wired interfaces" (Luckham et al., 1995) 
can be given a categorical semantics through our framework. Since Rapide 
derives many of its concepts from VHDL (Perry, 1998), we can easily 
accommodate VHDL's configurations. Rapide's interface and VHDL's 
entity are abstracted to our component (or slot), simple or structured. 
Rapide's wired interfaces and VHDL's configurations of connected entities 
are models of our interconnected components. Mapping entities to their 
implementing architectures in VHDL's configurations and tying modules to 
interfaces in Rapide are what we call plugging in our framework. The details 
of how our framework relates to Rapide and VHDL (two prototyping 
languages for software and hardware, respectively) are covered elsewhere 
(Mugisa, 1998). 

The work of Moriconi and others (Moriconi et al., 1994, 1995) on 
architecture refinement is more closely related to plugging in our framework 
and that is presented elsewhere (Mugisa, 1998). However, architecture 
composition, which they touch on briefly in (Moriconi and Qian, 1994) is 
appropriately handled by our framework since an architecture may act as a 
component of a larger architecture. 

5. CONCLUSION 

We have presented a framework for describing software architectures for 
reuse (or RSAs). We present the components of the architectures (or a
comps) as object descriptions in the object calculus. We describe the 
interconnections between the a-comps using sub-object morphisms between 
them in a category a-COMP of component specifications. An RSA is then 
derived as the pushout of a categorical diagram that shows how the a-comps 
are interconnected. This gives us a formal technique for composing (or 
"calculating") an architecture from its constituent a-comps. We can then 
derive architectural properties from the resultant a-comps. We have 
presented an example whereby we used this framework to describe the 
pipeline architecture and were able to prove one desirable property of this 
architecture - we called it the pipeline property. We have used the 
framework to describe other RSAs as well but there is no space in this paper 
to report on those. In other related work we examine the plugging operator 
of the Reuse Triplet. 
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The mathematical underpinnings for this technique were laid out by 
Fiadeiro and Maibaum in (Fiadeiro and Maibaum, 1995, 1997). In this paper 
we have applied the mathematics to an engineering problem, namely 
composing an architecture from (its) components (and with the same 
structure) as long as we can identify common constituent parts on which to 
synchronise the components. We can then analyse the resultant architecture 
using the same tools used on the components it is derived from. 
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Abstract: In this paper we present a domain-specific modeling approach for application 
components. We use class diagrams and design patterns as major modeling 
notations and utilize code generation techniques to create an application. 
Certain architectural aspects of these applications can explicitly be modeled 
using concrete versions of architectural patterns. As an example, an 
adaptation of the Pipes and Filters pattern (see Buschmann et al ., 1996) is 
presented, which can be used as an architectural modeling entity and which is 
supported by a code generator for automatic implementation of different data 
flow mechanisms. 

1. INTRODUCTION 

Software components are an important factor in software development. 
To successfully use a component, its architecture should match to the 
overall application architecture. This implies that the component 
architecture must be adaptable with respect to the needs of a specific 
application. The need for flexibility leads to the questions: "How can the 
architecture of a component be represented and influenced? Which parts of 
the software architecture are fixed, which can individually be modeled or 
varied? Is code generation for architectural aspects possible?" 

We try to give an answer to these questions by capturing architectural 
elements with variants of design patterns and by providing modeling and 
code generation techniques that allow the user to influence and adapt a 
components architecture to specific needs. The work presented in this paper 
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is integrated into an experimental, domain-specific development method 
called PSiGene {pattern-based simulator generator). The goal of PSiGene is 
to provide a powerful modeling environment to support the creation and 
integration of customized components. Our initial application domain is 
building simulation, but support for other domains is possible as well. 

In our case, simulators are used in the domain of building automation to 
test control algorithms. Building simulators must exist in many variants to 
cope with various physical effects, combinations of effects, required 
accuracies, and different time advancement schemes (e.g., real-time, time
warp). One complex simulator can not fulfill all possible requirements at the 
same time, therefore tailored simulation components are required. PSiGene 
provides a pattern based modeling and code generation environment to 
support the development of customized building simulators. Section 2 gives 
a short introduction to PSiGene. For further readings see Schtitze et al. 
(1997) and Heister et al. (1997). 

In this paper we present an extension to our initial approach. In order to 
become more domain independent and to be able to handle more complex 
models, we emphasized the separation of different component aspects; i.e., 
we distinguished between component architecture and component behavior. 
The following figure (Figure 1) illustrates the engineering process of 
PSi Gene. 

domain engineering 

architecture __..,. . tyle. --+ 

domain analysis ______,. domain- pecific 
patterns 

pattern 
reference architecture (see fig. 3) "=' catalog 

libraries 
Tools 

\ 
application engineering 

domain specific 

application 
specific 

simulator model 
code 

Figure 1. Domain- and application-specific tasks 

Some parts of PSiGene, in particular the pattern catalog, the reference 
architecture, and the libraries are results of a domain engineering step. We 
tried to capture architectural styles for some component aspects in patterns. 
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They are designed to work together with domain-specific (behavioral) 
patterns. All patterns from the catalog form a system of patterns 
(Buschmann et al. 1996). In addition to the catalog, a reference architecture 
(see Figure 3) was set up, and supporting libraries have been implemented. 
To design a simulation component (application engineering), appropriate 
patterns have to be selected from the catalog, instantiated, and bound to 
class diagrams. Executable code is automatically generated for this 
application model and can be extended with manually written code if 
needed. 

The following section gives a brief introduction to PSiGene. An analysis 
of this approach considering software architecture is found in chapter 3. 
After that, chapter 4 describes two of our architectural patterns (Pipe and 
Filter) and gives a short example of their use. A discussion of the approach 
and an outlook on future work conclude this paper. 

2. PSIGENE 

PSiGene is a component-based, domain-specific software development 
approach (for details see Schiitze et al. 1997). It's purpose is the creation of 
tailored, application specific components: in contrast to many component 
based development methods, where components are provided "as is", 
PSiGene represents a flexible meta component. The user of PSiGene 
specifies the concrete component with a model, a generator implements the 
component automatically from this specification. This results in the creation 
of components that exactly match the applications needs without introducing 
any overhead in runtime or memory consumption caused by generic code or 
interpretation of runtime parameters. 

PSiGene combines object-oriented modeling of the static aspects of a 
component (class diagrams) with pattern-based modeling of the dynamic 
aspects like component behavior or functionality (pattern instance models), 
and with code generation techniques for the implementation. The initial 
application domain of PSi Gene is real-time simulation of large buildings. 

PSiGene does not work stand-alone, but is integrated into a larger 
software development environment called MOOSE (model-based, object
oriented software generation environment). Within MOOSE, every 
application consists of a set of components each implementing one aspect of 
the overall application features . An application is defined by an application 
model, which in turn consists of several component models. A set of 
domain-specific generators is used to transform the models into software 
components. A certain type of generator, the so-called cross-component 
generator, is capable of interpreting more than one component model at a 
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time and of generating glue logic and application interface code from the 
interrelations (which we call the "glue") between different component 
models. PSiGene's generator is implemented as a cross-component 
generator within MOOSE. More details about MOOSE can be found in 
Altmeyer et al. (1997). 

2.1 System Overview 

Figure 2 gives an overview of the implementation of PsiGene. An 
application, in this case a building simulator, is defined with an application 
model. Among the different component models we find a structure model 
(expressed as a class diagram by using editors from MOOSE) that defines 
the simulation objects. Other class models define structures for other aspects 
of the simulation or represent run time libraries. 

component 
model (structure): 
simulation objects 

I I 
I I 

comP<>nent 
model (behavior): 
simulat ion behavior 

I I . 
________ Simulator 

Figure 2. PSi Gene overview 

PEdit 

pattern 
catalog 

The behavior of the simulator is defined with a pattern instance model. 
Patterns, which are taken from a catalog (see below), are used to define the 
behavior of the simulation objects, to define the overall functionality of the 
component, or to define the interface between the simulation component and 
other components expressed by other models. These pattern instances not 
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only specify local component properties, but also the glue to other 
components. This means that component integration is also performed on 
the modeling level. The pattern instances are created using a graphical 
editor, PEdit, that displays class models and lets the user select and 
instantiate patterns from a catalog. These instances are then bound to the 
class model, which means that each instance is connected to elements 
(classes, relations, attributes, methods) of the class model. 

Once the application model is set up, it is fed into PSiGene's generator. 
The generator reads the structure model, the pattern instances, and it knows 
the patterns of the catalog. From this information, it creates optimized, 
tailored component code. For variants of the application, we will simply 
generate a variant of the component code. Details of pattern-based code 
generation can be found in Heister et al. (1997). 

2.2 Pattern Formalization and Pattern Catalog 

As explained before, patterns used for modeling are taken from a 
domain-specific pattern catalog. The intention of the catalog is pretty much 
the same as with other pattern-based design methods: to capture successful, 
"good" design and to provide this knowledge to the catalog user by 
presenting solutions for smaller design problems in a certain design context. 
One of the first and most famous catalogs has been presented by the "gang 
of four"; see Gamma et al. (1995). In contrast to this and most other catalogs 
found in the literature, which address general design problems, we focus on 
concrete design problems for building simulation such as the calculation of 
heat flows in buildings or the scheduling of real-time processes. 

Table 1 shows the structure of our catalog. It is partitioned into several 
categories dealing with different (orthogonal) aspects. As an example, some 
patterns from each category are shown. 

Because we set up the catalog for a very narrow application domain, we 
are able to state the problems as well as the solution very precisely, enabling 
tool support for modeling as well as code generation. At the same time, we 
had to formalize the pattern approach with respect to the pattern interface 
and the code templates provided as problem solution: In contrast to other 
approaches, we have to specify the binding between the class model 
(structure model) of the application and the pattern instances formally and 
unambiguously. And we need code templates that are suitable for code 
generation. 

Within PSiGene's catalog, the pattern interface, defining the structure as 
well as the participating elements of a pattern, is expressed with name:type 
pairs as formal parameters. The name denotes the name of the participating 
element, the type shows which parts of other component models are eligible 
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for binding, e.g., classes, relations, methods, and so on. Based on the formal 
parameters, the (syntactical) correctness and completeness of pattern 
bindings can be checked by tools. With that, the formalization builds the 
syntactical framework for a pattern language, as the cooperation of patterns 
can be expressed with formal bindings. Furthermore, the code generator gets 
sufficient information to create component code. 

Table 1 Excerpt from the pattern catalog 
Category Sub-Category Patterns Description 
Framework Primitive Variable Value Access an attribute 
Structural 
Adaptation 

BufferedV alue Attribute buffer that is mainly 
used in conjunction with a 
Pijl_e 

Indirection FollowRelation Delegation along a relation 
Traversal Collect connected objects 

without specifying a path 
Redirection MethodBranch Branch if condition is met 
Pipes and Pipe Specify data flow 
Filters 

Filter Activity when using a Pipe 
Distribution AttributeProxy Used for distributed access 

Simulation Control Actuator Set attributes with events 
Control 

ContinuousComput Periodic method invocation 
ation 

State StateMachine Simple finite state machine 
Machines 

StateMachineActi ve State machine using 
conditions 

User Interface Display Display Attribute Display an object's attribute 
DisplaySlider Display attribute as a slider 

Domain Simulation ThermalMass Calculate temperatures 
ThermalJunction Compute heat flows 

The code templates are split into smaller fragments . Each fragment 
consists of code in a given programming language, enriched with macros 
that denote the variable parts of the code. Currently, we support Smalltalk as 
the target language, however, provisions have been made to generate code 
for other object-oriented languages as well. During code generation, the 
generator collects the fragments, "personalizes" them by replacing the 
macros, and assembles the resulting code to methods. Macro replacement 
can be as simple as string exchange or it can mean to replace a macro with 
other, complex code fragments recursively. The definition of replacement 
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strategies and code fragments is supported by inheritance and by pattern 
aggregation. 

2.2.1 Extensions to PSiGene 

Components generated by PSiGene do not work in isolation, but are 
embedded into a surrounding application with an underlying software 
architecture determined by the application domain and other forces . For 
earlier versions of PSiGene, this application architecture was fixed, and 
consequently, the component architecture was fixed, too. There were 
architectural aspects that have been addressed by PSiGene, e.g., the degree 
of multithreading in a simulator or the possibility to create distributed 
simulators. However, the decision about architectural elements has been 
made implicitly, while choosing patterns that determined other simulation 
aspects. For example, by using the Sensor and Actuator pattern to simulate 
hardware interfaces, the user implicitly enabled distributed simulation and 
influenced the component's and application's interface. As we started to 
apply PSiGene to other application domains, we realized that our approach 
would become more general and the modeling would be significantly easier 
if we were able to specify the architecture of applications explicitly. The 
following section will illustrate how we adapted the latest version of 
PSiGene (in particular the pattern catalog) to capture and model 
architectural styles, and how we generate code that implements these styles 
automatically from the models. 

3. SOFTWARE ARCHITECTURE WITHIN 
PSI GENE 

The architecture of a software system can be modeled following 
architectural styles (see Buschmann et al., 1996, and Bass et al., 1998). 
Styles give concrete hints on how to construct and organize a system. For 
example, following the Client-Server style leads to a system where several 
clients communicate with one or more servers. The exact behavior of a 
specific client or server is independent of the architectural style and must be 
specified separately. Tracing which style leads to which component 
structure makes the software more maintainable and understandable. 

Usually several styles can be identified in a component's architecture. 
Each style can be seen as a set of constraints on an architecture. These 
constraints define a family of architectures that satisfy them (Bass et al., 
1998, p. 25). Some of these constraints can also be expressed with design 
patterns (compare Monroe et al., 1997). Such a pattern includes the context 
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in which a style can be applied, the forces it resolves, the consequences, and 
the structure of the style. In addition to this, patterns contain a guide on how 
to apply them. 

Finding concrete patterns that reflect an architectural style is not easy: 
styles are an abstract description of facets of a software architecture, 
whereas (PSi Gene-) patterns are usually applied to smaller parts of a 
component and reflect concrete design decisions rather than organizational 
structures. 

We formalized some architectural patterns so that they can be used 
within PSiGene. Their binding enforces a certain architecture and code can 
automatically be generated. The main drawback of this "formal" description 
of architectural styles is that PSiGene patterns cannot capture the whole 
bandwidth of possibilities how a style can be implemented: only a limited 
number of domain-specific implementation strategies can be included in a 
single pattern because otherwise code generation would be impossible and 
the binding would become far to complex. This restriction, however, doesn't 
count as much, because our patterns don't aim to be universally applicable 
but are only used in one domain. When focusing on one domain, 
architectural styles occur only in few variants. 

As explained before, the previous version of PSiGene used architectural 
styles mostly implicitly: the patterns concentrated on solving a certain 
(simulation) problem and therefore they contained behavioral aspects as 
well as structure and other architectural components. For small models this 
was convenient, but when modeling complex simulators or when adapting 
PSiGene to other domains it is desirable to be able to model the architecture 
more explicitly. To do so, we reengineered some of our patterns and added 
new ones to reflect certain properties of architectural styles. 

3.1 Architecture in PSiGene 

All simulation components that are modeled with PSiGene share a 
common basic architecture. Some parts of this architecture are fixed while 
other parts can vary from simulator to simulator. Figure 3 gives an 
overview. 

A set of fixed components builds the framework that houses customized 
simulation components. The framework is used by inheriting from or 
delegating requests to framework objects or classes. Three major 
components are used: a GUI library to display simulated objects and to 
stimulate the simulator, an 110 library to communicate with other 
applications and to log simulator runs, and the kernel library which is 
responsible for scheduling and event-handling. The structure and behavior 
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of the simulation components, however, varies for different simulators in 
order to match the needs of the applications. Variable aspects are: 
- component structure (i.e., class models) 
- component functionality and behavior 

non-functional requirements (e.g., timeliness, accuracy) 
- component integration: glue code to connect to the framework 

r----

GUI-Iibrary 

YO
library 

---, 

Figure 3. Architecture of a building simulator 

3.1.1 Architectural styles in PSiGene 

hbrary 

sunulauon 

arChne'cture) 

( ) 

relations 

c ] 
schema 

Several architectural styles are used to model a building simulator. The 
following table (Table 2) gives an overview of the styles that occur in 
PSi Gene. 

Two styles, Repository and Pipes and Filters describe data aspects of the 
model. Our components are modeled using class diagrams. Different 
components can share parts of these diagrams to have access to the same 
data. Methods to access such a data repository are automatically generated. 
Data exchange within one component is modeled with the Pipe and Filter 
patterns. The communication channels are seen as pipes, and activities to 
trigger the data flow are modeled as filters (see next chapter). 

The application framework implements the framework style. Framework 
components are represented by class diagrams and can be incorporated into 
the models using object-orientated mechanisms and patterns. 
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Since our kernel library is event-driven, all active simulation objects 
must be able to receive and evaluate events. Event handling is also modeled 
with patterns (such as Actuator or ContinuousComputation). 

In this section we have shown how the architecture of a simulation 
component looks like and which architectural styles occur implicitly by 
using PSiGene. Some styles can also be expressed explicitly with patterns, 
as we will illustrate with the example in the next section. 

Table 2. Architectural styles in PSiGene 

Architectural 
Style 

Repository 
Pipes and Filters 

Framework 

Layers 

Model-View
Controller 
Distribution I 
Event Systems 

Microkernel 

Occurrence 

Data exchange between components 
Specify data flow between simulation 
objects and identify active objects 
Application framework 

Accessing libraries (via delegation) 

Used in the GUI library. The 'Model' is 
part of the simulation component 
Network communication with other 
applications (110 library) or distributed 
simulation/scheduling (kernel library) 
Useful to encapsulate communication 
aspects esp. in the kernel library 

4. EXAMPLE 

Modeling Notation I 
Support 

Class diagrams 
Pipes and Filters patterns 

Class diagrams, schemas, 
patterns 
Indirection, control, and 
display patterns 
GUI patterns 

Patterns and library 
parameters 

Patterns plus hierarchical 
class diagrams (not yet 
supported by 
PSiGene!MOOSE) 

Up to now, the software architecture of our building simulator models 
was defined by the framework: the libraries, the structure of our patterns, 
and by the way the class diagrams are constructed. Many of the patterns 
addressed behavioral aspects as well as other software architectural aspects. 

For example, the Therma/Junction Pattern is used to simulate the 
junction of two adjoining thermal masses. A thermal mass is a simulation 
object that has a relevant heat capacity. Examples are rooms, radiators, or 
the environment. A thermal junction is typically a wall or a window. When 
two thermal masses are adjacent, they exchange energy through heat flows. 
The Therma/Junction pattern can be used to calculate the heat flow between 
any two of those masses. The heat flow depends on the difference of 
temperatures of the adjoining thermal masses and on the thermal resistance 
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of the separating (i.e. , insulating) material. The first version of the 
ThermalJunction pattern assumes that it can somehow access the required 
temperatures and the thermal resistance by calling a method. Other patterns 
like FollowRelation or Traversal must provide this access methods (usually 
by delegation to appropriate objects). 

Figure 4 shows a part of the model for the simulation of heat flows 
through a simple wall. The class diagram describes how rooms are 
connected via surfaces and walls. The lower part of Figure 4 shows the 
pattern instances. ThermalJunction is bound to the class Suiface and 
implements the calculation method. To collect the data for this calculation, 
several FollowRelation patterns are required. The temperature of both 
neighboring rooms has to be collected and the cumulative thermal resistance 
of the wall and both surfaces must be computed. 

} diagram 

temperature getTemp calculate getThennRes thermalRes } pattern bindings 

} pattern instances 

Figure 4. Simulating heat flow 

ThermalJunction implements an action (calculation of the heat flow) that 
is closely related to a data flow (collecting temperatures and thermal 
resistances). ThermalJunction concentrates on the action part and also 
assumes the required data are present in a certain way. For small object 
models this is adequate as data flow is relatively simple. As models grow 
more complex, software architecture becomes more and more important. For 
the "thermal junction" problem this means, that the data flow aspect 
becomes more important (and more difficult to model) and the coupling 
between the data flow and the activity view has to be well considered. 

Data exchange between simulation objects usually consists of two parts: 
a communication channel (object relations or possibly a network 
connection) and an activity that triggers the exchange. Such pipelines occur 
in many variants: push-driven, pull-driven, synchronized push/pull, 
distributed, buffered, and so on. To be able to model such a variety of 
different data flow possibilities, it is useful to decouple the data flow aspect 
from the functional aspects and model it separately. 
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Figure 5. Data flow between two rooms 

._____ 
pull 

push 

The new version of Thermallunction focuses on the functional view 
only. The data to calculate a heat flow must still be present but the pattern 
doesn't prescribe how to access this data. Two new patterns, Pipe and 
Filter, can be used to model data flow. In our example (Figure 5 and Figure 
6), we have a data flow (i.e., a pipe) from the class Room to Wall, and an 
activity (i.e., a filter) to calculate the heat flow. 

Whether the data flow is pull- or push-driven and/or distributed over 
more processes or computers is characterized by configuring parameters of 
the Pipe pattern. Thermallunction can be seen as a Filter (from the data 
flow view) and bound to our Filter pattern (see Figure 6). 

calculate 

functionality 

Figure 6. Different views for functionality and data flow 

4.1.1 A Pipes and Filters pattern 

This section describes our Pipe and Filter patterns in more detail. It is 
intended as an example of how software architecture can be expressed with 
PSiGene-like patterns. We took the pattern Pipes and Filters from 
Buschmann et al. (1996), which describes most properties of data flows as 
they occur in our domain (transfer, buffering, synchronization) and adapted 
it to our needs. The general static structure of a pipeline is shown in the 
class diagram of Figure 7. A pipe is used to connect a provider with one or 
more consumers. Push or pull methods are used to access data elements in 
the pipeline. Additional processing is done using filters . 
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Capturing the idea of the Pipes and Filters style in generative patterns is 
possible because the underlying structure is not too complex. However, 
dealing with the many variants in which pipelines occur is not trivial. We 
have realized the Pipes and Filters style as two individual patterns "Pipe" 
and "Filter." They both implement a part of the Pipes and Filters structure 
(see Figure 7). 

To identify pipelines in a class diagram, the patterns structure must be 
mapped to elements from that diagram. This structure mapping is done by 
assigning values to formal parameters of the Pipe and Filter patterns (see 
section 2.2). 

Pipe 

buffer Pipe 
pull 
push( data) 

read Data 

readData 

pu hData push(dara) 

Figure 7. Object structure of the Pipes and Filters style (and pattern) 

The following list shows the formal parameters of the Pipe pattern: 
objects: 

source 
the data source object 
(read as formal parameter source:object) 

destination 
the data destination object (sink) 

- attributes: 
sourceData (use at source) 

the attribute that serves as the source for the data transfer 
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destinationData (implement at destination) 
the new proxy attribute that is the sink of the transfer 

- relations: entry and exit relations for the pipeline 
- methods: 

read (optional, implement at destination) 
reads data from the source and writes it to the sink. 

push (optional, implement at source) 
triggers a data transfer. The initiator is the source object. 

pull (optional, implement at source) 
triggers a data transfer. The initiator is the destination object. 

notify (optional, use at destination) 
this method will be invoked at the destination object, if the data at 
the source has changed. 

request (optional, use at source) 
this method will be called at the data source if the destination 
object requires an actual value of the attribute. The source object 
has to transfer the current value (if it has changed since the last 
time). 

- properties: 
bufferSize (optional, preset) 

if this property is set, a buffer is realized with the specified size. 
useProxy (optional, preset) 

this property instructs the generators to allow distribution of the 
participating objects over host-boundaries. A proxy mechanism is 
implemented. 

As one can see, some parameters are optional and don't have to be 
bound. For example, a push-driven pipe does not need to bind the "pull" 
parameter. The Filter pattern is described by similar means. It is bound to 
calculation methods with a formal parameter calculate:method(use). 

Data flow aspects are modeled independently of other aspects. 
Interaction occurs only at well defined points. Functional patterns like 
ThermaUunction or ThermalMass are bound at the filter component using 
the formal parameter "calculate." Activity patterns like 
ContinuousComputation can be bound using the parameters "pull" or 
"push" from the pattern Pipe, or using the optional filter parameter 
"compute." 

A small example demonstrates the pattern bindings for the model in 
Figure 6. After binding values to the formal parameters for all pattern 
instances, a binding description file is created. It looks as follows : 

"ThermalJunction 1 - calculates the heat flow through a thermal junction element" 
Therma!Junction 

bind: 'target' to: 'Surface'; 
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bind: 'calculate' to: 'calculateHeatAowForRoom'; 
bind: 'thermalResistance' to: 'thermalResistance'; 
bind: 'area' to: 'area'. 

"Filter l - calculates the heat flow through a thermal junction element integrating the pattern 
instances ThermalJunctionl and Pi pel to PipeS" 

Filter 
bind: 'target' to: 'Surface'; 
bind: 'calculate' to: 'calculateHeatAowForRoom'; 
bind: 'request' to: 'requestHeatAowForRoom'; 
bind: 'arguments' to: #('temperatureOfRoom' 'temperatureOfSurface' 'resistanceOfRoom' 
'resistanceOfSurface' ); 
bind: 'getArguments' to: 'argumentsHeatAowForRoom'; 
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom'; 
bind: 'result' to: 'heatAowForRoom'; 
bind: 'initValue' to: '0.0'. 

"Pipe I - provides the thermal resistance of a room at a connected surface" 
Pipe 

bind: 'source' to: 'Room'; 
bind: 'destination' to: 'Surface'; 
bind: 'sourceData' to: 'thermalResistance'; 
bind: 'read' to: 'readResistanceOfRoom'; 
bind: 'exit' to: 'radiatorSurfacesOfRoom'; 
bind: 'entry' to: 'roomOfradiatorSurface'; 
bind: 'destinationData' to: 'resistanceOfRoom'; 
bind: 'push' to: 'pushThermalResistanceToSurfaces'; 
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom'. 

"Pipe 5 - provides the calculated heat flow from Surface to Room" 
Pipe 

bind: 'destination' to: 'Room'; 
bind: 'source' to: 'Surface' ; 
bind: 'exit' to: 'roomOfSurface'; 
bind: 'entry' to: 'surfacesOfRoom'; 
bind: 'read' to: 'readHeatAowFromSurface' ; 
bind: 'destinationData' to: 'heatFlowFromSurface' ; 
bind: 'sourceData' to: 'heatAowForRoom'. 
bind: 'pull ' to: 'pul!HeatAowFromSurface'; 
bind: 'request' to: 'requestHeatAowForRoom'. 

There are 3 objects classes in this example: a Room is connected with a 
Surface to a Wall . The instances of Room have to recalculate their 
temperatures in fixed time intervals. The rooms request the calculation of 
the heat flows from the adjoining objects indirectly by reading the local 
attribute "heatFlowFromSurface" (the calculating filter for the temperature 
at Room calls pullHeatFlowForRoom first, before accessing the attribute). 
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Since the generators know that rooms and surfaces are connected by a 
one-to-many relation, this attribute (implemented by "Pipe 5") holds a 
collection of heat flow values. Each of these values is calculated by an 
instance of the ThermaUunction pattern, the calculation is controlled by 
"Filter 1 ". This filter collects all required arguments, triggers the calculation 
while providing those arguments, and, if necessary, delivers the result via 
"Pipe 5". The following code fragment was generated from the above 
bindings: 

argumentsHeatFlowForRoom 
"Collects all arguments for the calculation of heatFlowForRoom" 
I args I 
args :=Array new: 4. 
args at: 1 put: self temperatureFromRoom. 
args at: 2 put: self temperatureFrom Wall. 
args at: 3 put: self thermalResistanceFromRoom. 
args at: 4 put: self thermalResistanceFrom Wall. 
"args 

computeHeatFlowForRoom 
"Does the calculation and stores the result in heatFlowForRoom" 
"self heatFlowForRoom: (self calculateHeatFlowForRoom: self 
argumentsHeatFlowForRoom) 

In our example the access to "heatFlowFromSurface" is triggered by a 
separate pull method (Pipe 5 is pull-driven). The other pipes are push
driven, which means that the data transfer is initiated by the sources of the 
pipe. 

As one can see, our patterns "Pipe" and "Filter" realize a flexible data 
flow mechanism with synchronization capabilities. They separate this aspect 
from the functionality, which in this case is handled by Thermallunction . 
Thermallunction in tum does not care about data flow issues. 

Depending on the binding, different transport and synchronization 
mechanisms can be implemented by Pipe and Filter. Some synchronization 
combinations are shown in Table 3. 

Table 3. Some possible combinations of pipes and filters 
Argument Filter Result Pipe Comment 
Pi es 
push-driven inactive 

pull-driven active 

pull-driven inactive 

push-driven 

push-driven 

pull-driven 

Each time a new argument is delivered, 
the result is calculated and propagated. 
The calculation of the filter is triggered 
by an external activity. The arguments 
are requested and the result is 
propagated. 
If someone requests the result, it is 
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Argument 
Pi es 

push-driven 

Filter 

active 

Result Pipe 

pull-driven 

Comment 

calculated after requesting all required 
arguments. 
This is the synchronized combination of 
the first three examples 

The required synchronization mechanism depends on the frequency of 
data changes and on how the transport is triggered. The pattern interface 
allows to abstract from the concrete transport mechanism. Distributing the 
pattern or buffering values can be achieved by binding additional patterns 
like AttributeProxy or BufferedVariable. 

4.1.2 Code generation 

Each pattern instance in PSiGene comes with a partial code generator. It 
is responsible for generating adequate code from the patterns code templates 
and the pattern bindings. Every pattern instance is analyzed in its binding 
context before the generation is started. Therefore, tailored and optimized 
code can be created. 

To generate code for a pattern, not only its own bindings have to be 
considered, but also other patterns bound to the same target objects. For 
example, a propagating filter needs information about the pipe to which data 
changes should be reported. Internal properties (additional bindings) are 
used to allow the combination of patterns and are used to generate optimized 
code. Application code is generated by assembling tailored code templates 
that are part of each pattern. A very simple code fragment may look as 
follows: 

'{compute} 
"Does the calculation and stores the result in {result}." 
"self {result}: (self {calculate}: self {getArguments})' 

Keywords in brackets ( { }) are used as macros. Usually code generation 
can be done by choosing code templates and replacing all macros with other 
templates or bound values. More complex patterns (like Traversal) also use 
code synthesis techniques. For further reading see Heister et al. (1997). 

5. DISCUSSION 

This work combines different software engineering techniques. Structure 
models are used together with a pattern based design strategy. Application 
generators are used to implement a simulation component. The approach can 
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be seen as a domain specific software architecture (DSSA, see Mettala and 
Graham (eds.), 1992). Domain engineering in the field of building 
simulation resulted in the overall architecture of a simulation component 
(Figure 3) and in the implementation of the libraries. Also our pattern 
catalog is domain-specific and part of the domain model. Reference 
requirements are included in the informal parts of our patterns, prescribing 
which patterns could be used together or giving hints how certain simulation 
problems can be solved. To design a simulation component, only the 
application engineering has to be performed. This includes especially setting 
up or refining a class diagram for the building structure and instantiating and 
binding patterns from the catalog. Tool support is given for these tasks. A 
detailed process of this modeling procedure is not yet defined and will be a 
topic for future works. 

The revised pattern catalog contains behavioral patterns together with 
patterns describing architectural styles. It is partitioned into categories that 
deal with different aspects of simulation (the partitioning supports aspect 
oriented programming (AOP), see Kiczales, 1997). Each category can be 
seen as a view and be modeled separately. We are currently extending the 
pattern editor to support views. 

The main advantage of the new catalog is that we have found a way to 
express parts of the component's architecture in (design) models. Patterns 
can be used to implement or refine an architectural style. The configuration 
is done by binding a pattern instance to the simulator model. These patterns 
have a fixed formal interface and code templates (see Heister et al., 1997) 
and therefore cannot express the whole variety of a style. But as our domain 
is limited, it is sufficient to use only a few domain-specific implementations 
of an abstract style. 

All our patterns must be able to work together: they form a system of 
patterns (compare Buschmann et al., 1996). Each individual pattern is used 
to model a part of the component, but with the right combination of patterns 
a building simulator can be designed. For example, with our Pipe and Filter 
patterns, a data flow between two objects can be defined. At both ends of 
the pipeline activity may take place. This is usually a calculation of values. 
The Filter pattern is used to trigger such an activity; the activity itself must 
be modeled elsewhere (i.e., with patterns from another category). A future 
topic is to investigate how such dependencies and constraints between 
patterns can be formally expressed. 
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6. CONCLUSION 

With architectural patterns it is possible to model architectural styles 
separately. The pattern binding concept of PSiGene allows to combine 
different pattern instances and to apply them to class diagrams. Therefore, 
architectural styles can be integrated using a formal interface. The main 
advantage of the architectural patterns is a better maintainable system 
(model changes take effect only locally), better tailored components, and the 
ability to handle more complex models. Also, our pattern catalog became 
more domain independent. We still have some special simulation patterns 
but they are able to work together with more abstract and more general 
architectural patterns. We believe that these architectural patterns can easily 
be adapted to other domains. Future work will investigate the applicability 
of our approach in other domains. 

Our patterns do not provide the whole bandwidth of all of their possible 
applications but only a domain-specific subset. This makes code generation 
and optimization possible but restricts the universal usage of the patterns a 
bit. Finding more variants and new patterns is also a topic for future works. 

A small disadvantage of our new pattern catalog is that it takes more 
time to model small simulation components as each aspect has to be 
designed separately. But for larger models this separation of concerns is 
mandatory and leads to more flexible simulators (e.g., nonfunctional 
requirements like distribution can be modeled and documented explicitly 
and more easily). 

The pattern-based approach to software architecture seems to be feasible 
and worked well for PSiGene. Variants of components can be created within 
short time, and a component can match the architectural demands of an 
application by changing abstract architectural properties in the models. We 
therefore believe that our approach to architecture modeling helps the 
software development in providing and using tailored components. 
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Abstract: Six years ago lmageBuilder Software chose to develop an object-oriented, 
cross-platform, multimedia framework to promote code reuse and therefore 
increase profits. Today, it continues to be used and extended; it is profitable 
and a major company asset. This paper documents how it was developed, 
describes how we use it today, evaluates its success, and makes 
recommendations for others based on our experience. 

1. THE COMPANY 

ImageBuilder is an independent, full-service, multimedia title 
development company. Founded 15 years ago, it now has over 120 full-time 
employees including more than 30 engineers. We design, develop and test 
CD-ROM titles for clients, partners and, more recently, our subsidiary 
Active Arts. Many products are completed independently from conception 
through development to manufacturing release by ImageBuilder staff, 
however we do allow clients to participate in the process to the extent they 
desire. Most of the dozen or so products shipped each year are dual 
Windows and Macintosh, shrink-wrap, edutainment, multimedia CD-ROMs. 
Some of the most well-known titles include: Hasbro's Pictionary, Mr. 
PotatoHead, and Playskool Puzzles; Creative Wonder's Madeline 
Classroom Companion series; The Learning Company's Math Munchers 
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Deluxe and Paint, Write, and Play; Pacific Interactive's Bill Nye: Stop the 
Rock!; Disney's Disney Magic Artist; and Microsoft's Arthur's Playground. 

2. PROJECTS 

Each project is somewhat unique, however most follow a well-traveled 
path. lmageBuilder producers collaborate with the client to develop an 
outline for the product including scope, content and purpose. As this is 
nearing completion, the project lead and art director are assigned to begin 
developing a product specification. This is a working document so changes 
are quite regular especially near the start of project as details are ironed out 
with the client, engineers and artists. 

As areas of the product specification become firm, engineers start on the 
technical specification. Engineers outside the project will usually critique it 
in one or more design review meetings. Once the product specification is 
complete, the Quality Assurance department will develop plans for testing 
and certification. Additional members are added to the project as they are 
needed and/or become available. Eventually, the team will include two to six 
engineers, one or more media coordinators, artists, animators, scriptwriters 
and/or sound designers. Most projects employ about eight full-time positions 
and tend to last about ten months, but they can vary quite a bit. At any time, 
ImageBuilder has a dozen or more projects in progress. 

3. SUPPORT 

One important ingredient contributing to a successful project at 
ImageBuilder is our proprietary, object-oriented, multimedia framework and 
its associated tools. Framework code comprises from one third to one half of 
most applications developed. Typical applications make use of about 80% of 
the code provided. Since practically all development builds on our 
framework, a framework development team continues to improve it and 
provide support for its use. The framework team's initial responsibility is to 
develop, improve and extend our domain-specific object model for 
multimedia applications. This model is realized as an object-oriented C++ 
framework. Several tools have also been developed to allow the large 
quantities of multimedia resources to be manipulated, compiled, and viewed. 

In addition to developing the object model, delivering code and providing 
tools, the team provides design review and education. Most projects take 
advantage of the team's design experience during formal reviews. Also, 
engineers frequently use the team members as a convenient consultant for 
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object design. Education provided by the team plays an important part in the 
improvement of the engineering department. Whenever consulted the team 
tries to take advantage of these "teachable" moments. In addition, formal 
classes are held weekly covering various topics from engineering processes 
to use of the framework to object modeling. 

4. ARTIFACTS 

The framework team maintains three artifacts: C++ framework, 
documentation and tools. The framework is actually multi-tiered; it includes 
an operating system services (OS) layer, an application layer and the 
multimedia framework proper. The OS layer models services such as files 
and threads, providing cross-platform objects to hide platform-specific 
details. The application layer builds on the OS layer to provide windows, 
controls, menus, events, etc., again hiding platform-specific details as much 
as possible. Finally, the framework proper models multimedia objects such 
as pictures, sounds, animations and buttons. 

Table 1 shows the number of modeling objects and additional utility 
classes for each layer. 

Table 1. Domain Objects by Framework Layer 
Domain Objects 

OS services 
Application framework 
Multimedia framework 
Total 

26 
20 
88 

134 

Other Classes 

53 
27 

118 
198 

Total 

79 
47 

206 
332 

In addition to framework code, extensive documentation has been 
developed. Approximately 60 pages of overview and intermediate-level 
documentation are currently available on an internal web site. This continues 
to grow as the framework is extended or new areas are identified for further 
explanation. Class-level documentation, aimed at application use, is 
provided with the class in header files. 

The framework team also has responsibility for several tools including a 
content compiler, a script compiler, an animation viewer, a resource browser 
as well as others. These tools allow resources to be converted, compiled and 
viewed for shipping and run-time use. Resources supported include: text, 
pictures, sounds, MIDI, run-time composed and streamed animations, 
QuickTime movies, Windows A VIs and project-dependent extensions. 
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5. HISTORY AND EVALUATION 

Seven years ago ImageBuilder began to respond to industry changes as 
Windows 3.0 and 3.1 were shipped. Emphasis changed from business 
graphics to multimedia products. Six years ago we started our third 
multimedia project and decided much of each project could be reused if we 
could developed a "multimedia engine". So a parallel project to create 
reusable code was started in conjunction with the client's project. Although 
extremely primitive by today's standard, it gave us our first chance. The 
most important thing we learned was the need for extension-the need for a 
framework, not an "engine". It also allowed us to "throw one away". 

At the conclusion of that project we immediately went back to the 
drawing board. We allocated two of our best engineers and completely 
redesigned the object model from the ground up. Over the next year or two 
we continued to improve and extend the model. Several projects were now 
using it and a few had even been completed. By the end of this period we 
shipped about 6 products using the framework, but had also come to realize 
many of its shortcomings. 

The third year into the project we went back to the drawing board again. 
Although we eventually touched all the code, much of the domain-related 
object model remained unchanged. Following this redesign was an extensive 
period of conversion. The framework team was under pressure to deliver 
vast amounts of new code for projects underway. In response we tried using 
occasional part-time team members either to help with conversion or 
develop new areas. In the end, this did not work because our part-time 
engineers did not have experience developing extensible code. 

As the percentage of projects using the framework increased to almost 
100% and the engineering department grew, we had to improve our 
processes. We added an administrative assistant and an official release 
procedure. Releases now included detailed change reports, verified code for 
all supported platforms, and tools synchronized with the run-time code. 

Over the years many additions have been suggested for the framework. 
We have never lacked for proposed improvements and as each project 
pushes the envelope, pressure to make enhancements increases. The 
framework team periodically reviews the framework with two groups. 
Producers are consulted for strategic direction. Engineers are consulted 
about utility and convenience. Based on these directions the framework team 
develops short- and medium-term goals. 

In addition to application team needs, framework additions must meet 
two requirements. First, the addition should be useful to more than one 
project since the framework exists to reduce costs by increasing code reuse. 
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Second, the addition must be well defined. Open-ended additions become 
sinkholes for time and effort. 

The need for education was one of the slightly unexpected results of 
developing a framework. Although conversant in the C++ language, many of 
our engineers lacked object skills. In an attempt to improve skills and deliver 
timely information about the framework, weekly engineering meetings were 
established. Time is divided between teaching object skills, improving 
engineering practices, and discussing framework use. 

The framework has been a major benefit to project development at 
ImageBuilder. It allows application teams to do work faster because many of 
the details are already solved. For example, rapidly prototyping a game, 
module or entire application can be done as fast as content becomes 
available. Also, it improves the quality and speed of applications 
ImageBuilder is able to ship. Each product that takes advantage of the 
framework contains proven and optimized code for its core functionality . 

6. RECOMMENDATIONS 

6.1 Getting Started 

Building the framework team is the first step to a successful framework 
development. The team will be responsible for deriving the object model, 
documenting it for project engineers, implementing it in code, and 
supporting it. 

6.1.1 Create a Framework Development Team 

You will not have well-architected, reusable code if no one has primary 
responsibility to develop it. As much as it would be nice to believe good 
engineers would develop reusable objects and code, it is very difficult while 
under pressure to meet deadlines. Our experience indicates it will never 
happen. However, it can be accomplished given a team whose full-time 
responsibility is framework extraction or invention. 

6.1.2 Enroll the Best Architects 

Design is first chance engineers have to influence a project for success. 
Correct decisions pay off for the rest of the project, while mistakes made 
here cost the most to correct. Given a good domain-specific framework, 
much of the design for a project has already been done. So, to make the most 
of your investment, allocate the best architects available to framework 
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development. This allows all projects, and engineers, to benefit from their 
experience and knowledge. 

6.1.3 Allocate Ten Percent 

Allocate enough engineers to be productive and make a real contribution, 
but not too many to be unmanageable or risk extensive overhead. Our team 
has varied slightly over the years, but we have found allocating ten percent 
of our engineers to be about right. 

6.1.4 Promote Stable Membership 

Team membership should be stable. Framework development is 
fundamentally different from application development. For example, correct 
framework design is typically more important than the schedule. Also, 
inventing a quality model is considerably different from using it. Therefore, 
enroll new members for long terms, a year or more, and make key members 
permanent. Since members will be working together for extended periods, 
and in some cases indefinitely, chose the team carefully and use trial periods. 
This allows everyone to reevaluate the assignment after an agreed interval. If 
the situation does not appear to be working, the trial can be terminated with 
less discomfort for everyone involved. 

6.1.5 Empower a Visionary Leader 

As with all enterprises, a strong leader is needed. Someone who has a 
clear vision for the framework needs to "own" the project. Especially before 
the project is well established, but even later, it will be pulled in many 
directions. Each client project will make a case that the framework team 
should solve its special requirements . An empowered leader will be able to 
hold it on course and allow it to meet the widest possible needs. 

6.2 Making Progress 

Once the project gets underway the team will be developing the domain 
object model. It is unlikely any team will "get it right" the first time around. 
Even if the first version is successful, plan to improve and extend it. 

6.2.1 Make It Tractable 

Only consider taking on manageable areas of the domain. Some areas 
will be complex or ill defined; ignore them. In many cases the application 
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engineers will be able to solve the subset of the problem needed for their 
application without needing the general solution. Even though a general 
solution may be enticing, especially to architects, consider the economics of 
building it. 

6.2.2 Make Official Releases 

As with any construction project, building on an unstable base is tricky at 
best. Give the application engineers a hand by producing "official" code 
releases. Produce "release notes" that announce model changes, extensions 
and bug fixes. Typically project engineers are much happier to receive new 
code if they know what has changed. Balance the desire to release changes 
to application engineers with the cost to perform a release. We make releases 
at most once a week, but they may occur less frequently if few changes have 
occurred. 

Suggest each project archive its own copy of the framework. This allows 
an application member to control migration to new releases when convenient 
for that project. It also allows application engineers to make local changes 
and bug fixes after framework development has been "frozen" for that 
project. 

6.2.3 Keep the Model Stable 

Backward compatibility is important with rapidly changing code. For 
frameworks this means the domain model must support the ways the 
application engineers use it. Application engineers hate releases with 
architectural changes. Although improving the model may require "code 
breaking" changes, try to keep them to a minimum. Find temporary ways to 
support "old style" objects to give engineers time to convert. 

6.3 Developer Relations 

In addition to developing a model and providing code for it, the 
framework team will spend a considerable amount of time supporting their 
customers, the application engineers. 

6.3.1 Solicit Client Input 

The framework team will increasingly lose touch with application 
development as it concentrates on the framework. Therefore, develop an 
ongoing dialog with framework clients (i.e., the project engineers). Goals for 
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the framework will change over time. Some method of constantly 
reevaluating them should be available. 

6.3.2 Promote Object-Oriented Skills 

Even if the quality of the object model developed is excellent, application 
engineers will need object-oriented skills. In order to insure the success of 
the framework it may be appropriate to include object education as 
framework support. 

6.3.3 Assist in Using the Framework Effectively 

Even if application engineers have object-oriented experience, solutions 
to some problems may not be obvious. During framework development 
many domain problems will be considered and plans made to allow for their 
solution. If application engineers are not aware of these proposed solutions 
they may not use the framework effectively. Since the framework team will 
be the experts within the domain, take advantage of design reviews to assist 
application engineers with domain-related object design. 

6.3.4 Refuse Ownership of Project-Specific Problems 

When assisting project engineers, pressure will mount to use framework 
team members to solve project-specific problems. While this is most evident 
near the beginning of framework development, it will continue to plague the 
team years later. Resist the urge to allow framework engineers to participate 
on an application team. Framework members should be consulted on issues 
of the framework or for advice but application development should remain 
separate. 

7. CONCLUSION 

Developing a domain-specific, object-oriented framework has allowed 
ImageBuilder Software to remain competitive, grow and succeed in the fast
paced environment of software development. Providing applications within 
the framework domain has proven reliable and profitable over the past six 
years. While most of the techniques presented have a proven track record, 
some of the ideas only become clear in hindsight. Though ImageBuilder 
developed these recommendations through trial and error, we count the 
project as a success. Other organizations, with the benefit of these 
recommendations, should experience smoother sailing. 
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Abstract: Distributed systems' runtime behavior can be difficult to understand. 
Concurrent, distributed activity make notions of global state difficult to grasp. 
We focus on the runtime structure of a system, its execution architecture, and 
propose representing its evolution as a partially ordered set of predefined 
architectural event types. This representation allows a system's topology to be 
visualized, analyzed and constrained. The use of a predefined event types 
allows the execution architectures of different systems to be readily compared. 

1. INTRODUCTION 

Distributed software systems consist of computational components 
interacting over a communications infrastructure. The executions of these 
systems can be highly dynamic with components being created and 
destroyed and the communications infrastructure undergoing continual 
reconfiguration. We propose to represent the evolution of the structure of 
such a running system, termed the execution architecture of the system, as a 
set of events, partially ordered by time and causality. This partial order of 
architectural events enables the precise analysis of the topological evolution 
of a system, just as a partial order of behavioral events enables a precise 
analysis of the functional activity of a system (Peled, Pratt et al. 1996). 
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The need for understanding execution architectures is driven by the main 
trends of software. Component-oriented software engineering has resulted 
in systems composed of components connected through middleware. 
Distribution, especially large scale, leads to asynchronous systems. The 
effect on execution architecture is dramatic: there may be no single 
depiction of the execution architecture of an asynchronous distributed 
system at a particular "point" in time. Instead, different observers can have a 
different views of what the architecture is. 

We define a model for execution architectures and event types used to 
indicate changes in such a model. We show how systems such as distributed 
Java programs or systems communicating over commercial middleware can 
have their topological evolution projected onto our model. Using a 
predefined set of event types allows us to compare the execution 
architectures of systems implemented in different languages and which 
utilized different communications middleware. 

Finally, we show how our representation of an execution architecture 
allows a system's topological evolution to be visualized, analyzed, and 
constrained. 

2. PREVIOUS WORK 

Our work is builds on two previously separate lines of research: software 
architecture and causal modeling. 

2.1 Software Architecture 

The term architecture has been widely discussed in the literature (e.g., 
(Garlan and Shaw 1993) (Moriconi and Qian 1994) (Perry and Wolf 1992) 
(Thompson 1998)). Soni et al. (Soni, Nord et al. 1995) discuss four 
categories of architecture: Conceptual, Module, Execution and Code. 
Conceptual architecture describes a system in terms of high level, abstract 
elements. Module architecture is the a more detailed functional 
decomposition. Execution architecture is the structure of the running sys
tem. Code architecture is the organizational structure of the source code of 
the system. Execution architecture is unique among the four in being a 
dynamic structure. We focus on execution architecture and argue that its 
appropriate representation is a partially ordered set of events. 

Current research in software architectures has often focused on 
conceptual or module architectures (we will term architectures in either of 
these categories as component architectures). Architectures are described as 
entities possibly within other entities and interconnected somehow. Such 
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descriptions are sometimes referred to as "boxes and arrows" 
representations. While being useful for many purposes, they have their 
shortcomings in describing a dynamic system. The representation of an 
execution architecture needs to be able to deal with change. In simple cases, 
execution architectures may be thought of as a series of static architectures, 
snapshots at different points in time. However, in many cases this is not 
enough. 

The ACME system developed by Garlan et al. is designed as a language 
for exchanging architectural designs (Garlan, Monroe et al. 1995). The 
ACME system is inherently static though there is a proposed extension to 
allow the specification of potential dynamism. Darwin (Magee, Dulay et al. 
1995) focuses on design specification and is not intended to be used in 
systems where new component types and the pathways between them are 
defined and added at runtime. 

2.2 Causal Modeling 

The use of partial orders of events to depict the behavior of distributed 
systems is well established (Lamport 1978; Pratt 1986). The relation of the 
partial order, typically called causality, enables true concurrency to be 
represented, information which is lost in a trace-based model. 

Fidge and Mattern (Fidge 1988; Mattern 1988) separately developed the 
notion of vector time which is an algorithmic way of representing and 
analyzing the causal relation. Subsequent work has been done in improving 
the performance of such algorithms in special cases (e.g., (MeJdal, Sankar et 
a!. 1991). See (Schwarz and Mattern 1994) for an excellent survey). Other 
work has been done on applying causal modeling notions to existing 
programming languages (Santoro, Mann et al. 1998). 

Our framework for execution architectures is an extension of our 
previous work in event-based systems (Luckham, Augustin et al. 1995; 
Luckham and Vera 1996). There we created a programming language, 
RAPIDE, in which a causal record of a program's behavior was 
automatically deduced and recorded during the program's execution. 

3. A THEORY OF EXECUTION ARCHITECTURE 

3.1 Execution Architectures 

Execution architecture is a runtime notion. It is the architecture of an 
executing system. Its building blocks are executable constructs (e.g., 
objects, processes, tasks) which we call modules and the mechanisms they 



www.manaraa.com

306 James Vera, Louis Perrochon, and David C. Lucklulm 

use to communicate which we call pathways. Both of these building blocks 
may be created and deleted during the system's execution making execution 
architecture an inherently dynamic notion. It can best be thought of as the 
record of the evolution of the structure of a running system. 

3.2 Modules and Pathways 

Our framework for execution architectures is built on two basic 
constructs: 
I. Modules which are groupings of computational capabilities, and 
2. Pathways which are the means modules use to communicate amongst 

themselves. 

Module: A module is a grouping of computational capabilities. Modules 
have an associated type. The type consists of a set of provided and required 
features of each module, called declarations. These declarations are used to 
communicate with other modules. In an event-based system, these 
declarations would denote what events a module can send and receive. In a 
system based on synchronous (remote) procedure calls, the declarations 
would describe the procedures provided and called by each module. The 
type of a module describes what the module requires from other modules as 
well as what the module provides to other modules. Some architecture 
description language type systems only describe what modules provide. 

In addition, we define a parent-child containment relationship over 
modules. Each module has maximum one parent. The parent relationship 
forms a directed graph. Being dynamic, the parent of a module may change. 
While parent-child is the only module relation we predefine, additional 
relationship may be defined, such as a relation between the software 
modules and the hardware modules they currently run on, etc. 

Pathway: A pathway represents potential communication among 
modules. A pathway has a name, a set of inputs and a set of outputs. The 
inputs may be thought of as those things which invoke or use the pathway 
and the outputs as those things which result from the invocation or observe 
the use of the pathway. The inputs and outputs of a pathway may change. 
Typically, one input or output identifies a pair (module, declaration). 

More generally, we allow the use of patterns to concisely specify sets of 
inputs or outputs. For example, a pattern could express "any module of type 
Airplane performing a RadioOut event." A pathway also has a scope over 
which it operates. The scope may be a particular module or the entire 
system. A pathway can represent a mechanism or simply a state or 
condition. Possible examples of pathways are a UNIX pipe, a Java socket, a 
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serial cable between two computers, or a dynamic scoping rule of a 
particular programming language. 

What constitutes a module is a subjective determination. For example, in 
a producer-consumer example, the producer and consumer are likely to be 
modules while the data communicated between them is probably not. Thus 
what is defined as objects in the source language does not necessarily 
correspond to modules. Not all objects need be modules, not all modules 
need be objects. In a system of workstations and network links one modeler 
may choose to have the workstations be represented as modules and the 
network links to be pathways. However, for a modeler more concerned with 
the network protocols, the network links might be the modules and the 
workstations the pathways. The key point is that modules represent the 
building blocks of the architecture. The definition of the actual cor
respondence is determined by the system implementor though 
language/system defaults may be used. 

3.3 Execution Architecture Events 

An execution architecture changes over time. Modules are created and 
destroyed, pathways come into and go out of existence. Such occurrences 
may be serialized or may happen independently. We model such changes as 
events. For example, the creation of a module or the additional of an output 
to a pathway would each be denoted by events. In our framework, we have 
templates for nine architectural events to describe creation and deletion of 
modules and pathways, addition and deletion of inputs and outputs from 
pathways, and changing of the parent of a module. 

Events have parameters contammg additional information. A 
CreateModule, for example, has parameters denoting the type of the 
module that was created, the parent of that module, and the name of the 
module. We give the simplified description of the templates below: 

CreateModule(type : ModuleType, parent : Event, 

name : String); 

DeleteModule(module : Event); 

CreatePathway(inputs : Pattern, outputs Pattern, 

name: String); 

DeletePathway(pathway : Event); 

ChangeParent(module : Event, parent : Event); 

AddPathwayinputs(pathway : Event, inputs : Pattern); 

AddPathwayOutputs(pathway: Event, outputs : Pattern); 

DeletePathwayinputs(pathway : Event, inputs : Pattern); 

DeletePathwayOutputs(pathway : Event , outputs : Pattern); 
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Some explanations may be necessary: first, our events do not directly 
refer to modules or pathways, as modules and pathways are transient objects 
in an execution architecture. In many cases, such as debugging post mortem, 
these objects no longer exist. Instead, we refer to the event that denotes the 
creation of the module or pathway. This can be seen in the parent parameter 
of CreateModule Instead of referring to the parent module, we refer to 
the CreateModule-event of the parent. 

Second, we would like to be able to define the inputs and outputs of a 
pathway in a descriptive way, rather than as an enumeration of all possible 
inputs. RAP IDE allows us to easily describe the sets of input and output of 
a pathway using a pattern. For our purpose, the pattern in 
CreatePathway just specifies a set of declarations of certain modules. If 
a pattern language is not available, sets of pairs of a module (denoted by an 
event) and a declaration would work also. 

Events are ordered temporally and causally. In the context of an event 
processing system such as RAPIDE, our architectural events can be treated 
like normal events. This allows us to use existing browsing tools and, more 
interestingly, pattern matching and constraint tools on architectural events. 
Using event constraint tools, we can write topological architecture 
constraints. Examples of such are presented in section 4.1 . 

3.4 Causal and Time Orders 

When events are created they are (partially) ordered by cause and time. 
Two events are temporarily ordered if their temporal relation can be 
determined by any single clock in the system. The temporal order of two 
events in a distributed system without a common clock is not a priory 
known, but may be derived later. Two events are causally ordered if one 
causes the other (transitively). The exact meaning of cause is configurable 
and is captured by the system architect in a causal model. A common 
definition is that the events produced by a thread are totally ordered, the 
receipt of an event causally follows its sending. 

The partial ordered set (poset) of architectural events forms a record of 
the evolution of the architecture. Recording relations between events in 
distributed systems as partial orders (instead of just time-stamping them) 
reveals that "the execution architecture at a certain point in time" is not a 
well defined concept. (Vera 1998) introduces the notion of consistent cuts 
as architectural observation points. A consistent cut partitions a partially 
ordered set into a before and after part. If an event is in the after part, then 
all events that follow it temporarily or causally are in the after part, and vice 
versa. Informally, an observer could have seen only and exactly the before 



www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 309 

part of the poset. When we speak of a "point" in the execution we mean "at 
a consistent cut". 

3.5 Static Snapshots 

At any consistent cut in the poset, a static representation or snapshot of 
the execution architecture similar to a component architecture may be 
derived from all of the events preceding the consistent cut. Such a snapshot 
is amenable to the types of analysis typically done on component 
architectures. 

A compatible sequence of consistent cuts is graphically defined as a 
sequence of cuts which do not cross. Such a sequence may be viewed as an 
animated movie of the architecture's evolution. Since a poset may contain a 
set of such sequences, an execution architecture may contain a set of such 
animations. Each animation corresponds to a particular observers view of 
the architecture over time. The example below gives examples for such 
compatible and incompatible sequences of consistent cuts. 

4. APPLICATIONS OF EXECUTION 
ARCHITECTURES 

4.1 An Air Traffic Control System 

Consider an air traffic control system as depicted in figure 1. Its 
architecture consists of AirTrafficSector which contains a ControlTower 
and a Runway-Control module . 

. l'frafficSector 

ontrolTower RunwayControl 

)+------{ ro 

Figure 1. Initial air traffic architecture 

This initial architecture was created by the execution represented by the 
poset in figure 2. The arrows denote the causal relation. Note that the 
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consistent cut C 1 in figure 2 marks the "point" in the execution at which the 
architecture depicted in figure 1 holds. 

Figure 2. An initial execution of the air traffic system 

Next imagine that two Flights (one called UA17, the other AA23) are 
created and that their creations are independent. A pathway from each Flight 
to the ControlTower is also created. This execution is represented by the 
poset in figure 3. At the point in that poset indicated by consistent cut C3 
the architecture depicted in figure 4 holds. 

In between consistent cut C 1 and consistent cut C3 there are seven 
consistent cuts• two of which are shown in figure 3. Cuts C2a and C2b are 
inconsistent (graphically the cuts cross) so they would not both appear in the 
same architecture animation. One architecture animation A1 could consist of 
sequence of consistent cuts C1, C2a, C3 and another architecture animation 
A2 could consist of the sequence C 1, C2b, C3. 

In architecture animation Al, the initial snapshot shown in figure 1 
would appear, then Flight UA17 and its connection to the ControlTower 
would appear and finally Flight AA23 and its connection to the 
ControlTower would appear. In architecture animation A2, the same initial 
architecture as in Al would appear, followed by the appearance of Flight 

1The consistent cut for which the maxima is (1) Event E6, (2) Event E7, (3) Event E8 (this cut 
is labeled C2a in figure 3, (4) Event E9 (this cut is labeled C2b in figure 3, (5) Events E6 
and E7, (6) Events E6 and E9 and (7) Events E7 and E8 
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AA23 and its connection to the Control Tower followed by Flight UA 17 and 
its connection to the ControlTower. 

Event E6 

Event E8 

CreateModule(RunwayControlType, 
El, "RunwayControl") 

CreatePathway("UA 17.fo", 
"ControlTower.cai") 

Event El 

C2a 

Event E9 

Figure 3. Continuation of execution of the air traffic system 

In a system which is merely time-stamping its architectural changes, or 
which observes them by breakpointing the system, only animation Al or 
animation A2 would be seen (or potentially a third animation A3 in which at 
one "frame" neither flight is visible and in the next both are. This animation 
would result from an overly coarse time-stamping or breakpointing interval.) 
This is a specific instance of a more general case. Whenever there are 
concurrent changes to an architecture, a single trace of those changes (such 
as would result from time-stamping or breakpointing) will only capture one 
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animation. They cannot capture the information contained in incompatible 
consistent cuts. 

AirTrafficSector 

Contro!Tower 

,-----{fo 
UAI7 

co i-------+1 

l+---------4 ro 

fo }------, 
AA23 

Figure 4. Air traffic architecture at consistent cut C3 

4.1.1 Use of Partially Ordered Architectural Events 

The representation of execution architecture as partially ordered sets 
(posets) of events allows poset oriented tools and methods to be applied to 
execution architectures. In particular, the pattern and constraint languages 
developed in the RAPIDE project may be applied to specify topological (as 
opposed to purely functional) constraints on executing systems. The 
RAPIDE languages can be used to set up simple filters, constraints or 
maps. Some illustrative examples follow. 

4.1.2 Filters 

Filters are operators which take as input a poset and output a subset of 
the input selected by a pattern. Filters allow a reduction of the space being 
examined. Suppose we are only interested in the module containment 
structure. The following filter could be used: 

observe select CreateModule() or DeleteModule() 

or ChangeParent(); 
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4.1.3 Constraints 

The representation of an execution architecture as a poset allows us to 
write constraints about its evolution as well as static snapshots. For 
example, we could constrain that a Radar module must be created before a 
Depot module. Or that a particular communication topology (full connected, 
strongly connected) exists among a class of modules before some condition. 

Given a poset constraint language such as that available in RAPIDE, the 
existence of architecture events allows these specifications of topological 
constraints. In an event generating system (where the behavior is also 
represented as events), mixed-mode functional/topological constraints can 
be expressed. 

Suppose we want to require that the creation of Flight modules be seri
alized. We might make this requirement because the creation of a new Flight 
module involves the manipulation of some global state (e.g., the number of 
Flights currently in the sector). We can express this constraint as requiring 
the events signifying the creation of Flight modules be totally ordered: 

observe select CreateModule(type is FlightType) 

match [* rel -> ] CreateModule; 

4.1.4 Maps 

Maps are operators that transform a poset into a new poset. The new 
poset is generally at a higher level of abstraction. That allows the behavior 
of a system to be understood in more abstract terms than those in which it 
was implemented. 

As a simple example, suppose we wish to abstract ControlTower module 
and RunwayControl module pairs into a single AirportControl module. To 
do this we would create a map that does this abstraction and adjusts the 
communication structure accordingly. If the input poset also contained the 
functional behavior of the system then behavior of a ControlTower or 
RunwayControl module would also need to be mapped into behavior by an 
AirportControl module. A subset of such a map is given below: 

map AirportAbstract is trans : array [Event] of Event; 

(?c,?r , ?p, ?a : Event; ?sl,?s2 : String) 

?c@CreateModule(ControlTowerType, ?p, ?sl) and 

?r@CreateModule(RunwayControlType, ?p, ?s2) 

=> ?a@CreateModule(AirportControlType, ?p, ?sl+?s2); 

trans[?c) := ?a ; trans[?r] := ?a; end map; 

The above rule looks for pairs of CreateModule events, one denoting the 
creation of a ControlTower module, the other a RunwayControl module. If 
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they both have the same parent then a CreateModule event is created in the 
new poset which denotes the creation of an AirportControl module. The 
association of the lower level events to the higher level event is stored in an 
associative array for subsequent use by other rules. 

4.1.5 Conformance to Reference Architectures 

By combining maps and constraints, the conformance of systems to 
reference architectures may be checked (Luckham, Augustin et al. 1995). 
Architecture events allow topological conformance to be expressed. This 
can be useful for checking requirements such as duplicate communication 
channels. 

4.1.6 Reverse Engineering 

Reverse engineering of architectures is necessary when the original 
architecture has been lost (or never existed). Research has focused on 
extracting component architectures from source code (Harris, Reubenstein 
et al. 1995). By extracting architecture events from a running system via 
instrumentation (such as monitoring rniddleware) we can extract the 
execution architecture even when the original source code is unavailable. 
Perhaps more comparative work is the extraction of call trees by debugging 
software. These tools can be thought of as providing a maximal depiction of 
the use of the execution architecture. An execution architecture poset, in 
contrast, captures its evolution. 

4.2 Applications to Other Domains 

The mapping of concepts from event-based systems into our architectural 
constructs is flexible and in each case, different strategies are supported 
with emphasis on different attributes. 

Whatever choice is made, the ability to map one poset into another 
allows such decisions to be changed ex post facto. In the above example, the 
choice of the assignment to modules and pathways could be inverted by a 
mapping. 

In this subsection we present some example translations of distributed 
systems to our execution architecture constructs. 

4.2.1 A System Implemented in Java 

The Java notion of objects is easily mapped to our module concept. More 
interesting is the choice of constructs which map to pathways. The ability of 
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one object to name another object (generally known as dynamic scoping) is 
one form of pathway. If an object A can name an object B then we can say 
that a pathway exists from A to B. 

The Java socket construct is amenable to translation into a pathway. A 
Java socket is a bidirectional mechanism over which data may be sent from 
one object to another. It has two ends. Any object which can name an end 
may send or receive data along the socket. Therefore, a Java socket could be 
translated into two of our pathway constructs (pathways are one directional 
while sockets are bidirectional) where the sources of one of the pathways 
are the destinations of the other (and vice versa). 

4.2.2 A System Hosted on Commercial Middleware 

The Information Bus (TIB) (TIBCO 1998) is a communication 
middleware which supports the subject-based publish-subscribe metaphor. 
Objects send out (publish) messages labeled with a particular textual field 
(subject). Other objects can request to receive (subscribe to) messages with 
a particular subject. Higher level protocols are built on top of the 
publish/subscribe mechanism such as point to point communication, 
synchronous communication, and automatic selection of one from several 
destinations. 

In our application of execution architectures to the TIB (Luckham and 
Frasca 1998), we map each TIB client into a module and map the basic 
publish/subscribe mechanism into pathways. In a component architecture 
description, for every subject a connection is needed from the modules 
which may publish that subject to the modules that may subscribe to the 
subject. Not surprisingly, pictures of such architectures show the TIB only 
as a bus. In an execution architecture, pathways are only maintained 
between modules that actually publish and modules that actually listen to a 
certain subject, e.g., only after a module subscribes to a subject it is added 
as a destination of the pathway which corresponds to that subject. This 
results in a point-to-point depiction of the communication network. 

Other TIB protocols can be captured via their implementation on top of 
the publish/subscribe protocol. However, the semantics of the higher level 
protocols are more accurately captured by dealing with them individually. 

5. SUMMARY AND CONCLUSIONS 

We developed a technology to define, track and control execution 
architectures of dynamically changing software systems. Architectural 
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changes are represented by causally and temporarily (partially) ordered 
events. Our framework has the following features: 
- Architecture events provide a formal language to describe execution 

architectures. 
Filters and maps, together with the visualization tools such as those 
available in RAP IDE allow real time monitoring of execution 
architectures. 
The RAPIDE engine raises exception when the formal specification (i.e., 
constraints) of an execution architecture is violated. Maps allow 
corrective actions in non fatal error conditions. 

- Static snapshots at consistent cuts provide backward compatibility with 
previous approaches. 

- Posets of architecture events capture the execution architecture of an 
asynchronous, distributed system in cases where static architectures are 
not expressive enough. 

- Posets can easily be stored and analyzed at a later time. 
Our technology is applicable to systems that are distributed, 

asynchronous and have a high change rate. We believe understanding 
execution architectures is important because it fills the gap between the 
abstractness of conceptual architectures and what is actually implemented in 
systems. In particular, our partially-ordered event-based execution 
architectures is superior to simple, time-stamped traces of architectural 
changes. 

REFERENCES 

Fidge, C. J. (1988). Partial Orders for Parallel Debugging. Workshop on Parallel and 
Distributed Debugging, Madiscon, Wisconsin, ACM SIGPLAN/SIGOPS. 

Garlan, D., R. Monroe, et al. (1995). ACME- Software Architecture Interchange Language. 
Garlan, D. and M. Shaw (1993). An Introduction to Software Architecture, World Scientific 

Publishing Company. 
Harris, D. R., H. B. Reubenstein, et al. (1995). Reverse Engineering to the Architectural 

Level. 17th International Conference on Software Engineering, ACM. 
Lamport, L. (1978). ''Time, Clocks, and the Ordering of Events in a Distributed System." 

CACM 21(7): 558-565. 
Luckham and Vera (1996). "An Event-Based Architecture Definition Language." IEEE 

Transactions on Software Engineering 21 (9): 717-734. 
Luckham, D. C., L. M. Augustin, et a!. (1995). "Specification and Analysis of System 

Architectures using RAPIDE." IEEE Transactions on Software Engineering 21(4). 
Luckham, D. C. and B. Frasca (1998). Complex Event Processing in Distributed Systems. 

Stanford, Stanford University. 
Magee, J., N. Dulay, eta!. (1995). Specifying Distributed Software Architectures. 5th 

European Software Engineering Conference (ESEC 95), Sitges, Spain. 



www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 317 

Mattern, F. (1988). Virtual Time and Global States of Distributed Systems. Parallel and 
Distributed Algorithms, Elsevier Science Publishers. 

MeJdal, S., S. Sanlcar, eta!. (1991). Exploiting Locality in Maintaining Potential Causality. 
I Oth ACM Symposium on the Principles of Distributed Computing, New York, New 
York, ACM Press. 

Moriconi, M. and X. Qian (1994). Correctness and Composition of Software Architectures. 
SIGSOFT'94 Software Engineering Notes, New Orleans, LA, ACM Symposium on 
Foundations of Software Engineering. 

Peled, D. A., V. R. Pratt, eta!. (1996). Partial Order Methods in Verification, American 
Mathematical Society. 

Perry, D. E. and A. L. Wolf (1992). Foundations for the Study of Software Architecture, 
SIGSOFT '92, Software Engineering Notes, ACM Symposium on Foundations of 
Software Engineering. 

Pratt, V. R. (1986). "Modeling concurrency with partial orders." Int. J. of Parallel 
Programming 15(1): 33-71. 

Santoro, A., W. Mann, eta!. (1998). clava- Extending Java with Causality. lOth International 
Conference on Software Engineering and Knowledge Engineering (SEKE'98), Redwood 
City, CA, USA. 

Schwarz, R. and F. Mattern (1994). "Detecting Causal Relationships in Distributed 
Computations: In Search of the Holy Grail." Distributed Computing 7(3): 149-174. 

Soni, D., R. L. Nord, et al. (1995). Software Architecture in Industrial Applications. 17th 
International Conference on Software Engineering, ACM. 

Thompson, C., Ed. (1998). Workshop on Compositional Software Architectures. Monterey, 
California, OMG, DARPA, MCC, OBJS. 

TIBCO (1998). TIBCO Web Site, TIBCO. 
Vera, J. S. (1998). Software Architecture Description Languages: Descriptive Constructs and 

Execution Algorithms. Electrical Engineering. Stanford, Stanford University. 



www.manaraa.com

DOMAIN-SPECIFIC ARCHITECTURES AND 
PRODUCT FAMILIES 



www.manaraa.com

Evolution and Composition of Reusable Assets in 
Product-Line Architectures: A Case Study 

Jan Bosch 
University of Karlskrona/Ronneby 
Department of Computer Science and Business Administration 
S-372 25 Ronneby, Sweden 
e-mail: Jan.Bosch@ide.hk-r.se 
www:http://www.ide.hk-r.sel-bosch 

Key words: Reusable assets, product-line architectures, software composition, software 
evolution, case study 

Abstract: In this paper, a case study investigating the experiences from evolution and 
modification of reusable assets in product-line architectures is presented 
involving two Swedish companies, Axis Communications AB and Securitas 
Larm AB. Key persons in these organisations have been interviewed and 
information has been collected from documents and other sources. The study 
identified problems related to multiple versions of reusable assets, 
dependencies between assets and the use of assets in new contexts. The 
problem causes have been identified and analysed, including the early 
intertwining of functionality, the organizational model , the time to market 
pressure, the lack of economic models and the lack of encapsulation 
boundaries and required interfaces. 

1. INTRODUCTION 

Product-line architectures have received attention in research, but even 
more so in industry. Many companies have moved away from developing 
software from scratch for each product and instead focused on the 
commonalities between the different products, and capturing those in a 
product-line architecture and an associated set of reusable assets. This is, 
especially in the Swedish industry, a logical development since software is 
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an increasingly large part of products and often defines the competitive 
advantage. When moving from a marginal to a major part of products, the 
required effort for software development also becomes a major issue and 
industry searches for ways to increase reuse of existing software to minimize 
product-specific development and to increase the quality of software. 

A number of authors have reported on industrial experiences with 
product-line architectures. In [SEI 97], results from a workshop on product 
line architectures are presented. Also, [Macala et al. 96] and [Dikel et al. 97] 
describe experiences from using product-line architectures in an industrial 
context. The aforementioned work reports primarily from large, American 
software companies, often defense-related, which are not necessarily 
representative of the software industry as a whole, especially European 
small- and medium-sized enterprises. 

We have performed a case study of product-line architectures involving 
two Swedish software development organisations: Axis Communications 
AB and Securitas Larm AB. The former develops and sells network-based 
products, such as printer, scanner, camera, and storage servers, whereas the 
latter company produces security- and safety-related products such as fire
alarm, intruder-alarm, and passage control systems. Since the beginning of 
the '90s, both organisations have moved towards product-line architecture 
based software development, especially through the use of object-oriented 
frameworks as reusable assets . In an earlier paper [Bosch 98c], we reported 
on the technological, process, organizational and business problems and 
issues related to product-line architectures. In this paper, we focus on the 
use, evolution, composition and reuse of assets that are part of a product-line 
architecture. Since the involved organisations have considerable experience 
using this approach, we report on their way of organising software 
development, the obtained experiences and the identified problems. 

The contribution of this paper is, we believe, its provision of exemplars 
of industrial organisations in software industry that can be used for 
comparison or as inspiration. In addition, the experiences and problems 
surrounding reusable assets provide, at least partly, a research agenda for the 
software architecture and software reuse communities. 

The remainder of the paper is organised as follows. In the next section, 
the research method used for the case study is briefly described. The two 
companies forming the focus of the case study are described in section 3. 
Section 4 discusses the differences in perception of product-line 
architectures and reusable assets in academia and industry. The problems 
identified during data collection are discussed in section 5 and their causes 
are analysed in section 6. Section 7 discusses related work and the paper 
concludes in section 8. 
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2. CASE STUDY METHOD 

The goal of the study was twofold: first, our intention was to get an 
understanding of the problems and issues surrounding reusable assets part 
that are part of a product-line architecture in "normal" software development 
organisations, i.e ., organisations of small to average size, i.e., tens or a few 
hundred employees, and unrelated to the defense industry. Second, our goal 
was to identify those research issues that are most relevant to software 
industry with respect to reusable assets in product-line software 
architectures. 

The most appropriate method to achieve these goals, we concluded, was 
interviews with the system architects and technical managers at software 
development organisations. Since this study marks the start of a three year 
government-sponsored research project on software architectures involving 
our university and three industrial organisations, i.e ., Axis Communications, 
Securitas Larrn, and Ericsson Mobile Communications, the interviewed 
parties were taken from this project. The third organisation, a business unit 
within Ericsson Mobile Communications, is a recent start-up and has not yet 
produced product-line architectures or products. A second reason for 
selecting these companies was that we believe them to be representative of a 
larger category of software development organisations. These organisations 
develop software that is to be embedded in products also involving hardware 
and mechanics, are of average size (e.g., development departments of 10 to 
60 engineers), and develop products sold to industry or consumers. 

The interviews were open and rather unstructured, although a 
questionnaire was used to guide the process. The interviews were video
taped for further analysis afterwards and in some cases documentation from 
the company was used to complement the interviews. The interviews often 
started with a group discussion and were later complemented with interviews 
with individuals for deeper discussions on particular topics. 

3. CASE STUDY ORGANISATIONS 

3.1 Case 1: Axis Communications AB 

Axis Communications started its business in 1984 with the development 
of a printer server product that allowed IBM mainframes to print on non
IBM printers. Up to then, IBM maintained a monopoly on printers for their 
computers, with consequent price settings. The first product was a major 
success that established the base of the company. In 1987, the company 
developed the first version of its proprietary RISC CPU that provided better 
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performance and cost-efficiency than standard processors for their data
communication oriented products. Today, the company develops and 
introduces new products on a regular basis. At the beginning of the '90s, 
object-oriented frameworks were introduced into the company and since 
then a base of reusable assets is maintained from which most products are 
developed. 

Axis develops IBM-specific and general printer servers, CD-ROM and 
storage servers, network cameras, and scanner servers. The latter three 
products, in particular, are built using a common product-line architecture 
and reusable assets. In figure 1, an overview of the product-line and product 
architectures is shown. The organisation is more complicated than the 
standard case with one product-line architecture (PLA) and several products 
below this product-line. In the Axis case, there is a hierarchical organisation 
of PLAs, with the product-line architecture at the top and the product-group 
architectures (e.g., the storage-server architecture) at the next lower level. 
The focus of the case study is on the marked area in the figure, although the 
other parts are discussed briefly as well. The primary reusable assets for 
Axis include object-oriented frameworks for file systems and network 
protocols, but several smaller frameworks are used as well. 

Figure 1. Product-line and product software architectures in Axis Communications 

3.2 Case 2: Securitas Larm AB 

Securitas Larm AB (formerly TeleLarm AB) develops, sells, installs and 
maintains safety and security systems such as fire-alarm systems, intruder 
alarm systems, passage-control systems, and video surveillance systems. The 
company's focus is especially on larger buildings and complexes, requiring 
integration between the aforementioned systems. Therefore, Securitas has a 
fifth product unit developing integrated solutions for customers including all 
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or a subset of these systems. In figure 2, an overview of the products is 
presented. 

system integration 

fire-alarm systems intruder-alarm systems access control systems camera control systems 

Figure 2. Securitas Larm Product Overview 

Securitas uses a product-line architecture only for their fire-alarm 
products, in practice only the EBL 512 product, and traditional approaches in 
the other products. However, due to the success in the fire-alarm domain, the 
intention is to expand the PLA in the near future to include the intruder
alarm and passage-control products as well. 

4. PRODUCT-LINE ARCHITECTURES AND 
REUSABLE ASSETS 

An important issue we identified during this case study and our other 
cooperative projects with industry is that there exists a considerable 
difference between the academic perception of software architecture and 
reusable assets and the industrial practice. It is important to explicitly discuss 
these differences because the problems described in the next section are 
based on the industrial rather than the academic perspective. It is interesting 
to note that sometimes the problems that are identified as the most important 
and difficult by industry are not identified (or viewed as non-problems) by 
academia. 

Table 1 lists the academic and industrial interpretations of the notion of 
product-line architecture. The main differences are related to the definition 
of architectures, the use of first-class connectors, and the use of specialised 
languages. 
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Table 1 Academic versus industrial view of software architecture 

Research Industry 
Architecture is explicitly defined. Mostly conceptual understanding of 

architecture. Minimal explicit definition, often 
through notations. 

Architecture consists of components No explicit first-class connectors (sometimes 
and first -class connectors. ad-hoc solutions for run-time binding and glue 

code for adaptation between assets). 

Architectural description languages Programming languages (e.g. , C++) and script 
(ADLs) explicitly describe languages (e.g., Make) used to describe the 
architectures and are used to configuration of the complete system. 
automatically generate applications. 

For reusable assets, one can identify a similar difference between the 
academic and industrial understanding of the concepts. In table 2, an 
overview is presented comparing the two views. The main differences are 
related to, among others, the assumed black-box nature, the component 
interface, and variability. 

Table 2. Academic versus industrial view of reusable assets 

Research Industry 

Reusable assets are black-box Assets are large pieces of software (sometimes more 
components. than 80 KLOC) with a complex internal structure and 

no enforced encapsulation boundary, e.g., object-
oriented frameworks. 

Assets have narrow interface The asset interface is provided through entities, e.g., 
through a single point of access. classes in the asset. These interface entities have no 

explicit differences to non-interface entities. 
Assets have few and explicitly Variation is implemented through configuration and 
defined variation points that are specialisation or replacement of entities in the asset. 
configured during instantiation. Sometimes multiple implementations (versions) of 

assets exist to cover variation requirements 

Assets implement standardized Assets are primarily developed internally. Externally 
interfaces and can be traded on developed assets go through considerable (source 
component markets. code) adaptation to match the product-line 

architecture requirements. 
Focus is on asset functionality Functionality and quality attributes, e.g. , 
and on the formal verification of performance, reliability, code size, reusability and 
functionality. maintainability, have equal importance. 

5. PROBLEMS 

Based on the interviews and other documentation collected at the 
organisations part of this case study, we have identified a number of 
problems related to reusable assets that we believe to have relevance in a 
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wider context than just these organisations. In the remainder of this section, 
the problems that were identified during the data collection phase of the case 
study are presented. For each problem, a problem description is presented, 
illustrated by an example from one of the case-study companies. The 
problems are categorized into three categories, related to multiple versions of 
assets, dependencies between assets, and the use of assets in new contexts. 

5.1 Multiple versions of assets 

Product-line architectures have associated reusable assets that implement 
the functionality of architectural components. These assets can be very large 
and contain up to a hundred KLOC or more. Consequently, they represent 
considerable investments (multiple man-years in certain cases). Therefore, it 
was surprising to identify that in some cases, the interviewed companies 
maintained multiple versions (implementations) of assets in parallel. One 
can identify at least four situations where multiple versions are introduced. 

5.1.1 Conflicting quality requirements 

The reusable assets are generally optimized for particular quality 
attributes such as performance or code size. Different products in the product 
line, even though they require the same functionality, may have conflicting 
quality requirements . These requirements may have so high a priority that no 
single component can fulfil them all. The reusability of the affected asset is 
then restricted to just one or a few of the products while other products 
require another implementation of the same functionality. 

For example, in Axis, the printer server product was left out of the 
product-line architecture (although it can be considered to be a PLA on its 
own, with more than 20 major variations) because minimizing the binary 
code size is the driving quality attribute for the printer server whereas 
performance and time to market are the driving quality attributes for the 
other network-server products. 

Our impression is that when products in the product-line are at different 
points in their lifecycle, there is a tendency to have multiple versions of 
assets. This is because the driving quality attributes of a product tend to 
change during its lifecycle from feature- and time-to-market driven to cost
and efficiency-driven (see also [SEI 97]). 

5.1.2 Variability implemented through versions 

Certain types of variability are difficult to implement through 
configuration or compiler switches since the effect of a variation spreads out 
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throughout the reusable asset. An example is different contexts, such as the 
operating system, for an asset. Although it might be possible to implement 
all variability through, for example, #ifdef statements, often it is decided to 
maintain two different versions. 

The above printer server example can also be used here. The different 
versions of assets actually implement different variability selections. 

5.1.3 High-end versus low-end products 

The reusable asset should contain all functionality required by the 
products in the product-line, including the high-end products. The problem is 
that low-end products, generally requiring a restricted subset of the 
functionality, pay for the unused functionality in terms of code size and 
complex interfaces. Especially for embedded systems where the hardware 
costs play an important role in the product price, the software engineers may 
be forced to create a low-end, scaled-down version of the asset to minimize 
the overhead for low-end products. 

Two versions of the file-system framework have been used in Axis in 
different products. The scanner and camera products used a scaled down 
version of the file system framework, only implementing a memory-based 
pseudo file system, whereas the CD-Rom and Jaz drive products used the 
full-scale file system, implementing a variety of file-system standards. The 
scanner and camera product develpoers had no interest in incorporating the 
complete asset since it required more memory than strictly necessary, 
leading to increased product cost. 

5.1.4 Business unit needs 

Especially in the organizational model used by Axis, where the business 
units are responsible for asset evolution, assets are sometimes extended with 
very product-specific code, or code only tested for one of the products in the 
product-line. The problems caused by this create a tendency within the 
affected business units to create their own copy of the asset and maintain it 
solely for their own product. This minimizes the dependency on the shared 
product-line architecture and solves the problems in the short term, but in the 
long term it generally does not pay off. We have seen several instances of 
cases where business units had to rework considerable parts of their code to 
incorporate a new version of the evolved shared asset that contained 
functionality that needed to be incorporated in their product also. 

The aforementioned file system framework example is also an example 
of a situation where business-unit needs resulted in two versions of an asset. 
At a later stage, the full-scale file system framework had evolved and the 
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scanner and camera products wanted to incorporate the additional 
functionality. In order to achieve that, the product-specific code of both 
products had to be reworked in order to incorporate the evolved file system 
framework. 

5.2 Dependencies between assets 

Since the reusable assets are all part of a product-line architecture, they 
tend to have dependencies between them. Although dependencies between 
assets are necessary, assets often have dependencies that could have been 
avoided by another modularization of the system or a more careful asset 
design. From the examples at the studied companies, we learned that the 
initial design of assets generally defines a small set of required and explicitly 
defined dependencies. It is often during evolution of assets that unwanted 
dependencies are created. Addition of new functionality may require 
extension of more than one asset; in the process dependencies are often 
created between the assets that implement the functionality. These new 
dependencies could often have been avoided by another decomposition of 
the architecture. They have a tendency to be implicit, in that their 
documentation is often minimal, and the software engineer encounters the 
dependency late in the development process. Dependencies in general, but 
especially implicit dependencies, reduce the reusability of assets in different 
contexts, but also complicate the evolution of assets within the PLA since 
each extension of one asset may affect multiple other assets . Based on our 
research at Axis and Securitas, we have identified three situations where 
new, often implicit, dependencies are introduced: 

5.2.1 Component decomposition 

With the development of the product-line architecture, generally the sizes 
of the reusable assets also increase. Companies often have some optimal size 
for an asset component, so that it can be maintained by a small team of 
engineers (e.g., it captures a logical piece of domain functionality, etc.). 
With the increasing size of asset components, there is a point where a 
component needs to be split into two components. These two components, 
initially, have numerous relations to each other, but even after some redesign 
several dependencies often remain because the initial design did not 
modularize the behaviour of by the two components. One could, obviously, 
redesign the functionality of the components completely to minimize the 
dependencies, but the required effort is generally not feasible in development 
organizations. 
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To give an example from Axis: at some point, it was decided that the file 
system asset should be extended with functionality for authorisation. To 
implement this, it proved to be necessary to also extend the protocol asset 
with some functionality. This created yet another dependency between the 
file system and the protocol assets, making it harder to reuse them 
separately. Currently, the access functionality has been broken out of the file 
system and protocol assets, and defined as a separate asset, but some 
dependencies between the three assets remain. 

5.2.2 Extensions cover multiple assets 

Extension of the product-line architecture stems from new functional 
requirements that need to be incorporated in the existing functionality. 
Often, the required extension to the product line covers more than one asset. 
During implementation of the extension, it is very natural to add 
dependencies between the affected assets since one is working on 
functionality that is perceived as one piece, even though it is divided over 
multiple assets. 

The authorisation access extension to the Axis PLA provides, again, an 
excellent example. At first, the access functionality was added to the file 
system and protocol assets. However, the protocol framework contained the 
protocol user classes that were needed by the access functionality in the file 
system framework, leading to strong dependencies between the two 
frameworks. At a later stage, the authorisation access was separated from the 
two assets and represented as a single asset, thereby decreasing the 
dependencies. 

5.2.3 Asset extension adds dependency 

As mentioned, the initial design of a PLA generally nunmuzes 
dependencies between its components. Evolution of an asset component may 
cause this component to require information from an earlier unrelated 
component. If this dependency had been known during the initial PLA 
design, then the functionality would have been modularized differently and 
the dependency would have been avoided. 

In the protocol framework in the Axis PLA, most of the implemented 
protocols use a layered organisation in which process packets that are sent 
up and down the protocol layers. These communication packets are nested in 
the sense that each lower-level protocol layer declares a new packet and adds 
the received packet as an argument. At some point, the implementation of 
new functionality required methods of the most encapsulated packet object 
to refer to data in one of the packets higher up in the encapsulation 
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hierarchy, introducing a very unfortunate dependency between the two 
packets. 

5.3 Assets in new contexts 

Since assets represent considerable investments, the goal is to use assets 
in as many products and domains as possible. However, a new context 
differs in one or more aspects from the old context, causing a need for the 
asset to be changed in order to fit. Two main issues in the use of assets in 
new contexts can be identified. 

5.3.1 Mixed behaviour 

An asset is developed for a particular domain, product category, 
operating context, and set of driving quality requirements. Consequently, it 
often proves to be hard to apply the asset in different domains, products, or 
operating contexts. The design of assets often hard-wires design decisions 
concerning these aspects unless the type of variability is known and required 
at design time. 

The main asset for Securitas is the highly successful fire-alarm system. In 
the near future, Securitas intends to develop a similar asset for the domain of 
intruder-alarm systems. Since the domains have many aspects in common, 
their intention is to reuse the fire-alarm asset and apply it to the intruder 
alarm domain, rather than developing the asset from scratch. However, 
initial investigations show that the domain change for the asset is not a trivial 
endeavour. 

5.3.2 Design for required variability 

It is recommended best practice that reusable assets be designed to 
support only the variability requested in the initial requirement specification, 
e.g., [Jacobson et al. 97]. However, a new context for a reusable asset often 
also requires new variability dimensions. One cannot expect that assets are 
designed to include all foreseeable forms of variability, but they should be 
designed so that the introduction of new variability requires minimal effort. 

The application of the fire-alarm framework in the intruder-alarm domain 
serves as an example here. These systems share, to a large extent, the same 
operating context and quality requirements. However, since the fire-alarm 
domain functionality is hard-wired in the framework design, and the intruder 
alarm domain has different requirements and concepts, one is forced to 
introduce variability for application-domain functionality. 
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6. CAUSE ANALYSIS 

The problems discussed in the previous section represent an overview of the 
issues surrounding the use of reusable assets in a product-line architecture. 
We have analysed these problems in their industrial context and have 
identified what we believe to be the primary underlying causes of these 
problems. In the remainder of this section, these causes are discussed. 

6.1 Early intertwining of functionality 

The functionality of a reusable asset can be categorized into functionality 
related to the application domain, the quality attributes, the operating 
context, and the product-category. Although these different types of 
functionality are treated separately at design time, both in the design model 
and the implementation they tend to be mixed. Hence it is generally hard to 
change one of the functionality categories without extensive reworking of 
the asset. Both the state-of-practice as well as leading authors on reusable 
software (e.g., [Jacobson et al. 97]), design for required variability only. That 
is, only the variability known at asset-design time is incorporated in the 
asset. Since the requirements evolve constantly, requirement changes related 
to the domain, product category, or context generally appear after design 
time. Consequently, it often proves hard to apply the asset in the new 
environment. 

The early intertwining of functionality is a primary cause of several of 
the problems discussed in the previous section. Multiple versions of assets 
are required because the different categories of functionality cannot be 
separated in the implementation and implemented through variability. Also, 
the use of an asset in a new context is complicated by the mixing of 
functionality. 

Companies try to avoid mixed functionality primarily through design. For 
instance, the use of layers, even in asset design, to separate operating
context-dependent from context-independent functionality, avoids the 
mixing. Also, several design patterns [Gamma et al. 94, Buschmann et al. 
96] support separation of different types of functionality and support the 
introduction of variability. 

Research issues. The primary research issue is to find approaches that allow 
for late composition of different types of functionality. Examples of this can 
be found in the Draco system [Neighbors 89], [Batory & O'Malley 92] 
approach to hierarchical software systems, parameterized programming 
[Goguen 96], aspect-oriented programming [Kiczales et al. 97] and in the 
layered object model [Bosch 98a] and [Bosch 98b]. In addition, design 
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solutions, such as design patterns, that successfully separate functionality 
should be a continuing topic of research. 

6.2 Organization 

Both Securitas and Axis have explicitly decided against the use of separate 
domain engineering units. The advantages of separate domain engineering 
units, such as being able to spend considerable time and effort on thorough 
designs of assets, were generally recognised. On the other hand, people felt 
that a domain engineering group could easily get lost in wonderfully high 
abstractions and highly reusable code that did not quite fulfil the 
requirements of the application engineers. In addition, having explicit groups 
for domain and application engineering requires a relatively large software 
development department consisting of at least fifty to a hundred engineers. 

Nevertheless, several of the problems discussed earlier can be related to 
the lack of independent domain engineering. Business units focus on their 
own quality attributes and design for achieving those during asset extension. 
Because of that, multiple versions of assets may be created where a domain 
engineering unit might have found solutions allowing for a single version. In 
addition, asset extension without sufficient focus on the product-line as a 
whole may introduce more dependencies than strictly necessary, 
complicating the use of assets as well as their reuse in new contexts. 

Solutions exist to minimize the negative effects of organizational 
structures. At Axis, so-called asset redesigns are performed when a 
consensus is present that an asset needs to be reorganised. During an asset 
redesign, the software architects from the business units using the asset 
gather to redesign the asset in order to improve its structure. As a 
complement, both Axis and Securitas have responsibility for each asset, and 
evolution of assets has to be approved by them. However, because of time
to-market pressures, there is sometimes a need to accept less-than-optimal 
solutions. Thirdly, to improve on these issues, management must be willing 
to occasionally relieve some time-to-market pressure, accepting delay of one 
product so that subsequent products can enter the market sooner. 

Research issues. The primary research issue concerns the processes 
surrounding asset evolution. More case studies and experimentation are 
required to gather evidence of working and failing processes, and mandatory 
and optional steps. In addition, one can conclude that it is unclear when an 
organisation should have separate domain engineering units rather than 
performing asset development in the application engineering units. Research 
is required for the collection of evidence on optimal organizational structures 
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and identification and evaluation of approaches to minimize the negative 
effects of organizational choices. 

6.3 Time to market 

A third important cause for the problems related to reusable assets at the 
interviewed companies is the time-to-market (TIM) pressure. Getting out 
new products and subsequent versions of existing products is very high up 
on the agenda, thereby sacrificing other topics . The problem most companies 
are dealing with is that products appearing late on the market will lead to 
diminished market share or, in the worst case, to no market penetration at all. 
However, this ali-or-nothing mentality leads to an extreme focus on short
term goals, while ignoring long term goals . Sacrificing some time-to-market 
for one product may lead to considerable improvements for subsequent 
products, but this is generally not appreciated. 

The TIM pressure causes several of the problems discussed earlier. This 
is primarily because software engineers do not have the time to reorganise 
the assets to minimize dependencies or to generalize functionality. Asset 
evolution is often implemented as quick fixes , thereby decreasing the 
usability of the asset in future contexts. 

To address the problems resulting from TIM pressure, it is important for 
software development organizations to regard the development of a product
line architecture and associated assets as a strategic issue, with decisions 
being made at the appropriate level. The consequences for the time-to
market of products under development should be balanced against the future 
returns. Finally, taking a time-out for asset redesign is necessary periodically 
to "clean up." 

Research issues. Decisions related to TIM for products are made based on a 
business case and these, rather relevant, research issues are outside the 
software engineering domain. However, two issues can be identified: the 
lack of economic models (described in the next section) and design 
techniques that minimize the effort required for extending assets without 
diminishing their future applicability. 

6.4 Economic models 

As mentioned earlier in the paper, reusable assets may represent 
investments of up to several man-years of implementation effort. For most 
companies, such assets represent a considerable amount of capital, but both 
engineers and management are not always aware of that. For instance, an 
increasing number of dependencies (especially implicit dependencies) 
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between assets is a sign of accelerated aging of software and, in effect, 
decreases the value of the assets. However, since no economic models are 
available that visualise the effects of quick fixes causing increased 
dependencies, it is hard to establish the economic losses of these 
dependencies. In addition, reorganisation of software assets that have been 
degrading for some while is often not performed because no economic 
models are available to visualize the return on investment. 

The lack of economic models influences several of the identified 
problems. In general, one can recognize a lack of forces against time-to
market pressure because no business case for sound engineering (versus 
deadline-driven hacking of software) can presented. 

Research issues. One can identify a need for economic models in two 
situations. Firstly, models are needed for calculating the economic value of 
an asset, based on the investment (man hours) but also on the value of the 
asset for future product development and/or for an external market. 
Secondly, models are needed for visualising the effects of various types of 
changes and extensions to the asset value. These models could be used to 
visualise the effects of quick fixes and implicit dependencies on the asset 
value. 

6.5 Encapsulation boundaries and required interfaces 

Although many of the issues surrounding product-line architectures are 
non-technical in nature, there are technical issues as well. The lack of 
encapsulation boundaries that encapsulate reusable assets and enforce 
explicitly defined points of access through a narrow interface is a cause of a 
number of the identified problems. In section 4 we discussed the difference 
between the academic and the industrial view of reusable assets . Some of the 
assets at the interviewed companies are large object-oriented frameworks 
with a complex internal structure. The traditional approach is to distinguish 
between interface classes and internal classes. The problem is that this 
approach lacks support from the programming language, requiring software 
engineers to adhere to conventions and policies. In practice, especially under 
strong time-to-market pressure, software engineers will go beyond the 
defined interface of assets, creating dependencies between assets that may 
easily break when the internal implementation of assets is changed. In 
addition, these dependencies tend to be undocumented or only minimally 
documented. 

A related problem is the lack of required interfaces. Interface models 
generally describe the interface provided by a component, but not the 
interfaces it requires from other components for its correct operation. Since 
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dependencies between components can be viewed as instances of bindings 
between required and provided interfaces, one can conclude that it is hard to 
visualize dependencies if the necessary elements are missing. 

The lack of encapsulation boundaries and required interfaces primarily 
causes problems related to component dependencies . For instance, 
component decomposition is complicated since the new part-components 
can continue to refer to each other without explicit visibility. 

As mentioned, companies address these issues by establishing 
conventions and policies, but these tend to be broken in practice. 
Documentation of the assets and inspection of design documents, the 
implementation and the documentation of assets helps enforce the 
conventions and policies. 

Research issues. The primary research issue to address this cause is to find 
approaches to encapsulation boundaries that are more open than the black
box component models, but provide protection for the private entities that 
are part of the assets. Also, more research on the specification and semantics 
of required interfaces is needed. One example of an existing model is 
described in [Batory & O'Malley 92]. A second example is the layered 
object model where an "acquaintance-based" approach is presented that 
allows for specifying required interfaces and binding these interfaces to 
other components [Bosch 98b] . 

7. RELATED WORK 

Tools, techniques, and approaches to the development of families of 
software products have been proposed by a number of authors. LIL [Goguen 
86] is an example of a module interconnection language (MIL) that describes 
component (or module) based systems. In [Neighbors 89], the Draco 
approach is discussed that, although not using the same terminology, 
identifies the basic structures of software development based on reuse of 
domain designs and implementations. [Perry 89] discussed the Inscape 
environment, focusing on software evolution and problems of scale (i.e., 
complexity, programming-in-the-large, and programming-in-the-many) . 
[Goguen 96] discusses parameterized programming to instantiate generic 
descriptions with domain-specific components. [Batory & O'Malley 92, 
Batory & Geraci 97] discuss a hierarchical component-based model that 
facilitates the development of families of systems. [Biggerstaff 94] discusses 
a basic problem in component-based software development, i.e., scaling, and 
identifies some of the problems discussed in this paper. 
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With respect to product-line architectures, a number of authors have 
studied their industrial use. [Macala et al. 96] discuss a demonstration 
project using product-line development in Boeing in cooperation with the 
US Navy as part of the STARS initiative. The authors identify four elements 
of product-line development, i.e., process-driven, domain-specific, 
technology support, and architecture-centric. The lessons learned during the 
projeci: are discussed and a set of recommendations is presented. [Dike! et al. 
97] discuss lessons learned from using a product-line architecture in Norte! 
and present six principles: focusing on simplification, adapting to future 
needs, establishing architectural rhythm, partnering with stakeholders, 
maintaining vision, and managing risks and opportunities. The report from 
the product-line practice workshop held by the SEI [SEI 97] presents an 
overview of the state-of-practice in a number of large software development 
organisations. Contextual, technology, organizational and business aspects 
are discussed and a number of critical factors are identified, including deep 
domain expertise, well-defined architecture, distinct architect, solid business 
case, management commitment and support and domain engineering unit. 

An interesting difference between the papers mentioned above and the 
results of our study is the perceived necessity of separate domain 
engineering units. The organisations of our case study explicitly decided 
against separate domain engineering units. Also [Simos 97] reacts against 
using domain engineering units and suggests a unified lifecycle model. 

[Jacobson et a!. 97] presents a complete approach to institutionalizing 
software reuse in an organisational context, including technology, process, 
and business aspects. The book is based primarily on experiences from the 
HP and Ericsson context and contains excellent suggestions also applicable 
to the interviewed companies. 

The Taligent frameworks [Taligent 95] provide various interfaces to each 
framework, including a client API and a custornization API. However, no 
approaches to language support for high-level encapsulation boundaries are 
presented. [Szyperski 97] presents an overview of component-oriented 
programming and discusses the necessity of "required interfaces" in addition 
to the "provided interfaces". He recognises the necessity of required 
interfaces, but concludes that current commercial component models focus 
on provided interfaces only. 

8. CONCLUSIONS 

The notion of product-line architectures has received attention especially 
in industry since it provides a means to exploit the commonalities between 
related products and thereby reduce development cost and increase quality. 
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In this paper, we have presented a case study involving two Swedish 
companies, Axis Communications AB and Securitas Larm AB, that use 
product-line architectures in their product development. Key persons in these 
organisations have been interviewed and information has been collected 
from documents and other sources. The goal of the case study was to 
examine the use, evolution, composition and reuse of assets in a product-line 
architecture. 

In the previous sections, a number of problems and underlying causes are 
described that were identified in the case study organisations and generalised 
to a wider context. We have identified three categories of problems related to 
reusable assets: 
1. the existence of multiple versions of assets 
2. dependencies between assets 
3. the use of assets in new contexts 

In the analysis we focus on the causes that we believe underlie the 
identified problems. The identified causes include 
- the early intertwining of functionality 
- the organizational structure 

the time-to-market pressure 
the lack of economic models 

- the lack of explicit encapsulation boundaries and required interfaces. 
In conclusion, product-line architectures can be, and are being, 

successfully applied in small- and medium-sized enterprises. The studied 
organisations are struggling with a number of difficult problems and 
challenging issues, but the general consensus is that a product-line 
architecture approach is beneficial, if not crucial, for the continued success 
of these organisations. 

ACKNOWLEDGEMENTS 

The author would like to thank the software architects and engineers and 
technical managers at Axis Communications AB and Securitas Larm AB, in 
particular Torbjom Soderberg and Rutger Palsson. Thanks also to the 
anonymous reviewers for their comments. 

REFERENCES 

[Batory & Geraci 97) D. Batory and B.J. Geraci, 'Validating Component Compositions and 
Subjectivity in GenVoca Generators', IEEE Transactions on Software Engineering, 
February 1997, 67-82. 



www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 339 

[Batory & O'Malley 92) D. Batory and S. O'Malley, 'The Design and Implementation of 
Hierarchical Software Systems with Reusable Components ' , ACM Transactions on 
Software Engineering and Methodology, October 1992. 

[Biggerstaff 94) T. Biggerstaff, 'The Library Scaling Problem and the Limits of Concrete 
Component Reuse', Third International Conference on Software Reuse, Rio de Janeiro, 
November 1-4, 1994, 102-110. 

[Bosch 98a] J. Bosch, 'Design Patterns as Language Constructs,' Journal of Object-Oriented 
Programming, Vol. 11, No.2, pp. 18-32, May 1998. 

[Bosch 98b] J. Bosch, 'Object Acquaintance Selection and Binding,' accepted for publication 
in Theory and Practice of Object Systems, February 1998. 

[Bosch 98c] J. Bosch, 'Product-Line Architectures in Industry: A Case Study,' submiued, 
June 1998. 

[Buschmann et al. 96] F. Buschmann, C. Jakel , R. Meunier, H. Rohnert, M.Stahl, Pattern
Oriented Software Architecture -A System of Patterns, John Wiley & Sons, 1996. 

[Dike! et al. 97] D. Dike!, D. Kane, S. Ornburn, W. Loftus, J. Wilson, 'Applying Software 
Product-Line Architecture,' IEEE Computer, pp. 49-55, August 1997. 

[Gamma et al. 94] E. Gamma, R. Helm, R. Johnson, J.O. Vlissides, Design Pal/ems
Elements of Reusable Object-Oriented Software , Addison-Wesley, 1994. 

[Goguen 86] J. Goguen, 'Reusing and Interconnecting Software Components', IEEE 
Computer, February 1986. 

[Goguen 96] J. Goguen, 'Parameterized Programming and Software Architecture', 4th 
International Conference on Software Reuse, Orlando, Florida, April 1996. 

[Jacobson et al. 97]1. Jacobson, M. Griss, P. Jonsson, Software Reuse -Architecture, Process 
and Organization for Business Success, Addison-Wesley, 1997. 

[Johnson & Foote 88] R. Johnson, B. Foote, 'Designing Reusable Classes,' Journal of Object
Oriented Programming, Vol. 1 (2), pp. 22-25, 1988. 

[Kiczales et al. 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. 
Loingtier, J. Irwin, 'Aspect-Oriented Programming,' Proceedings of ECOOP'97 (invited 
paper), pp. 220-242, LNCS 1241, 1997. 

[Kruchten 95] P.B. Kruchten, 'The 4+ 1 View Model of Architecture,' IEEE Software, pp. 42-
50, November 1995. 

[Macala et al. 96] R.R. Macala, L.D. Stuckey, D.C. Gross, 'Managing Domain-Specific 
Product-Line Development,' IEEE Software, pp. 57-67, 1996. 

[Neighbors 89] J. Neighbors, 'Draco: A Method for Engineering Reusable Software 
Components' , in T.J. Biggerstaff and A. Perlis, eds., Software Reusability, Addison
Wesley/ACM Press, 1989. 

[Perry 89] D. Perry, 'The Inscape Environment' , Proceedings ICSE 1989, 2-12. 
[SEI 97] L. Bass, P. Clements, S. Cohen, L. Northrop, J. Withey, 'Product Line Practice 

Workshop Report,' Technical Report CMU/SEI-97-TR-003, Software Engineering 
Institute, June 1997. 

[Simos 97] M.A. Simos, 'Lateral Domains: Beyond Product-Line Thinking,' Proceedings 
Workshop on Institutionalizing Software Reuse (WISR-8), 1997. 

[Szyperski 97] C. Szypersk.i, Component Software- Beyond Object-Oriented Programming, 
Addison-Wesley, 1997. 

[Tali gent 95] Taligent, The Power of Frameworks, Addison-Wesley, 1995. 



www.manaraa.com

Flexibility of the ComB AD* Architecture 

N.H. Lassing, D.B.B. Rijsenbrij and J.C. van Vliet 
Vrije Universiteit, Faculty of Sciences 
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands 
tel: +31 (0)20 44 47769,/ax: +31 (0)20 44 47653 
e-mail: {nlassing, daan, hans}@cs.vu.nl 

Key words: Software architecture, software frameworks, software quality, quality 
assessment, flexibility, adaptability, portability, reusability 

Abstract: Software architecture is nowadays regarded as the first step to achieving 
software quality. The architect's main task is to translate quality requirements 
into a software architecture. An important step is to assess whether the 
architecture actually satisfies these quality requirements. The purpose of this 
paper is to explore which architectural choices support flexibility and how 
flexibility can be assessed. To that end, we explored the ComB AD 
architecture, whose main objective is flexibility. We investigated the 
architectural choices made and assessed whether flexibility was achieved. This 
will not only increase our insight into flexibility in general, but particularly 
into the assessment of this quality attribute. We use the term flexibility in the 
broadest sense of the word: to denote adaptability, portability and reusability. 
Adaptability can be regarded as flexibility in the narrow sense, portability as 
the flexibility to use a system in various technical environments, and 
reusability as the flexibility to reuse part of a system in another system. 

1. INTRODUCTION 

Recently, there has been an increasing interest in software architecture. It 
is nowadays generally accepted that the software architecture has a major 
impact on the quality of an information system. An important step to 
achieving the desired level of quality is to evaluate the architecture. The 

The ComBAD architecture is a software architecture developed within Cap Gemini 
Netherlands. ComB AD stands for Component }1ased Application .Qevelopment. 



www.manaraa.com

342 N. H. Las sing, D. B. B. Rijsenbrij, and J. C. van Vliet 

software architecture analysis method (SAAM) (Bass et al, 1998) was 
developed with this in mind. SAAM is a scenario-based assessment method 
that is mainly used to compare the usability of two or more candidate 
architectures. We claim that SAAM could just as well be used to assess the 
quality of a single architecture, to evaluate its usability in a certain situation. 

The purpose of this paper is to explore how the three elements of 
flexibility could be addressed in an architecture and how SAAM could be 
used to assess to what extent the desired level of quality for these attributes 
was achieved. To do so, we investigated the ComBAD architecture (whose 
main objective is flexibility in the broadest sense of the word) we described 
the architectural choices made, and we assessed its adaptability, portability 
and reusability using SAAM. 

The remainder of this paper is organized into four sections. In section 2 
we discuss the ComBAD architecture, in section 3 we assess its quality and 
in section 4 we make some concluding remarks. 

2. THE COMBAD ARCHITECTURE 

The ComBAD architecture was developed within Cap Gemini 
Netherlands, a large software house. The architecture originates from a 
project called "Reuse", whose main purpose was to explore the possibility of 
reusing domain-knowledge. This project delivered an approach for 
Component Based Application Development, named ComBAD, and a 
supporting architecture, the ComBAD architecture, whose main quality 
requirements were adaptability, portability and reusability. This paper will 
focus on the ComBAD architecture. The corresponding development 
approach will not be discussed. 

The ComBAD architecture was not developed for a specific customer; it 
was intended for a broad category of administrative systems. Though it may 
be used for other domains as well, it is probably more suitable in some 
situations than others. We return to this point in the evaluation in section 3. 

In the next sections, we give an overview of the ComBAD architecture 
and the architectural choices made to achieve the quality requirements. This 
overview consists of two parts, a description of the framework, given in 
section 2.1, and a description of the application architecture, given in section 
2.2. These descriptions provide a high-level view of the architecture. 

2.1 The ComBAD framework 

The quality attributes addressed by the ComBAD framework are 
portability and reusability. Portability is the quality attribute that indicates 
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the ease with which an application can be moved from one technical 
environment to another (Delen et al., 1992). In the ComBAD architecture, 
portability is addressed by using a layered architecture, in which an 
application is separated from its technical environment, the latter consisting 
of things like the database-management system used for storage and the 
protocol used for communications. This separation is achieved by 
introducing an intermediate layer between the application and its technical 
environment, which abstracts from the details of this environment. This 
intermediate layer is the ComBAD framework. The ComBAD framework 
also offers the type of support required by applications that conform to the 
ComBAD application architecture. 

An instance of this framework is created for a specific development 
environment and it consists of a number of concrete and abstract classes, and 
a definition of the way the instances of these classes interact. An application 
can use a framework in two ways: 
1. by inheritance of (abstract) framework classes 
2. by calling methods defined in the framework' s interface (Lassing et al, 

1998) 
The abstract classes of the ComBAD framework are treated in the next 

section when we describe the application architecture. In this section, we 
focus on the interface of the ComB AD framework. 

The ComBAD framework provides a common interface to the technical 
environment by encapsulating access to the environment in a number of 
services. These services include object brokerage, object persistency, 
transaction management, notify management, logging and security, each of 
which is implemented by one component in the framework. The underlying 
assumption for this is that potential changes in the technical environment 
each impact just one service and, therefore, also one component. Object 
persistency, for instance, is implemented by the object-persistency manager, 
which encapsulates access to the database-management system (DBMS). 
The impact of changing the DBMS is now limited to this object-persistency 
manager. Figure 1 shows all of the services of the ComBAD framework. In 
section 3.3, where we evaluate portability, we assess whether these services 
encapsulate the environment entirely. 

The second quality attribute that the ComBAD framework addresses is 
reusability. Reusability is much harder to achieve than portability because it 
is more than a technical problem. Consider the following statement from van 
Vliet (van Vliet, 1993). He states that "a reusable component is to be valued, 
not for the trivial reason that it offers relief from implementing the 
functionality yourself, but for offering a piece of the right domain 
knowledge, the very functionality you need, gained through much 
experience and an obsessive desire to find the right abstractions." 
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Apparently, reuse is only possible within a specific domain and we need a 
thorough understanding of this domain to determine its reusable elements. 
We define a domain as a well-defined area of application that is 
characterized by a set of common notions. 
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Figure 1. The layered architecture with the ComBAD framework and its services 

The ComBAD framework tries to address reusability in two ways. First, 
the framework itself can be reused. The domain in which this framework 
could be reused is the technical foundation of applications using the 
ComBAD architecture. Thus, the reusability of the ComBAD framework 
depends on the usability of the ComBAD architecture, which is the topic of 
the evaluation in section 3. 

The second way in which the ComBAD framework addresses reusability 
is that it can serve as an environment for reuse of software components. This 
addresses one of the technical problems of reuse, namely architectural 
mismatch. Architectural mismatch occurs when the assumptions that a 
component and its environment make about each other are conflicting 
(Garlan et al., 1995). Frameworks reduce the risk of architectural mismatch, 
because they provide a known environment for components to operate in. 

The ComBAD application architecture determines the types of 
components that can be used in the framework. They are included in the 
framework as abstract classes that implement the behavior that is common 
for these components. The actual components of the application are derived 
from these abstract classes. 
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Although frameworks address architectural mismatch, they are not a 
panacea for reuse. They do not relieve the developer from the painstaking 
process of finding the right components in a domain. However, they do 
provide support after the right components have been found. 

2.2 The ComBAD application architecture 

The quality attributes that are addressed by the ComBAD application 
architecture are adaptability and reusability. According to Basset al. (1998), 
adaptability is largely a function of locality of change. This means that to 
increase adaptability, one should try to limit the impact of changes to a small 
number of components. On the other hand, we should try to limit the number 
of potential changes by which each component may be impacted. 

In the ComBAD application architecture, adaptability is addressed by 
dividing an application into three layers: 
1. the interface layer 
2. the processing layer 
3. the data layer 

The interface layer handles the communication with the environment, 
consisting of users and other systems. The processing layer contains the 
application logic. Finally, in the data layer all data of the application is 
managed. 

By separating an application into these layers, changes to the interface of 
the system can be limited to the interface layer, changes to the application 
logic limited to the processing layer and changes to the data limited to the 
data layer. However, this means that the number of potential changes that 
may impact each component is rather large. Therefore, it was decided to 
further divide the layers into components, as shown in Figure 2. The 
interface layer is divided into human interface components (or HICs), which 
handle a dialog with the user, and system interface components (or SICs) 
that communicate with other systems. The processing layer is divided into 
task-management components (or TMCs) that each implement (only) one 
function. And the data layer is divided into problem-domain components (or 
PDCs), which record data about a concept from the problem domain. 
Collectively, these components are called application components. 

This division can help us to limit the impact of changes to a few 
relatively small components. True locality of change is achieved for changes 
that affect the internals of one or more application components, but leave 
their interfaces intact. However, some changes not only affect the internals 
of one or more application components, but also the interfaces of some of 
them. This means that all dependent application components need to be 
changed as well. By restricting the dependencies between components, the 
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impact of changes can be restrained. In the application architecture only top
down dependencies are allowed, i.e., an HIC or an SIC should only be 
dependent on one or more TMCs, a TMC on one or more PDCs and PDCs 
should be independent of other application components. Notify management 
is used to inform higher layers of events occurring in the lower layers. 

Interface 
L....J L....Jl--JW layer 

---------------------------· C ,--, r---1..---. Processing 

L....J L....Jl--JW layer 
----------------------------

Data layer 

L....J L....Jl--Jw 

framework 

environment 

Figure 2. The ComB AD application architecture 

Independence also affects reusability, because reusability demands that 
components are as independent as possible. Independence and, hopefully, 
reusability of PDCs is increased by prohibiting direct relations between 
them. This restriction reduces PDCs to stable building blocks that can be 
reused in other applications. We address the reusability of these components 
in section 3.4. 

The ComBAD framework and the ComBAD application architecture 
very much depend on each other. First, the components of the application 
architecture use the services of the framework. For instance, the PDCs are 
accessed through the object broker and the PDCs use the object-persistency 
manager for storing themselves in a database. Second, the application 
components are derived from abstract classes provided by the framework. 
These abstract classes provide behavior common for each of these types of 
application components. Thus, the framework and the application 
architecture cannot be separated; they are highly intertwined. 

3. ASSESSING THE QUALITY 

To assess the quality of the ComBAD architecture we use the software 
architecture analysis method, SAAM (Basset al., 1998). This is a scenario-
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based method that consists of formulating a number of scenarios and 
evaluating the impact of each on the architecture. A scenario is a situation 
that can occur in the life of an architecture. Although SAAM was developed 
to compare two or more candidate architectures, we use it to assess the 
quality of a single architecture. The first step in the evaluation is to derive a 
number of scenarios from the quality requirements of the architecture. For 
example, from the quality requirement portability we can derive the 
following scenario: What happens when another DBMS is to be used? By 
formulating a number of these scenarios, we can make portability tangible, 
because they capture what we actually want to achieve with portability. 

The next step is to evaluate the impact of these scenarios on the 
architecture. We classify the impact of a scenario into four discrete levels. At 
the first level, no changes are necessary, which means that the scenario is 
already supported by the architecture. At the second level , just one 
component of the architecture needs to be changed, but its interface is 
unaffected. At this level, we have true locality of change. At the third level 
more than one component is affected, but no new components are added or 
existing ones are deleted. This means that the structure of the architecture 
remains intact. At the fourth level architectural changes are inevitable, 
because new components are necessary or existing ones become obsolete. It 
is clear that one should seek to keep the level of impact as low as possible. 

When we return to our example scenario, we see that this scenario 
necessitates a change in the object-persistency manager. Thus, this scenario 
has a level two impact. This means that we have locality of change for this 
scenario and that the architecture is portable with respect to the DBMS used. 

We have created four categories of scenarios. The first two categories, 
which focus on adaptability, contain scenarios that are related to the 
requirements of the system. We have made a distinction between scenarios 
that address technical adaptability and those that address functional 
adaptability. The former consists of scenarios that explore the applicability 
of the architecture in situations with different technical requirements. The 
latter consists of scenarios that explore the effect of changes in the functional 
requirements. The third category of scenarios concentrates on portability, 
which is evaluated by scenarios that simulate changes in the technical 
environment. The final category focuses on reusability. This category 
includes scenarios that explore the use of elements of the architecture in 
other systems and architectures. 

3.1 Technical adaptability 

Technical adaptability is the flexibility of an application to incorporate 
changes to the technical requirements. The scenarios simulate the use of the 
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ComBAD architecture in situations with diverse technical requirements. 
Note that the ComBAD architecture was not specifically developed for some 
of these situations. The architecture is usable in a situation when the scenario 
has an impact of level three or lower. The results of these scenarios are 
summarized in Table 1. 

Scenario 1: Which changes are needed when the architecture is to be 
used for secure applications? 

We assume that for secure applications a number of things are necessary. 
First, each user action should be authenticated and it should be possible to 
grant different levels of access to users (for example, no access, read-only, 
full control, etc.). This is already supported by the ComBAD architecture, so 
it is unaffected. Second, the communication between clients and servers 
should be encrypted. Encrypted communication is not yet present in the 
architecture, but it could be added by changing one of the base classes for 
the application components. Finally, access to servers should be prohibited 
for unsecured hosts. This means that the log-on manager should be changed 
so that it inspects the network address of clients. Our conclusion is that using 
the architecture for secure applications necessitates changes to a number of 
the existing components and, therefore, this scenario has a level three 
impact. 

Scenario 2: Which changes are needed when the architecture is to be 
used for real-time systems? 

The distinguishing features of real-time systems are deadlines and 
synchronization between different parts of a system (Laplante, 1993). These 
features are not supported by the ComBAD architecture. However, deadlines 
could be enforced by introducing something like a deadline manager into the 
framework, that makes sure that a systems responds within a certain period. 
Similarly, synchronization could be added by introducing a synchronization 
manager that makes sure that the different parts of a system operate in 
harmony. In addition, the division of applications into H/SICs, TMCs and 
PDCs is perhaps not usable for real-time systems. So, the impact of this 
scenario is architectural and it is classified as level four. 

Scenario 3: Which changes are needed when the architecture is to be 
used for ultra-reliable systems? 

In ultra-reliable systems both software and hardware are often replicated 
(Leveson, 1995). This redundancy makes sure that the system remains in 
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working order after one or more services have failed. In addition, these 
systems could use voting, which means that the same operation is performed 
by two or more elements, and the end result of the operation is some kind of 
weighted average of the results of individual elements. Both redundancy and 
voting could be addressed by introducing one or more front-end servers that 
encapsulate the access to the other services. This has a major impact on the 
architecture and, therefore, the impact of this scenario is classified as level 
four. 

Scenario 4: Which changes are needed when a Web inteiface is created 
for an application? 

To make the system accessible from a Web browser, the human interface 
components (HICs) should be replaced with applets that can be viewed 
within a Web browser. Because the lower layers are independent of the 
HICs, they are unaffected by changes in the HICs. The HICs are the only 
components affected and therefore the impact of this scenario is classified as 
level three. 

Scenario 5: Which changes are needed when the architecture is used for 
a system that uses worliflow management? 

The ComBAD framework already has a process manager that controls 
which operations may be performed by the user in a certain situation. This 
component could be enhanced to support true workflow management. Since 
the process manager is the only component affected, the impact of this 
scenario is level two. 

T, bl 1 s a e ummary o t e scenanos or tee me a apta 1 Jty f h . f h . a! d bT 
ComBAD framework Application 

Scenario Archi- Component Arc hi- H!Cs/ TMCs PDCs Imp. 
lecture s lecture SICs level 

I - M - - - - 3 
2 + M + ? ? ? 4 
3 + M + ? ? ? 4 
4 - - - M - - 3 
5 - 0 - - - - 2 

-= unaffected, + = needs to changed, 0 = one component affected, M = more components 
affected, ? = undefined 

As expected, we see in Table I that the architecture is not directly usable 
in every situation. Using it for real-time or ultra-reliable systems necessitates 
major changes to the architecture. In the other situations, the architecture is 
usable, but some changes are necessary. These changes sometimes affect the 
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framework and sometimes the application components. When the ComBAD 
architecture is used in an actual situation, more scenarios are probably 
needed to evaluate whether the right services are identified to encapsulate 
the expected changes to the technical requirements. 

3.2 Functional adaptability 

Functional adaptability is the ease with which changes in the functional 
requirements can be implemented. It is difficult to address the functional 
adaptability of an architecture, due to the absence of functional 
requirements. However, we are able to address the architectural aspects of 
changes to the functionality. To this end, we use scenarios that explore the 
effect of adding or deleting components from the application. The results are 
summarized in Table 2. 

Scenario 1: Which changes are needed when a problem-domain 
component (PDC) is added or deleted? 

When a new PDC is added, one or more elements in the higher layers 
should also be modified, for it does not make any sense to add a PDC 
without using it in one of the higher layers. When a PDC is deleted, the 
components in the higher layers that are dependent on it should be changed. 
The impact of this scenario can therefore be classified as level three. 

Scenario 2: Which changes are needed when a task-management 
component (TMC) is added or deleted? 

A task-management component is always invoked from the interface 
layer. Therefore, when a TMC is added, one or more HISICs need to be 
changed to make use of this new TMC. Similarly, when a TMC is deleted, 
one or more HISICs need to be changed to remove any references to the 
TMC. This scenario affects one TMC and at least one, but possibly more, 
HISICs and the impact of this scenario can therefore be classified as level 
three. 

Scenario 3: Which changes are needed when a human/system inteiface 
component (HIS/C) is added or deleted? 

The impact of this scenario is very small, because no other components 
are dependent on the HISICs. In fact, the HISIC that is added or deleted is 
the only component that is affected. Thus, this scenario has a level two 
impact. 
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Table 2. of the scenarios for functional adaptability 
ComBAD framework Application 

Scenario Archi- Component Archi- HICs/ TMCs PDCs Imp. 
lecture s lecture SICs level 

I - - - M M 0 3 
2 - - - M 0 - 3 
3 - - - 0 - - 2 

-= unaffected, + = needs to changed, 0 = one component affected, M = more components 
affected, ? = undefined 

From Table 2 we conclude that changes to the functional requirements do 
not affect the ComBAD framework. This means that the framework is 
entirely separated from the functionality of the application. And as expected, 
we observe that TMCs are unaffected by changes to the interface layer and 
that PDCs are unaffected by changes to either the processing layer or the 
interface layer. 

3.3 Portability 

At first sight, portability and technical adaptability very much look alike, 
but they are not the same. Portability is the ease with which a system can be 
adapted to changes in the technical environment and technical adaptability is 
the ease with which a system can be adapted to changes in the technical 
requirements. The scenarios in this category explore the effect of changes in 
the technical environment. 

Scenario 1: Which changes are needed when another database is used? 

This scenario was used in the introduction of this section. The object
persistency manager is the only element that is impacted. Thus, the impact of 
this scenario can be classified as level two. 

Scenario 2: Which changes are needed when another operating system is 
used for the client machines? 

The answer to this question is not unambiguous, because it depends on 
the programming language and the development environment used. First, if 
the application is written in Java, no changes should be needed, but other 
languages may cause major problems. Second, it is important which 
development environment is used, because a number of development 
environments are able to generate and/or compile code for different 
platforms. This approach is taken in ComBAD, where the tools used can 
generate and/or compile code for multiple platforms. This solution lies 
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outside the architecture, and the impact of this scenario can be classified as 
level one. 

Ta bl 3 s e f h . bT ummary o t e scenanos or porta 1 Jty 
ComBAD framework Application 

Scenario Archi- Component Archi- HICs/ TMCs PDCs Imp. 
tecture tecture SICs level 

1 - 0 - - - - 2 
2 - - - - - - I 

-= unaffected, + = needs to changed, 0 = one component affected, M = more components 
affected, ? = undefined 

In Table 3, we observe that changes in the technical environment affect 
very few components of the ComBAD architecture. We notice that the 
application components are unaffected by our scenarios, which could 
indicate that the framework actually encapsulates access to the environment. 
However, there may be potential changes in the technical environment, not 
mentioned here, that have an impact above level two. 

3.4 Reusability 

We have chosen to assess reusability by scenarios that test the usability 
of ComB AD components in other situations, as well as the usability of other 
components within the ComBAD architecture. These scenarios focus on 
individual components, so it is not very meaningful to create a table that 
indicates which elements of the architecture are affected. 

Scenario 1: Can components that were not especially developed for the 
ComBAD framework be used in applications built using the ComBAD 
architecture? 

The components that can be reused in these applications are mainly GUI
controls, like ActiveX-controls and Java Beans. However, because of the 
demands these components put on their environment, using them limits the 
portability of an application. Other components could be reused in these 
applications as well, if the components on which they depend are also 
included. 

Scenario 2: Can the application components be used in systems using 
another application architecture? 

The application components are usable in an environment that provides 
all of the framework services used by the component. This means that, 
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theoretically, application components are reusable in another application, but 
it will require an enormous amount of work if they depend on more than a 
few framework services. 

Scenario 3: Can the object broker of the ComBAD framework be reused 
in systems using another architecture? 

The answer to this question is yes, provided all of the components upon 
which the object broker depends, being the transaction manager, the notify 
manager and the object-persistency manager, are included in the other 
architecture as well. However, this answer focuses on the architectural 
aspects only. Whether the object broker offers the right functionality in this 
situation is ignored. 

Scenario 4: Can application components be reused in other applications 
using the ComBAD architecture? 

Architecturally speaking, application components can be reused in other 
applications using the ComBAD architecture, provided the components on 
which they depend are also included. However, the reusability of a 
component also depends on whether it offers the right functionality . Within 
the ComBAD project, it was felt that the level of abstraction of the 
application components is too low. Therefore, a number of these components 
are grouped into packages, the same way Jacobson et al. (1997) address 
reusability. Whether these packages offer the right functionality can only be 
judged in an actual situation. 

From these scenarios, we conclude that it is hard to assess the reusability 
of components, because it largely depends on the functionality they 
implement. From an architectural point of view, we may conclude that most 
components of the ComBAD architecture could be reused, but that this is 
easiest within the ComBAD architecture. 

3.5 Evaluation of the assessment 

In this section, we assessed the flexibility of the ComBAD architecture 
using scenarios. The assessment showed that the technical adaptability and 
portability of a single architecture could be assessed quite well using 
scenarios, yet functional adaptability and reusability are harder to assess. 
The main difficulty of the assessment of functional adaptability of 
architectures is that functional requirements are lacking, which means we 
can only address the architectural aspects of changes to the functionality. 
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Reusability is hard to assess in general, because the reusability of a 
component largely depends on whether it supports the right functionality, 
which can only be judged by a developer. 

In addition, the assessment demonstrated that the flexibility of an 
architecture should always be related to the area of application. Although the 
assessment given in this section provides some general insight into the 
usability of the ComBAD architecture, one is unable to value the scenarios 
but in an actual situation. 

4. CONCLUSION 

The purpose of this paper is to explore how flexibility can be addressed 
in an architecture and how we can assess whether an architecture supports it. 
To that purpose we have examined the ComBAD architecture. In the first 
part of this paper we presented the architectural solution, which consists of 
the architectural choices made to address the quality requirements: 
adaptability, portability and reusability. We showed that in the ComBAD 
architecture portability and reusability are addressed by creating the 
ComBAD framework and that adaptability and, once again, reusability are 
addressed by the application architecture. 

In the second part of this paper we assessed the flexibility of the 
ComBAD architecture. To do so, we formulated scenarios for assessing 
technical adaptability, functional adaptability, portability and reusability. It 
turned out that assessment using scenarios of technical adaptability and 
portability of a single architecture is quite possible. However, functional 
adaptability and reusability proved to be hard to assess using scenarios, 
because we are considering an architecture, lacking functional requirements 
and actual application components. 

The assessment demonstrated that the introduction of the ComBAD 
framework encapsulates changes to the technical environment from the 
application. In addition, we showed that the framework is unaffected by 
changes in the functional requirements. However, whether the services in the 
framework encapsulate the right technical mechanisms could be a topic for 
further research. In addition, one should always remember that flexibility is a 
relative notion, which can only be valued in a particular context. 

Our next step will be to investigate the architecture of an existing system 
to see whether we are able to assess its quality attributes, including 
functional adaptability and reusability of components. This way we hope to 
deepen our insight into the quality attributes and their assessment in software 
architectures. 
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Abstract: The product line architectures for diagnostic imaging equipment like CT. MRI 
and conventional X-Ray have to cope with large variations (in hardware and 
application functions) combined with a high level of integration between their 
embedded applications. Therefore a primary goal of these architectures is to 
avoid monolithic applications while retaining the required integrated 
behaviour. Furthermore, an easy and independent variation of the constituting 
components is essential. The product line architecture described in this paper 
gives one recent example solution to this problem. This example presents a 
layered, event-driven, resource-restricted system based on the model-view
controller pattern. Its technical implementation relies heavily on state of the art 
desktop (Windows NTTM) and component techniques (DCOM). For this 
architecture, orthogonality and (binary) variation have been the key design 
goals. Three views of this architecture-the conceptual, technical, and process 
models-are discussed. In all three views the rationale of the chosen concepts 
and their relation to the problems indicated above is shown. 

1. MEDICAL ARCHITECTURES 

Philips Medical Systems is one of the world's leading suppliers of 
diagnostic imaging equipment. Its product range includes conventional X
ray, computed tomography (CT), magnetic resonance imaging (MRI), and 
ultrasound (US) equipment. These product families, usually called 
modalities, come in many variants of which only small quantities (100-1000) 
are being produced, enforcing reuse of development effort and product 
family architectures for all of them. In this paper the main issues 



www.manaraa.com

358 B. J. Pronk 

encountered in the architecture development of these product families will 
be discussed. For illustration a recent example architecture will be presented. 

1.1 Characteristics of medical software environment 

The main characteristics of the Philips Medical embedded software 
development environment are: 
- distributed, multi-processor 

real-time embedded and standard desktop environments 
large amount of code(> 106 lines of code) per system 
large software engineering groups(> 100 FTE's) 
software is by far the fastest growing component of all products 
long product support, maintenance and extensions (10-15 year) 
Long-running projects ( 2-3 years) 
distributed development 
small product series ( < 1 000/year) 
strict quality, legal, and safety requirements 

1.2 Architecture overview 

From a physical viewpoint most of the products mentioned above are 
constructed along the same principles. They are centred around a host 
processor, running a desktop operating system, that controls a set of 
modality-specific peripheral devices that are needed to generate, process, 
and view images. These peripherals are normally large, expensive, and 
controlled locally by embedded real-time processors or digital signal 
processors. Examples are high-tension amplifiers, patient support mechanics, 
RF-coils, etc. The set of peripherals is unique to a single product family, 
although many variations of individual peripherals are usually supported 
within one product family . 

On the host of all modalities, similar software applications linked with 
the user workflow can be identified: 
- database and patient administration, for entering patient data in the 

system 
- acquisition, which programs all devices for image generation, 
- a viewing application that allows the user to review and process the 

acquired images, 
- image handling applications that support all further handling of the 

information obtained during the examination, such as printing, archiving, 
and network communication. 
The architecture is outlined in Figure 1. 
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Host processor 

Mechanics 
Image Image 

Generation Processing 

Modality peripherals 

Figure 1. Medical architecture overview 

2. MAIN ARCHITECTURAL ISSUES 

The main issues to be addressed by the software architecture of medical 
product families can be summarised as: 
- Reuse: The need to support many different product family members, 

serving a variety of application areas and operating in many different 
(hardware) configurations, with one shared code base. 

- Independence: Allow parallel, independent, and incremental development 
for specific family members. 

- Time to market: Allow efficient addition of new functionality for the 
various family members in reaction to changing market needs. 
In the remainder of this section the main aspects of these problem areas 

are explored somewhat further. 

Reuse: 
Medical products come in many configurations (types of hardware, 

software options) serving various market segments and application areas. 
Yet within one product family (X-Ray, MRI etc.) a lot of functionality can 
be identified that is common to all family members. Because of the long 
lifetime, small production numbers, and enormous code base (investments) 
of most product families these variations must be handled by the 
configuration of a single basic platform. 
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Independence: 
Often the variations indicated above influence significant properties of 

the system (e.g., maximum frame speed), that propagate throughout the 
entire architecture. As a consequence of this, current implementations show 
cross-dependencies throughout the entire software system. Other symptoms 
of these phenomena are multiple definitions and extensive and complex 
branches. 

Furthermore the current practice of source code reuse introduces heavy 
compile-time dependencies between all components. Independent 
development and delivery are virtually impossible in this situation. 
Furthermore this strong coupling requires extensive testing at every change, 
yielding ever-longer test cycles. 

The software applications of a medical device present very integrated 
behaviour to their users. This is reflected in software dependencies at all 
levels (user interface, application and technical level). Examples of these are 
the sharing of the current patient and image between applications, the use of 
shared (hardware) resources, and the compensation of imperfections of one 
device in another one. 

Time to market: 
Many new features, acquisition techniques, and hardware devices are 

added to medical products over the lifetime of the software architecture. 
These extensions are often accompanied by extensive growth of coupling in 
the system, since the necessary interfaces do not exist in the architecture. 
Continuous engineering by an ever-varying population of developers, 
forgetting or even unaware of the original architecture, further aggravates 
this situation. 

Medical devices contain a lot of persistent data: patient and image related 
data, system settings, and configuration of the system and its components 
and calibration data. Each of these settings depends on the software level of 
the components, the actual available hardware, and the configuration and 
options available on a system. This strongly coupled set of data imposes a 
significant barrier to change. The same goes for exchange of data between 
different releases, systems, and off-line tools that introduce many 
compatibility problems. 

Dedicated solutions and proprietary techniques have been widespread 
throughout the professional industry. In view of the advance of modem 
desktop operating systems with their myriad applications, productivity tools, 
and high innovation rate, this legacy has become one of the sources of a low 
rate of innovation in the industry. 
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3. AN EXAMPLE SOLUTION 

In this section a recent example of medical product family architecture is 
described. In its quest for a solution to the three main architectural issues 
introduced in the previous section, the architecture applies the following 
principles. 
1. avoiding a monolithic design by de-coupling and localisation. Every 

component can be replaced in isolation. 
2. binary reuse of components, reducing compile time dependencies. 
3. use of standard technology and tools for productivity enhancement 
4. division of the product family development into a generic (platform) part 

and member-specific parts. Addition of specific parts should be possible 
in independent parallel activities. 
None of the principles stated above is very revolutionary, and of them 

only binary reuse of components can be considered to be relatively new, 
since enabling technology has recently become widely available (COM, 
CORBA). Yet we think that the strict adherence to these principles and the 
actual implementation followed has led to a system coping with the main 
architecture issues better than any of our previous implementations. 

This new product family architecture has been modelled in several views, 
which will be described in detail in the remainder of this paper: 
- the conceptual architecture view: Describing the solutions and rules as 

applied to tackling the main architectural issues of decomposition vs. co
operation. The actual design of the system employs these solutions. This 
view will receive most attention in the discussion in this paper. 

- the technical architecture view: This view describes all additional 
constructs necessary on top of the conceptual view (e.g., UO classes, 
caching mechanisms) to realise the system. It also describes the hardware 
(processors, buses etc.) and software (operating system, protocols etc.) 
infrastructure and technology choices. 

We will also describe the process architecture. However this is not 
viewed on the same level as the previous two; in fact within both the 
technical and conceptual architecture a process architecture view can be 
identified. Within the conceptual architecture this describes the general 
approach for handling the required (application) concurrency. Within the 
technical architecture it describes the deployment of the elements of the 
decomposition into threads, processors, and processes. This latter point will 
not be addressed in this paper. 

The architecture is thus described by 
- a set of rules and concepts, 
- a series of technology and infrastructure choices, 
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- the decomposition of the solution domain into so-called Units, 
- their deployment to the infrastructure, and 
- the set of interfaces between them. 

As much as possible the rules and concepts are expressed in formal 
terms, to allow automatic verification of adherence to them in both the 
platform and specific developments. 

The presented three models (conceptual, technical, process) closely 
resemble three of the views described by Kruchten (Kruchten, 1995). On a 
lower level the same views are used in the design of the individual Units that 
fit into this architecture. This set of views has been selected since they have 
proven to be sufficient input for the designers of these Units to complete 
their requirements and designs in relative independence. 

3.1 Conceptual architecture 

The conceptual architecture of the product family describes the concepts, 
rules, and tactics that implement the principles described above. Note that 
the conceptual architecture mainly addresses principle 1 (localisation and de
coupling). Note also that the conceptual architecture is almost independent 
of the underlying technology, which is added only at a later stage. 

3.1.1 Layering 

The product family architecture decomposes the system into a number of 
(independent) abstraction layers, from the bottom up, as shown below in 
Figure 2. 

I User Interface I 

I Application I Infra 
struc 

Hardware abstraction ture 
Technical 

Layers 
Hardware control 

I Hardware I 
Figure 2. Layered set-up of product family architecture 
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The layers are 
- Technical layer, consisting of the following sub layers: 

- Hardware: basic digital and analogue hardware and their controllers. 

- Hardware control: drivers and real-time control of hardware that 
shield the low-level details of the hardware implementation such as 
registers, addresses, interrupts, etc. 

- Hardware abstraction: an abstraction layer offering a domain-specific 
abstraction of the underlying type of hardware (e.g., the X-Ray 
generation part in aCT-family). 

- Application layer: The actual user functions realised with this equipment. 

- User interface layer: The presentation layer, taking care of display and 
user interaction. 

Next to these three layers there is an infrastructure layer that is used by 
all. The three layers and their sub-layers supply a true abstraction, i.e. they 
are not transparent to the layers above them. Each of these layers can 
therefore be replaced independently of the surrounding layers. This is one of 
the major features supporting variation within the product family. Examples 
of this are: 
- different user interfaces for the members of the family 
- various implementations of the geometry part of an X-Ray system 
- implementing functions from several application areas on top of the 

common (domain) abstraction layer (e.g., a cardiological and a 
neurological MRI application) 

3.1.2 Conceptual building blocks 

Within each layer several independent Units are distinguished, which 
should not interact with each other. Therefore each of these Units is as self
contained as possible. The conceptual building blocks used within the three 
layers are: 
- Services: The service concept is a main structuring element of the 

architecture. A service is a software entity that autonomously executes a 
number of tasks for another part of the software, guarding a set of 
resources. A service is a completely isolated part of the architecture that 
also keeps its own configuration, etc. The technical layer consists of a set 
of these services, one for each device. In an X-ray system, for example, 
the services are for the generator and detector, and in an MRI system the 
services are for the gradient amplifier and the RF coils. 
Applications: There are a number of applications such as reviewing, 
acquisition, patient, and beam positioning, etc. These applications are 
also services offering an interface to the user interface layer. Applications 
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offer a very uniform interface consisting of commands (in fact the use 
cases as defined in the functional specifications) and a so-called UI 
model that represents all information (data and state) necessary for the 
user interface. 

- User interfaces: The user interface is completely decoupled from the 
applications and interacts with them through the application service 
interfaces described above. Throughout the system a model-view
controller pattern is applied, with the user interface being the "view." The 
application in fact contains the model (the UI model) and the controller 
(the commands). The grouping and appearance of the user interface is not 
known by the applications. There might be one integrated UI for multiple 
applications or a single user interface per application. 

3.1.3 Independence 

The previous steps represent a major step forward in decoupling the various 
Units of the system. However interaction between Units cannot be avoided 
completely because of the integrated behaviour aspects describedabove. Yet 
we maintain the rule that applications and services of the system will not 
interact directly with each other. This will be supported by the following 
mechanisms. 
- Event driven: Another main concept of the architecture that supports 

decoupling is notification. Objects in this architecture may issue events 
(notifications) that can be received (if requested) by so called observers. 
This mechanism works both within processes and across process 
boundaries. The source of the events in this mechanism is not aware of its 
observers. All upward communication between Units is based upon this 
mechanism. 

- Integration: All system-wide known data (e.g., patient data, but also 
currencies) is stored in a separate service called the integration and data 
model. Applications never directly exchange data such as a change in the 
current patient. Instead the current patient object in the integration 
service is updated by the patient administration application. All interested 
applications may be notified of this change through the notification 
mechanism just described. The integration service is closely linked to the 
database since a lot of this information is also stored persistently. 

- Automation: Many sequences of operations in the system are pre
programmed. After an acquisition, the system switches to reviewing 
mode: data are forwarded to an archive etc. After closing an examination, 
data are forwarded to printers, the Radiology Information System, etc. 
Such functionality is located in a separate automation service that 
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receives completion notifications from the applications and starts the 
relevant actions. Again, the applications do not interact directly. 
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- All system characteristics are derived from the available resources an 
application can obtain from the services it uses. There is no hard coding 
in the applications of restrictions of the underlying services. This implies 
that resources may be added to increase the capabilities of the system 
without additional coding. 

3.2 Process architecture 

This section describes the concepts used for decomposing the system into 
separate concurrent processes, starting with the application requirements for 
concurrency. From a user point of view the system should deliver the 
following levels of concurrency. 
- Multiple users operating separate applications concurrently. This will be 

handled by defining all applications to be separate processes. 
- All long-running, non-interactive user functions (e.g., printing, export, 

archiving) have to be performed as background parallel processes since 
the user wants to be free to do other actions while these functions are 
executed. 

- Long-running interactive user functions (like screen build up) have to be 
performed in parallel processes to retain user interface responsiveness . 
For these functions the user should be able to cancel or overrule it. 
From a technical point of view additional concurrency is introduced in 

the system since asynchronous hardware has to be controlled. So all services 
handling hardware have to be separate conceptual processes. Yet another 
technical point of concurrency follows from the services concept itself. 
Lengthy actions are often distributed over a client and multiple services. A 
service request may take considerable time to complete since the handling of 
hardware UO often is involved. During the time that the service request is 
handled, the application can often do other useful things (e.g., starting other 
service requests in parallel). It is a matter of choice where to put the 
conceptual processes for handling lengthy service requests. We choose to put 
them in the services themselves. So, all lengthy service requests have to run 
in separate conceptual processes. This also implies that these service 
requests will complete asynchronously (and use notification to signal 
completion). 

From this initial selection even more concurrency requirements can be 
derived. Since multiple conceptual processes are active in parallel, shared 
resources (e.g., database, context) are introduced. Therefore additional 
conceptual processes will be introduced to serialise access to these shared 
resources. 
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3.3 Technical architecture 

The technical architecture of the system supports, in particular, the following 
principles from the introduction to section 3: 
- binary reuse of components 
- enhanced productivity by application of standard, state-of-the-art 

technology 
- building a generic platform with product-specific additions 

3.3.1 Use of a standard environment 

Professional industrial environments have long worked with proprietary 
solutions. However the advance of standard desktop environments, market 
pressure, and the need for productivity increases drive the industry towards 
usage of standard solutions and open standards. Note that this is not only a 
matter of money. Even where money is no argument, the time and people 
needed to create from scratch something to compete with standard desktop 
environments represents a tremendous bottleneck. Finally, the innovation 
rate of desktop environments is now so high that proprietary solutions will 
probably be outdated before they are introduced. Therefore the following 
approach is chosen for the new product family architecture: 
- Allocate, as much as possible, software functionality to custom hardware 

components. Only build dedicated hardware when 
processing/responsiveness cannot (cost effectively) be delivered by such 
a platform. 

- Allocate, as much as possible, functionality in a standard desktop 
environment. Only use a real-time operating system environment when 
strictly required (for performance, safety, or graceful degradation). 

- Use standard PC-architecture and technology as much as possible (PCI, 
Intel x86, Windows NT, Microsoft Foundation Classes, Windows User 
interface, Windows NT services etc.). 

- Use standard software packages (database, license management, 
network) 

- Use internet technology (Java/HTML/Browser, Windows NT peer web 
server) for (remote) service. 

3.3.2 Binary exchange 

Classical reuse programs are often based on source code level reuse. This 
approach introduces strong compile-time dependencies. Furthermore it does 
not support true reuse, since extensive testing is still required in the new 
code/compile environment. This situation is even further aggravated when 
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using object-oriented languages and deep inheritance trees. Based on these 
experiences it has been decided that the new product family architecture will 
be based on binary variation. The following choices have been made in this 
area: 
- Component-based development (DCOM) based on binary exchange, 

allowing flexible allocation of UI, application and services. 
- All interfaces in the system will be expressed in IDL, and DCOM will be 

used for all communication between Units. 
- All notification between Units will be based on the COM connection 

point mechanism. 
- DCOM, however, is only used as an interface mechanism; all 

implementation classes are strictly separated from this interface shell. 
- Interfaces are considered immutable even when extending, for example, 

ranges of enumerated types or error codes; new interface versions will be 
introduced. 

- Apply component technology to define frameworks for all extensible 
parts of the system. A framework consists of a set of interfaces and some 
generic functionality. For example, the acquisition application is a 
framework in which (binary) components can be added to support 
additional acquisition procedures. 

4. CONCLUSIONS 

Medical equipment architecture has to focus on orthogonality and 
independence to support a viable product family concept. The rigorously 
pursued decoupling in the presented product family architecture allows for 
the development of completely localised and highly independent 
components. The use of DCOM as standard interface technology enables 
versioning, strict interface management, and the delivery of components that 
are thoroughly tested. In addition, applying standard technology and 
components will reduce time to market significantly. This combined 
approach has resulted in a generic platform, which through addition of 
system-specific components, can be specialised in parallel developments. 
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Abstract: Although monitoring and control systems can be applied to a great variety of 
application domains, they exhibit a number of common characteristics, 
particularly the extensive use of abstraction layers and information streams. 
This paper presents a reference architecture upon which a number of 
monitoring and control systems for a wide range of application domains can be 
designed. The architecture is described in terms of components and 
connectors, and the UML methodology is employed to specify class diagrams. 
The architecture is specifically conceived to be made of reusable components; 
to that aim, a clear separation is made between information components and 
strategic components, so that the former can be reused under different 
strategies. Conceptual images are information components that model 
concepts of the application domain, and are specialised in terms of concrete 
images, such as acquisition, processing, and presentation. The major task of 
the system is to align concrete images, which takes place via transfer of 
objects (facets) through particular connectors (projectors). This mechanism 
allows construction of systems where very little is hard-coded at compile time, 
and a lot is left to configuration, which can usually be performed by a domain 
expert rather than a software engineer. 

1. INTRODUCTION 

A software architecture should realise, in terms of architectural 
components, crucial concepts that are of use to application domain experts. 
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First, the architecture must rely on concrete "generic" mechanisms that allow 
components to be defined and to be composed into a system. Second, both 
components and composition rules must be specialised to fit specific 
application domain models. This paper presents a software architecture for 
monitoring and control systems. 

Monitoring and control systems cover a huge range of application areas, 
from classical process control, to environmental monitoring, urban traffic 
control, monitoring of historical buildings, and many more. They also share 
common features, from the point of view of both the domain model and of 
architectural requirements. 

In terms of the application domain model there are two major issues: 
1. Physical objects of the environment are represented at several abstraction 

layers, spanning from the field interface layer (sensors and actuators) to 
higher layers where abstract images of the physical objects live and 
control-related activities (computation, decision, and presentation) are 
performed; 

2. There are two major information flows. The observation flow starts from 
the actual state of physical objects and updates more and more abstract 
images. The control flow starts from the expected state of abstract images 
and updates more and more concrete images- ultimately, it controls the 
state of the physical objects. 
This scheme is quite general, and accommodates particular cases. For 

instance, in a pure monitoring system the observation flow only exists, 
whereas in an open-loop control system the control flow only exists. 

In terms of concrete architecture, there are two major requirements: 
1. modularity and configurability: the domain engineer must be capable of 

building, configuring and managing his or her system by exploiting 
reusable components that model domain-level concepts, without having 
to deal with implementation-related concerns 

2. behaviour: the domain engineer must also be capable of defining the 
dynamic behaviour of the system- in particular, of specifying the timing 
of the observation and control flows - without knowing the internal 
structure of the components nor the idiosyncrasies of the technological 
platforms. 
The Kaleidoscope architecture we present in this paper is a general 

framework (Gamma, 1995) that attempts to meet the above requirements of 
monitoring and control systems. The key issues, described in detail in the 
rest of the paper, are the following: 

Application domain entities are modeled by conceptual images. 
A conceptual image is realised by a set of concrete images, possibly 
hosted by different physical nodes. 



www.manaraa.com

Kaleidoscope: A Reference Architecture 371 

- The alignment of information between concrete images is performed by 
projectors. 

- The overall behaviour is defined by strategic1 components that drive the 
projectors. 
The major advantage of the Kaleidoscope architecture is that not only 

does it provide a sound basis for building a distributed system by composing 
domain-related components, but it also raises up to the programming-in-the
large level the definition of the strategies that drive the alignment of the 
concrete images and the execution of computational activities. In fact, 
individual components do not embed specific strategies, which can be easily 
defined by the domain engineer according to specific domain requirements. 

A detailed description of the architecture is given in parts 2 to 6, and 
some implementation issues are set forth in part 8. The Unified Modeling 
Language (Fowler, 1997) (Penker, 1997) is employed to describe modeling 
and design issues, while the Java Programming Language (Gosling, 1997) 
has been chosen as the reference implementation language. 

2. THE ARCHITECTURAL APPROACH 

2.1 Static Architecture 

According to (Shaw, 1997), the architecture will be described in terms of 
computational components and connectors. Adopting an optical metaphor, a 
computational component is the image of an object in the application 
domain. Images are defined at two levels. 
1. Conceptual images model the entities that are meaningful from the point 

of view of the application domain. A conceptual image defines: 
- a set of facets i.e., attributes, that model the information associated 

with the entity (for example, current value, average, variance, etc.); 
- a set of filters i.e., methods, which are responsible for converting the 

information among different facets. 
2. Concrete images are subclasses of the conceptual images that can be 

regarded as views of the latter. They provide concrete representations of 
an abstract image, according to both application requirements and 
physical deployment issues. 
In general, a concrete image implements a subset of the facets and of the 

filters defined by the conceptual image; moreover, a conceptual image may 
not be associated with all the possible types of concrete images. Some 

1 To avoid misunderstandings, we shall use the term control in the sense of "process control", 
and strategy to denote the policies which drive the dynamics of the system from the 
software architecture point of view. 
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standard types of concrete images, that will be treated in detail in the 
following, are: 

- acquisition image 
- peripheral processing image 

central processing image 
persistent image 
presentation image 
simulation image 
actuation image 

In the remainder of this paper, unless explicitly stated, "image" will 
denote "concrete image." 

The connectors, on their part, play the role of projectors, which align the 
information contents (facets) of the images and encapsulate system
dependent communication issues. 

For example, suppose a traffic engineer wants to control the access to a 
certain area of a town in order to avoid congestion. After installing the 
physical devices (e.g., photocells and traffic lights), he or she instantiates 
one acquisition image per photocell (and/or one actuation image per traffic 
light), plus one peripheral processing image for each device (which will be 
hosted by a peripheral node). Also instantiated are some images that will 
reside at the central control room, namely a central processing image, a 
persistent image that has the goal of permanently storing data, and a 
presentation image devoted to data visualisation. Moreover, the traffic 
engineer instantiates the projectors that will be in charge of aligning the 
proper facets of the images. The resulting static architecture is sketched in 
Figure 1. 

application 

Figure 1. The static architecture 
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2.2 Dynamic Behaviour 

Information (in the example, the presence of a vehicle detected by a 
photocell) will be first acquired in the form of facets local to the acquisition 
component, then "projected" onto the different images, and "filtered" to 
obtain more abstract facets (counts, averages, statistics, graphics, and so on) 
This is the observation flow. 

At the end of the observation flow, information will eventually reach the 
user, be it a traffic operator exploiting the presentation image, or an 
application component relying on the central processing image. The user can 
monitor data and exercise control by modifying the central image of the 
traffic lights (e.g., by changing the desired plan of "red" and "green" 
phases). The changes of the central images are projected and filtered, and 
eventually reach the actuation images that physically control the traffic 
lights. This is the control flow. 

The traffic engineer is in charge of specifying the dynamics of the 
system. The heart of the dynamic behaviour lies in the updating of the 
images (which may imply filtering actions). Consequently, the projectors 
play a major role in the definition of the dynamic behaviour. 

A key point of the whole architecture is that neither images nor 
projectors embed any activation strategy: they can be viewed as passive 
entities (Tisato, 1996). They define data (facets), operations upon them 
(filters), and alignment mechanisms (projectors), but they are not aware of 
all the issues regarding when to retrieve data, transfer them between images, 
and filter them. Such issues depend on specific application domain 
requirements and must be defined by the domain engineer without having to 
know the internal structure of the individual components (images and 
projectors). In other words, images and projectors are aware neither of the 
static structure nor of the dynamic behaviour of the system; this peculiarity 
can be summarised by saying that the components have "no implicit 
architecture" (Cazzola, et al., 1998a). 

The control of the overall dynamics is up to specific strategic 
components (also named strategists; see part 6), which can be selected and 
parameterised by the domain expert. This way, strategic components are 
kept strictly separate from images and projectors, and they can be easily re
used under different strategies in a different context of the same domain, or 
in a completely new domain. To summarise: 
- Conceptual images model concepts that are meaningful in the application 

domain. 
- Concrete images model specific views of conceptual concepts, which are 

specialised based on the kind of processing they perform and on their 
deployment. 
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- Facets are the actual containers of data. 
- Filters model manipulation of the data of a concrete image. 
- Projectors align different concrete images of the same conceptual image. 
- Strategic components drive the activities of projectors and filters. 

3. INFORMATION COMPONENTS 

The information components lie at the heart of the system's static 
architecture, as they are the actual managers of application data. There are 
three types of information components: conceptual images, concrete images, 
and facets. 

3.1 Conceptual Images 

Modeling complex domains requires a proper use of abstraction to make 
the system manageable. Conceptual images realise a high-level abstraction 
of reality, defining which aspects of the domain must be taken into 
consideration. A traffic control example is the concept of "gate", which 
captures a flow of vehicles at different levels of abstraction - vehicle 
presence, vehicle count, average, and so on. 

A conceptual image is an abstract class, defining data and methods that 
will be inherited and implemented by the subclasses (concrete images; see 
part 3.2); thus, a conceptual image defines the semantics of some monitored 
and/or controlled data. 

3.2 Concrete Images 

Conceptual images are abstract classes and, as such, represent abstract 
concepts; therefore they need to be further specified to be useful. For 
example, asking if vehicles pass through a gate at a given time makes little 
sense. What is sensible to ask is how many vehicles passed in the last 
minute, or how many passed yesterday between 2 and 3 p.m., or how many 
pass on the average. These different views of the same conceptual image are 
dealt with separately in the various subclasses called the concrete images, 
and in other classes, associated with these, called facets (see part 3.3). 

Concrete images are the actualisation of conceptual images. They tum 
into practice the semantics of the abstract images. More technically, concrete 
images are subclasses of conceptual images, inheriting a subset of their 
attributes (i.e., facets; see part 3.3). Their instances are actual software 
objects deployed to different locations according to their functionality . 
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Special cases of images are information sources and information sinks. 
Sources retrieve data from the outside world and feed them to the system; 
they provide a "generate" method that, in a system-dependent way, acquires 
data from physical devices, or generates them itself, typically by simulation. 
Sinks feed back to the outside world information that was generated by the 
system; they provide a "use" method that transfers to the outside world the 
generated data. In this case, too, the way data are output is system-dependent 
(e.g., graphical report on a workstation, satellite transmission, Web-based 
diffusion, commands to a physical device, etc.). 

Concrete images, albeit architecturally well characterised, do not 
constrain the designer's choices as to which functionality each image is to 
integrate. As an extreme example, a designer might want to incorporate 
complicated statistical processing into an acquisition image; this would 
clearly be against the philosophy of the architecture (and good sense too!), 
but it is reported here just to give an idea of the flexibility of the system. 

A basic set of concrete images has been identified, which, in the authors' 
opinion, is enough to cover most concrete cases of monitoring and control 
systems, even if it is always possible for the designer to define new ones, or 
eliminate some of the existing ones. 
- The acquisition image is a source image that collects physical data from 

the outside world. It can be thought of as a device driver of the physical 
sensor, and resides on the same node. For instance, it may represent the 
state of a photocell (vehicle passing/not passing). According to the type 
of sensor, different types of acquisition image may exist, and possibly 
some device-dependent code will have to be integrated. 

- The peripheral processing image resides on a peripheral processing node 
and supports a first level of information abstraction. For instance, it 
might include a facet modelling a short-time count of vehicles passing in 
front of a photocell. In the symmetric case of a traffic light, it might 
include a facet modelling the desired duration of the next "red" or 
"green" phase. 

- The central processing image provides an abstract view that supports 
user interfaces and major computational activities (statistics, 
optimisation, control decisions), and typically resides on a central 
processing node. It includes facets suitable for these tasks. 

- The persistent image is a permanent view filed in a database. It typically 
includes facets that model timed sequences of primitive data. Once the 
time series have been stored, all sorts of computations can be performed 
on them, including statistics, data mining, etc. 

- The presentation image is both a sink and a source image. As a sink 
image, it exports to the outer world the data acquired and processed by 
the system. We purposely use a vague term such as "exporting" because 
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it makes no assumption as to which medium will be used to communicate 
the information to the outside world, be it a graphical workstation, a 
satellite, or the Web. In this respect the proposed architecture is 
completely open; one may think of a simple Web server that, via CGI o 
servlets, delivers static snapshots of the system state, or of a complex, 
three-tier, full-fledged presentation server that in real time delivers the 
presentation image. Note that the projector-based approach (see part 6) 
allows the timings related to data transfer towards the presentation image 
to be decoupled from the timings related to inner data transfers. On the 
other hand, the presentation image may also be a source image, in that it 
exports methods that allow the user to exercise control. For example, the 
presentation image (i.e., the GUI) for a photocell will present the actual 
number of vehicles passing through a gate, whereas the presentation 
image for a traffic light will provide a slider to tune the duration of the 
"red" and "green" phases. 

- The simulation image is a source image, situated below the peripheral 
processing image (i.e., at the same level as the acquisition image) or, 
possibly, below the central processing image. Its goal is to supply data 
that are not retrieved by direct acquisition. The rationale behind the 
existence of such an image is twofold. First there is fault-tolerance: in 
case of unavailability of the acquisition image (due to hardware or 
software failure), the simulator works "on-line" and can feed the system 
with reasonable data, thus ensuring the continuity of service. Second, 
there is decision support: it is possible to perform what-if analyses, based 
on the "off-line" execution of the simulator. As we shall explain later, the 
switch between acquisition mode and simulation mode can take place at 
run-time in an immediate and transparent manner, by simply activating 
the proper connector. This way, the system can work in a non-stopping 
mode. 

- The actuation image is a sink image whose goal is to translate user 
commands and decisions taken by the processing components into real 
actions performed on the domain. Note that both the acquisition image 
and the actuation image are in fact nothing but drivers of physical 
devices: sensors and actuators respectively. This symmetry does not exist 
by chance; it is the expression of a substantial architectural equivalence 
between monitoring and control. In both cases, information output by the 
system (monitored data in the one case, commands in the other) is 
acquired, processed, and finally output by the system in the form of 
presentation (monitoring) or actuation (control). 
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3.3 Facets 

Facets are the actual containers of data, and as such are the items of 
interest to the end user. Typical examples of facets are current value, 
average, and variance. They are the actual realisation, in concrete images, of 
the attributes found in conceptual images. In UML terms, an image is an 
aggregate of facets. The choice not to directly include these data into the 
concrete images may seem strange, but it stems from the intention to keep 
the architecture as general and flexible as possible. Incorporating the facets 
in the form of attributes of the concrete images would mean hard coding the 
semantics of the images. Using the proposed approach, however, the 
designer is free to include in each concrete image only the facets he or she is 
interested in. This approach allows insertion of new classes to meet 
particular requirements (for instance, advanced statistical processing) that 
obviously cannot be all provided a priori; in this case, the designer must 
simply define the facet classes he/she is interested in and associate them with 
the concrete images that will utilise them. 

As facets are the actual data, it is these objects that are transferred 
through the projectors when images are aligned (as explained in part 6). Of 
course, the same facet may have different implementations for different 
images that may be hosted by different nodes and rely on different platforms. 
In this case, filters (see part 5) are in charge of performing marshalling. In 
order to ensure coherence of observations, every facet has a timestamp. 

3.4 Aggregate images 

What has been presented so far refers to monitoring and control of single, 
elementary entities. It is nonetheless clear that a general reference 
architecture must contemplate the possibility of monitoring and controlling 
images relative to complex entities that model significant domain concepts, 
but do not correspond to the direct abstraction of physical devices. For 
example, a traffic operator would like to reason in terms of "urban areas", 
that can be observed (in terms of global number of vehicles in them) and 
controlled (in terms of incoming and outgoing vehicle flows). 

In order to model such situations, the concept of aggregate image has 
been introduced, which models, at a higher abstraction level, a set of 
elementary images. Clearly, it is not possible to associate a physical sensor 
with a whole zone. Thus, aggregate data cannot be directly derived from 
information coming from the outside world, but need to be computed from 
elementary data that are themselves inside the system. 

The structure of an aggregate image closely resembles that of elementary 
images, so there will exist a conceptual image that specialises into concrete 
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images, and a set of facets that are associated with the various concrete 
images. The main difference between aggregate and elementary images lies 
in data acquisition (and, symmetrically, actuation). While elementary images 
acquire data directly from the outside world through the acquisition image 
(or by simulation), aggregate images acquire data inside the system, namely 
from the elementary images the aggregate image refers to. This yields two 
main consequences: 
1. An aggregate image is an aggregate of the elementary images it refers to. 
2. An aggregate image is not associated with an acquisition image (nor with 

an actuation image), since acquisition (actuation) is performed by 
processing data associated with elementary images. 

Aggregate Abstract Image 

Figure 2. The relationships among classes 

Aggregate images can be put at different levels of abstraction. Suppose 
that, in order to avoid network overloads, the designer chooses to perform 
aggregation at the peripheral processing level. The following scenario will 
occur: 
- The aggregate image has no associated acquisition image. 
- The peripheral processing aggregate image locally collects data from the 

peripheral images of the elementary entities it aggregates. 
- From this point on there is no more actual difference between an 

aggregate image and an elementary one. 
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- It may be the case that elementary entities have no higher-level images 
(central processing, presentation, and so on). 
The schema described so far, and illustrated in Figure 2, constitutes what 

may be considered a design pattern (Gamma, 1995). 

4. PROJECTORS 

Projectors are in charge of linking images, and aligning the information 
they host. According to this definition, a projector would seem to be nothing 
more than a communication channel; on the contrary it corresponds to the 
concept of a connector (Shaw, 1996), which has a much richer meaning and 
much deeper implications. 

A connector is an abstract entity, completely independent from its actual 
implementation, that can be mapped onto the most diverse hardware and 
software communication architectures. Moreover, a connector, beyond its 
communication capability, can also perform information retrieval, i.e., 
extraction of information from the components it is connected to. 
Communication being the main task performed by a connector, a set of 
communication-related attributes and methods can be collected in a class, 
that will act as a superclass for all classes implementing connectors. This 
class is abstract, thus it only serves as a base class. 

Projectors are in charge of communication among concrete images. 
Being specialised kinds of connectors, projectors are themselves abstract 
entities, independent of their actual implementation. At one extreme, there 
might be a projector implemented as an almost empty object; at the other 
extreme, a projector might implement a complex application protocol. 

Despite their variety of possible implementations, projectors still retain a 
set of common characteristics that have to do with their main function i.e., 
alignment among concrete images. To this aim, they are provided with two 
standard methods (called respectively "alignUp" and "alignDown") whose 
task is to realise the transfer of facets among concrete images, as we shaH 
further explain in part 6. That transfer will take place upstream (alignUp) to 
realise monitoring and downstream (alignDown) to realise control. 

Note that projectors perform an inter-image alignment of uniform facets, 
i.e., they transfer the state of the same facet from one image to another. In 
other words, if two images are connected by a projector, the same 
"projected" facet must be included in both images. No computation or 
conversion is ever performed by the projector (such conversions are 
performed by filters; see part 5). For example, both peripheral and central 
processing images of a photocell contain a "short-term-vehicle-count" 
image, which is aligned by a projector. 
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The symmetry between monitoring and control (see part 2.2) is now fully 
realised: each of these two activities is implemented exactly the same way, 
by alignment of concrete images. For monitoring (method "alignUp") data 
are transferred from sensors to the central parts of the system, for control 
(method "alignDown") commands from the user are transferred towards the 
periphery of the system, and finally to the actuators. 

5. FILTERS 

Filters are particular components associated and co-resident with, 
concrete images. 

central processing image 

I medium term average 

I short term vehicle count I 

Figure 3. Facets, projectors, and filters 
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Their task is to transform information between different facets, perhaps 
performing data conversions if the same facet has different implementations 
in different images. Just as connectors are responsible for an inter-image 
alignment of uniform facets, filters are responsible for an intra-image 
conversion among different facets. For example, as shown in Figure 3, the 
peripheral processing image of a photocell has both a "vehicle-present" and 
a "short-term-vehicle-count" facet. The former one is aligned according to 
the corresponding facet of the acquisition image, whereas the latter one is 
updated by a local filter according to the changes of "vehicle-present". 
Accordingly, the central processing image has both a "short-term-vehicle
count" and a "medium-term-average" facet. 

In general, filters should be triggered by strategic components (see part 
6). In many cases, filters are triggered as a consequence of information 
transfer performed by projectors, in which case an automatic triggering 
mechanism can be exploited. 

6. STRATEGIC COMPONENTS 

6.1 Goals 

As pointed out in part 2.2, strategic components manage the execution of 
system activities. They perform the following tasks: 
- Decide when to activate acquisition images (through the "generate" 

method discussed in part 3.2) to acquire data from the physical sensor. 
Decide when to align concrete images activating the appropriate 
projectors (through the "align Up" and "alignDown" methods). 
Decide when to invoke filters. In fact, in case of very frequent updates, it 
may not be efficient to re-compute every time the statistical quantities, as 
this activity can be complex and time-consuming. 
Decide when to export information to the rest of the world (through the 
"use" method of the sinks), thus obtaining the visualisation or printing of 
data, in the case of the presentation image, or the activation of control 
devices, in the case of actuation images. 
Decide when to re-compute new plans (see part 6.2). 
React to asynchronous events generated by the concrete images (see part 
6.3). 

6.2 Architecture 

The architecture of the strategic subsystem is somewhat orthogonal to the 
rest of the architecture. In the following we sketch the basic features of the 
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strategic subsystem of Kaleidoscope. It is organised into a set of strategic 
components linked by strategic connectors, according to a strongly 
hierarchical model in which each layer corresponds to a different abstraction 
layer, and higher-level strategic components control lower-level ones. 

Strategic components are instances of a Strategist class (see (Cazzola, et 
al., 1998b)) that can be specialised into subclasses. Instances of this class are 
linked by special kinds of connectors, called strategic connectors, which are 
also subclasses of the generic connector class. 

All communication between a strategist and the non-strategic 
components it manages takes place locally; in other words, the two 
components reside on the same processing node. This reduces network 
traffic and allows hard-real-time problems to be managed locally. 

Each strategist, in order to perform its task, needs an action plan, i.e., a 
list of the form <timelnterval, className:methodName>, that specifies the 
time interval in which a certain method of a given class is to be invoked. 
These plans can be passed on as parameters to the strategists; this allows a 
change of plans at least at configuration-time, or even at run-time, rather 
than at compile-time, thus rendering the system much more flexible. 

Each strategist has the ability to execute various plans: this way, when 
faced with events or particular situations, the component can change plan at 
run-time without the need to stop and restart the system. To that aim, each 
component is equipped with a "changePlan" method that takes as a 
parameter the new plan identifier. Of course, a component cannot change 
plan before the current one has come to a "safe" situation. This yields the 
necessity of providing plans with breakpoints, i.e., points at which it is safe 
to interrupt plan execution. Given the hierarchical structure of strategists, the 
"changePlan" method is invoked by the upper-level strategist. 

6.3 Strategies 

Since Kaleidoscope wants to be a general architecture, it should 
accommodate both a time-driven and an event-driven model. The authors 
definitely do not want to be involved in the decade-long event-driven vs. 
time-driven debate (Tisato, 1995), so the basic architecture makes no 
assumption as to which triggering philosophy will be chosen. This is 
possible because all the non-strategic components, be they images or 
projectors, are passive, thus no strategy-related elements are embedded 
within them. The designer can freely decide to build the strategic subsystem 
on either a time-driven or an event-driven approach (an example will be 
provided in part 7). 

The specific architecture we proposed in part 6.2 is basically time-driven, 
and relies on the execution of timed plans. In many cases, plans can be 
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defined at configuration time. For instance, photocells are sampled at fixed 
time intervals, the alignments and the decision activities are triggered at 
fixed intervals too, and the states of the traffic lights are controlled via pre
defined plans. 

Asynchronous events can be taken into account either via a "plan
selection" -based policy or via a "plan-formation" -based one. In the former 
case the strategist reacts to an event by choosing a plan among the pre
defined ones. In the latter case it defines a new plan. Once again, the 
designer is completely free to choose whatever policy he or she prefers. As a 
guideline, the authors suggest that a default "emergency" plan be activated 
upon receipt of an alarm. Such a plan has the goal of governing the system in 
a consistent and safe, if not optimal, way. While the default plan is 
executing, it is always possible to re-compute, as a non-critical background 
process, a new optimal plan. 

7. DYNAMIC BEHAVIOUR: SCENARIOS 

Let us now look at a possible execution scenario, referred to as the traffic 
control example. The scenario is sketched in Figure 4, which highlights (as 
thin dotted arrows) the triggers of the actions, not the underlying strategy. 
For simplicity, the figure shows some generic "strategists" and does not 
consider the allocation of components to nodes, even if the strategist shown 
corresponds to a reasonable allocation. 

The execution scenario depicted in the figure proceeds as follows: 
a) A strategist decides that it's time to acquire data and calls the method 

"generate" of the photocells acquisition image, which gets information 
from the physical sensor and inserts them into the appropriate facet 
(''vehicle-present"). 

b) A strategist decides to align the "vehicle-present" facet of the photocells 
peripheral processing image, by calling the "alignUp" method of the 
appropriate projector. Note that this activity might have a timing that is 
different from the previous one - and might be controlled by a different 
strategist. This may be necessary to face the case of heterogeneous 
hardware and software devices, which are very likely to have very 
different updating intervals and modes. 

c) A strategist triggers the intra-image filtering that updates the "short-term
vehicle-count" facet of the peripheral processing image, as explained in 
part 5. 

d) A strategist decides to align the "short-term-vehicle-count" facet of the 
central processing image. 
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e) A strategist triggers the filter that updates the "medium-term-average" 
facet of the central processing image. 

presentation image 
(photocell) 

central processing iTIIIlge 
(photocell) 

I 
medium tenn average I 

............ , .••. 

\ E) 
\ 

.•·•··· 

presentation iTIIIlge 
(traffic light) 

central processing iTIUlge 
(traffic light) 

I .................................. .... 1 
I) T 

vehicle present 
\ C) 

...................... ............. ................... 
B) 

acquisition iTIIIlge / A) 
(photocell) · 

.. / 
/ 

... 
...... 

.......... 

Figure 4. Execution scenario 
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f) A strategist decides to align the "medium-term-average" facet of the 
presentation image, which is presented to the user (be it a human being or 
a process control application). 

g) Eventually the user changes the "desired plan" facet of the traffic light 
presentation image, and a strategist decides to align the "desired plan" 
facet of the traffic light central processing image. 

h) A strategist triggers the filter that updates the "red/green duration" of the 
central processing image. 

i) After that, the control flow proceeds till the physical traffic light is 
changed. 
As pointed out before, different triggers may have different timings, 

according to specific application requirements. Timings are defined by 
strategists, and neither images nor projectors are aware of them. Several 
scenarios can be devised. 
- fully time-driven: all the actions of both connectors and filters are 

triggered by the strategists on the basis of timed action plans (see part 
6.2). This is the scenario for a traffic control system oriented to medium
term optimisation, where sampling the system state and tasking decisions 
at a fixed rate is a major requirement. 

- "upward" event-driven: the actions are triggered by the strategists as a 
consequence of events that asynchronously notify a state change of some 
acquisition image. This is the scenario for a system that must manage 
alarm conditions (incidents and the like). 

- "downward" event-driven: the actions are triggered as a consequence of 
events generated by a presentation image- i.e., by a user. This is the 
scenario for a system that allows an operator to freely observe and 
control the traffic system. 
Of course, mixed strategies can be conceived. We note that all the 

strategies can be implemented by changing the strategic components only, 
without any change to the re-usable components, i.e., images and projectors. 

Simulation can play an important role in making the system reliable and 
in ensuring continuity of service. Should a physical sensor break, the 
strategic component can activate a simulation image and trigger a projector 
that gets information from the simulation image rather than from the 
acquisition one. 

8. IMPLEMENTATION ISSUES 

In part 2.1 we said that a concrete image inherits methods from its base 
class "conceptual image," while attributes are rendered as separate objects, 
namely facets. Note that the concept of "inheritance" we are referring to in 
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this context is a very abstract one, meaning that, at a very high abstraction 
level, concrete images share the semantics introduced by a conceptual 
image. Obviously, this does not mean that concrete images must be 
implemented as actual subclasses of conceptual images; in fact, we already 
stated that, in order to implement attributes of the conceptual image, facets 
are used, which are not attributes in the usual sense. 

Another issue relative to facets is that when the strategist commands an 
alignment, the projectors retrieve the appropriate facets from within images. 
In general, this implies marshalling, therefore a projector must invoke a 
filter. In order to make such an approach possible, each concrete image must 
maintain a data structure (presumably a hash table or something similar) 
containing the symbolic names and the addresses of the facets it includes. 
Moreover, each filter is equipped with a method, called "read", which is 
called by the projector, retrieves from the concrete image the reference to the 
proper facet, instantiates a copy of the facet ,and passes it on to the projector. 
A "write" method of the filter performs symmetric actions. 

This procedure requires rather sophisticated mechanisms to avoid 
unpleasant situations, such as having to hard-code in the application code the 
mechanisms to recognise the kind of facet the projector is carrying. Such 
hard-coding would cause the resulting code to be non-extensible and not 
adaptable to new situations, which would be against the aims of the 
architecture. Vice-versa, one can think of using mechanisms such as 
computational reflection (Maes, 1987) or run-time type investigation in 
order to retrieve at run-time the type of the facet, and to be able to install a 
new one of the same type. (Such a mechanism is already implemented in the 
Java programming language (Gosling, 1997).) 

Filters are an interesting example of the role abstraction plays in a 
software architecture such as this. In fact, at general design level, they are 
defined as stand-alone classes; however, proceeding further down to detailed 
design, one realises that a filter may actually be rendered as a distributed 
object that lies partly within the concrete image it is bound to, partly in the 
facets, and partly in the connector it is referred to. 

As we said in part 2, images, strategic components, and projectors are 
strongly separate entities This means that images and projectors never know 
who is controlling them, while the opposite always holds, i.e., each strategist 
knows the identity of all the images and projectors it is controlling, and thus 
knows exactly what kind of notifications can be sent to it. This way, in order 
to implement default plans, it is sufficient to provide an association table of 
the form <notificationCode:planToExecute>. Upon receipt of a notification, 
the strategist will adopt the associated plan. 

To solve the opposite problem (how can the image know to whom it must 
issue the notification?), one can think of an "implicit invocation" 
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architectural style (Shaw, 1996), also known as the "Model-View
Controller" design pattern (Gamma, 1995). The strategist declares itself 
interested in a certain set of notifications, and these will be delivered to it. 
(Such mechanism is already implemented in Java (Gosling, 1997), under the 
name of "observer/observable".) 

9. CONCLUSIONS AND FUTURE WORK 

This paper presents a software architecture that can be used as a basis for 
the design of a wide range of monitoring and control systems. The 
architecture relies on a set of reusable components (images), connected by 
particular connectors (projectors), while all strategy-related activities take 
place in separate components (strategists). The proposed approach brings 
consistent benefits to both software engineers, who can build re-usable 
components according to the reference architecture, and domain experts, 
who can build a system without having to be software experts . 

The current activity regarding the Kaleidoscope architecture is twofold. 
1. A prototype is being implemented in Java to test implementation 

alternatives and check the soundness of the architecture. 
2. A specialisation of the architecture to specific domains is in progress . In 

particular, the urban traffic domain is being treated; the system is 
essentially modelled as a set of intersections and arcs, represented as 
conceptual and then concrete images and by the relative facets. Other 
conceptual images model meaningful entities such as traffic lights, 
sensors, and in particular accumulation points, i.e., abstract containers of 
vehicles that can be recursively defined. Specific presentation images 
support a Web-based information export to citizens and patrols (police, 
fire brigade, etc.) deployed on the territory. 
The preliminary tests confirm the soundness of the approach. 
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Abstract: This paper presents a refined layered architecture for business information 
systems of any size. It allows a strict separation of application logic, database 
access, and user interface and is largely independent of programming 
languages, database management systems, operating systems, and middleware. 

1. INTRODUCTION 

1.1 Business information systems 

Business information systems (e.g., systems for order processing, stock 
control, or flight reservation) are used daily by many people and are crucial 
for a company's business. The focus of this paper is front office systems as 
opposed to back office systems like data warehouses. The systems 
considered here can be characterised as follows: 
- They are individually designed and implemented for big companies 

(telecommunication, railroad, travelling, car production). It takes more 
than one calendar year and several dozen man years to implement them. 
They contain at least several hundred thousand lines of code. 
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- Their class (data) model contains several thousand attributes and several 
hundred classes (entities). They handle many gigabytes of data .. 

- They cope with high transaction rates, the transactions being short and 
relatively simple. 

- They run in a heterogeneous environment: A system might involve 
several programming languages (e.g., Java, C++ and Cobol), several 
database management systems (e.g., SQL Server and DB2) and several 
operating systems (e.g., MVS, Unix and Windows NT). 

- Their expected lifetime is 10 years or more. 
In spite of many valuable results in the area of software engineering, the 

design of these kinds of systems has proved to be difficult. This paper 
presents a standard architecture, based on defined interfaces between 
components, that simplifies the design of these systems. It distils the 
experience of several dozen software projects in which the authors have 
been involved. 

1.2 Why is software design so hard? 

1.2.1 No metric for software design 

We all know that software should be easy to maintain, easy to extend, 
easy to reuse, open to additional features, and fast. These properties are hard 
to measure (performance excepted), hard to achieve, and some of them are 
contradictory. A crucial feature like extensibility can at best be defined in 
terms of examples. There is no beaten path to a defined degree of 
maintainability, extensibility and so on; it all depends on the intuition of the 
system architect. The degree of maintainability actually reached by a given 
project is visible only after many years . It is not measured by quantitative 
means, but only assessed by the naked eye. 

1.2.2 The three layer architecture does not work 

The three layer architecture (see Ambler, 1998; Denert, 1991) is a well 
established recipe for the design of business information systems: 
- the dialog layer controls the interaction with the user 
- the application kernel implements the business logic 
- the database access layer takes care of all database accesses 

There has been little change to this scheme during the last few years; 
variants being discussed in the area of workflow systems do not affect the 
key ideas of this architecture. The intended benefit is the separation of 
concerns: 
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- The application kernel is neither aware of the user interface nor the 
database; changes to the these are transparent to the kernel. 

- Dialog and database access layer have limited knowledge of the 
application. They are not aware of the business logic. 

391 

Experience shows that it is hard to keep the details of user interface and 
database off the application kernel. Two phenomena are frequently 
observed: 
1. The business logic moves from the application kernel to other layers; the 

application kernel just vanishes. 
2. The application kernel gets polluted with details that should be hidden in 

other layers. 
There is a blatant lack of standards for the interaction of layers. 

Numerous projects have spent many years designing and redesigning these 
layers' responsibilities. To our experience, the intended benefit of the three 
layer approach never materialised to the expected degree. 

1.2.3 Too many APis 

The software community is literally flooded with new technical APis and 
new versions thereof: JDBC, ODBC, OCI, ADO, OLE-DB, A WT, MFC and 
so on. This makes the software architect's job even harder: Which API can 
I rely on? Which one works? How many workarounds will be necessary? 
How expensive would it be to migrate from - say - ODBC to OCI or vice 
versa? Furthermore there are some old-fashioned, awkward-to-use but very 
reliable host APis (e.g., BMS, IMS, VSAM) that will not disappear in the 
near future and often have to be taken into account even with new systems. 
How can we cope with this variety of different APis of different ages? For 
small systems with a short lifetime, these questions are of little importance. 
Our concern, however, is big systems with an expected lifetime of 10 years 
or more. These systems must carefully encapsulate all technical APis. 

1.2.4 Where to go? 

Why are some components reusable and extendable, but others not? 
There is one obvious observation: Software that deals with many different 
things at a time is bad in all respects. The programmer's nightmare is return 
codes from different technical APis mixed up with application problems, 
and all that within a couple of lines of code. This idea can be formalised: 
Any business information system is concerned with the application domain 
(this is why it is built), and technical APis like operating systems, database 
management systems, and middleware (no system can run in thin air). 
Therefore, the components of a given system can be divided into four 
disjoint categories of reusability. Any piece of software can be: 
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1. determined neither by the application nor by technical APis 
2. determined by the application, but not by technical APis, 
3. determined by technical APis, but not by the application, 
4. determined by the application and by technical APis . 

The term " determined by" can be read as "knows about," "depends on," 
or "is influenced by." Code determined by the application knows about 
business objects like customers, accounts, flights, or aircraft. Code 
determined by technical APis knows at least one API like ODBC or OCI. 
For the sake of convenience, we mark software determined by the 
application with an "A" and software determined by technical APis with a 
"T", thus yielding the four categories 0 (neutral), A, T and AT. 

0-software is ideally reusable, but of no use on its own. Class libraries 
dealing with strings and containers (e.g., STL) are examples for 0-software. 
0-software implements an abstract concept, such as a dictionary or a state 
model. Note the difference between a class library like STL and a technical 
API like MFC that acts as an interface to a lower-level API (Win32). Using 
STL means choosing an abstract concept (namely that of containers, 
iterators, adapters, etc.) and works wherever C++ runs. Using MFC excludes 
all environments MFC does not support. 

A-software can be reused whenever the given application logic is 
needed as a whole or in parts. Other applications access A-software 
typically via rniddleware like CORBA, DCOM or RMI. 

T -software can be reused whenever a new system uses the same 
technical environment (e.g., JDBC, ODBC, A WT or MFC). One nice 
feature ofT -software is that its size increases sub-linearly with respect to the 
number of business classes. A cleverly designed and carefully written 
technical component that works fine for 20 business classes can do as well 
for 200. In fact, JDBC (and other APis as well) does not care at all about the 
number of business classes that are using it. 

AT -software is hard to maintain, reluctant to change, can never be 
reused, and should hence be avoided. The architectural quality of a software 
system is inversely proportional to the share of AT-code. Unfortunately, at 
least at a small scale AT -code is easy and straightforward to write. Quality 
software is characterised by the complete lack of AT-code and by clean 
interfaces between 0, A and T. This is where we should go. It goes without 
saying that there are major management issues to the question of reusability 
that this technical paper does not address . 
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2. QUALITY SOFTWARE ARCHITECTURE 

2.1 Overview 

It is possible to define a standard architecture that contains some 
0-components, no AT-components at all, and which establishes clean 
interfaces between 0, A and T components. This architecture is being 
developed by a project at Rosenheim University of Applied Sciences 
(Germany) in cooperation with Software Design & Management, a company 
in Munich. Its name is QUASAR, from "quality software architecture." 

QUASAR employs the terms "use case" and "business object" in the 
sense of Jacobson (1997) with the following refinement: A use case seen as 
a software module knows which steps have to be performed in which order 
for the use case to succeed. A step of a use case can be any operation on 
business objects or on other use cases. A use case can be persistent (stay 
alive for days or months) or transient. There is no clear distinction between 
a use case and a business object. A flight reservation may be regarded as a 
use case, a business object, or both at a time; it is up to the designer to 
choose. QUASAR makes minimal assumptions about the design of use cases 
and business objects. QUASAR's concern are reusable components that are 
called by the application and which call it back. 

QUASAR's mission is a standard architecture for business information 
systems that significantly simplifies the design. That means that there are 
reusable components of a defined category with defined interfaces, and 
running prototypes in evidence of feasibility that can be used as-is or as 
templates for project-specific implementations. The remainder of this paper 
describes the current state of our work. 

2.2 Central themes 

The central themes of the quality software architecture are 
- QUASAR attempts to be as non-intrusive as possible. An application 

using QUASAR has to implement defined interfaces and to call others. 
All assumptions are laid down as interfaces. In particular, there is no 
superclass from which all business objects or use cases have to be 
derived. 

- QUASAR is open to almost all programming languages. There is a focus 
on object-oriented languages, but QUASAR components can be 
implemented inC or Cobol as well. QUASAR doesn't rely on language 
features like RTII (C++), Java reflection classes or Smalltalk blocks. 

- QUASAR shields the application kernel from technical APis (like OCI 
or ODBC) by means of a stable, vendor-independent interface. 
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- QUASAR components can be used independently. 
- QUASAR avoids code generation. Often code generators tend to be 

slow, unreliable, do not generate what is really needed and turn out to be 
a burden for the development process. 

- QUASAR only performs error and exception detection. The handling is 
left to the application. 

2.3 Architecture 

QUASAR's backbone are business objects and use cases. The main 
menu of most systems can be thought of as a special use case which gains 
control at system start-up. We call this the use case controller. Normally, a 
use case is started by its constructor or by a special start method. 

On the right hand side of Figurel there are three components: The 
Workspace, the DataStore and the concrete API, which provides access to 
the database (ODBC, OCI, .. ). The DataStore hides that API behind a generic 
interface which can be talked to in terms of DataContainers. Thus, it is 
unaware of use cases and business objects. The DataStore interface provides 
the usual find/update/insert/delete operations. 

T 0 A 0 T 

-.call 

Figure 1: QUASAR architecture 

We use the term "persistent object" for all business objects and all use 
cases that are to be stored in the database. In general, all business objects 
and some of the use cases will be persistent. A persistent object cannot be 
stored as such, but only as a DataContainer. So, each persistent class has to 
provide methods to map the object onto its representation as a Data
Container and vice versa. In most languages, these methods will have names 
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like "toDataContainer" and "frornDataContainer"; in C++ it is simple to 
overload the shift operators. 

Following Java naming conventions, the interface that defines these 
methods is called "Storable"; all persistent classes must implement it. hi 
section 2.6, we sketch how this can be done. The Workspace links the 
application to the DataStore. Its interface follows closely that of DataStore, 
but is defined in terms of Storables. Thus, it is the Workspace that calls the 
Storables' mapping methods. The Workspace takes care of object identity 
and implements a given transaction strategy (optimistic or pessimistic, see 
section 2.6). The important thing to note is that the Workspace is 0-software. 
Its use could become as obvious as that of - say - a container. The 
communication between the application and the database uniquely relies on 
two interfaces: The Storable interface with its to- and from- methods and the 
Workspace interface. This is the only link between the two worlds; there are 
no assumptions about each other except those cast in the two interfaces. 

hi a typical implementation, there will be exactly one instance of 
Workspace and one instance of DataStore for each human user logged in. 
Variants of this rule are hinted at in section 2.6. 

Let's look at the left hand side of the figure. There is a symmetry not 
only in the figure but in the whole way of thinking. We will see that 
accessing a database and accessing a user interface have a lot in common. 

Again there are three components: The virtual dialog manager (VDM), 
the virtual user interface (VUI), and the concrete API, that provides 
access to the physical screen, which can be anything in the area of BMS, 
Motif and MFC. The virtual user interface hides that API behind a generic 
interface that can be talked to in terms of virtual windows and virtual 
widgets. Like the DataStore, the VUI is unaware of use cases and business 
objects and knows basically only two classes: virtual windows and virtual 
widgets. 

We use the term "presentable object" for all business objects and all use 
cases that are to be presented to the user. hi general, all use cases and most 
of the business objects will be presentable. A presentable object cannot be 
presented as such, but only as a virtual window. In complete analogy to the 
database side, each presentable class provides the methods "toVirtual
Window" and "fromVirtualWindow". Of course, the corresponding 
interface is called "Presentable". The virtual user interface presents virtual 
windows by means of its central method "processVirtualWindow". Within 
that method, it handles incoming events. Many of them can be dealt with 
directly by the VUI, for example, field editing. The main benefit of the VUI 
is its ability to condense physical events (e.g., "button X released", "field Y 
changed") into virtual events. Virtual events are abstractions of physical 
events, e.g., "analyse user input", "confirm" or "cancel". hi the simplest 
case, a physical event is directly mapped onto one virtual event. In general, 
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there can be arbitrary definitions like "button Y released and field Z 
changed and field T not changed". This idea works for graphical user 
interfaces as well as for block-oriented ones: In a 3270 environment, there 
are very few physical events ("key K is hit, where K is one of ENTER, PF1, 
PF2, ... ") which can be easily refined to many different virtual events. 
Whenever the virtual user interface recognises a virtual event it calls back 
the virtual dialog manager and tells it to process the virtual event. 

The virtual dialog manager acts as a link between the use case that wants 
to execute its dialog and the VUI that communicates with the concrete API. 
Each use case has a corresponding instance of VDM, which in tum has an 
instance of a VUI. Thus, for each active use case, there will be one VDM 
instance and one VUI instance. Each VDM instance manages one dialog 
only and dies when that dialog is closed. The dialog management is 
controlled by an interaction diagram. Interaction diagrams have been used 
for quite a while and have proven to be extremely useful for the precise 
description of user interactions; see Denert (1991) for more details. Here, 
the use case hands over an instance of an interaction diagram to its VDM 
instance. Thus, the VDM constructor expects a presentable object (i.e., the 
use case) and an interaction diagram as arguments. It calls the use case's 
toVirtualWindow-method and transmits the result to its VUI. When the 
VDM instance is called back with the processVirtualEvent method, it 
consults its interaction diagram and decides what to do. Frequently the 
ruling use case is called back with its fromVirtualWindow method. 

The VDM is little more than an interpreter of interaction diagrams and 
fairly easy to implement. It is, of course, 0-software. The to/fromVirtual
Window methods are far less straightforward; see section 2.7. 

An active database would call back the DataStore very much like 
BMS/CICS or Motif would call back the VUI. Both the VUI and VDM can 
be hierarchically organised along the lines of the PAC pattern (Bass, Coutaz, 
1991). 

2.4 Virtual devices 

Virtual devices encapsulate technical APis. We have seen two of them: 
1. the virtual user interface (VUI), hiding APis like BMS or MFC 
2. the DataStore, hiding, for example, ODBC or OCI 

Additional virtual devices can be introduced for any technical API that 
should be hidden from the system (e.g., workflow systems or archives). 
Virtual devices don't know anything about customers, accounts and orders; 
instead, they deal with virtual containers containing virtual items. VUI is 
concerned with virtual windows and virtual widgets; DataStore manages 
DataContainers and DataContainerColurnns. The definition of a virtual 
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container consists of three parts: definition, contents, and context, which can 
be implemented as a class or a record each, depending on the progralllllring 
language. In order to bring a virtual device into being, you define the 
interface, the item, the container, and you implement the interface for at 
least one concrete API. This is, of course, aT-implementation (determined 
by exactly one API). It is written in the same language as the API, that is, a 
DataStore implementation for ODBC is likely to be written in C or C++; a 
JDBC implementation in Java. A virtual device only knows a handful of 
classes. 

It is up to the designer to determine the amount of information known by 
virtual devices. Choosing a complex virtual container allows full 
exploitation of the features of the physical device but makes the 
from/toVirtualContainer methods expensive to implement and reduces 
portability. Choosing a dumb virtual container guarantees portability, allows 
for cheap to/from-methods, but a 3270-minded virtual window won't look 
very beautiful on a Motif screen. This is not as harsh a problem as it might 
appear at first sight: Many famous standard products (e.g., SAP) have a 
graphical user interface that is almost completely form based and could be 
implemented by means of a rather dumb virtual window. 

2.5 DataStore 

This section describes the DataStore interface and its implementation 
with a relational database in mind. However, it is equally possible to have 
the interface implemented for an object-oriented database or for VSAM. 
Why would somebody choose not to directly access an object-oriented 
database but rather via a DataStore? There could be at least two reasons: 
1. In spite of the ODMG efforts, the available object-oriented database 

management systems differ significantly. Many vendors are small 
companies whose future is hard to predict. Within the context of a 
reengineering and/or migration project, a given application may switch 
from a relational database to an object-oriented one, or, even worse, may 
have to access both of them at a time. So, for many applications it is 
crucial to separate database-influenced code from application logic. 

2. Even with object-oriented databases, database classes and application 
classes are not necessarily identical. Performance considerations at the 
database level should be invisible at the application level. 
It depends on the information conveyed by the DataContainer if the 

DataStore-implementation is able to exploit the actual database' s features. 
Let's look at a relational DataContainer, that can be mapped onto one or 

more physical rows of one or more tables. The DataContainerDefinition is 
a data structure (class or record) that contains all information necessary to 
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talk to the database about rows of a particular table (field name, data type, 
length, precision, primary keys, etc.). It is up to the software architect to 
allow few or many data types in the definition. The DataStore maps these 
virtual data types onto the physical ones. 

The DataContainerContents is a container of column contents that in 
tum are just values of the corresponding data type. It contains a reference to 
the corresponding DataContainerDefinition that tells the DataStore how to 
read the contents. It is crucial to make sure that a given contents matches the 
definition it refers to. 

The DataContainerContext contains additional information for the 
DataStore about how to process given contents. When writing to the 
database, it can be important to know which fields are unchanged; when 
reading, perhaps not all fields are requested. DataContainerContext is a 
container of column contexts that convey state information such as 
"changed/unchanged" or "requested/not requested". 

The DataStore interface defines the ordinary database operations in 
terms of DataContainer definition, contents, and context. The most obvious 
operations are: 

DsReturnCode find(Datacontainer de) throws DsException; 

void update(DataContainer de) throws DsException; 

void insert(DataContainer de) throws DsException; 

void delete(DataContainer de) throws DsException; 

The DataStore also supports the database's transaction logic: 

DsReturnCode commit() throws DsException; 

void rollback() throws DsException; 

It depends on the chosen transaction strategy if we need an additional 
operation for locking: 

DsReturnCode lock(DataContainer de) throws DsException; 

The DataStore's return codes (class DsRetumCode) are used for normal 
events (e.g., find() didn't find anything, commit() encountered a collision 
with another user); exceptions are raised for unexpected events (e.g., 
database not available). The DataStore interface provides at least one 
operation for bulk reading. 

DsResultSet findMany(DataContainer de) throws DsException; 
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This is a query by example: findMany accepts an example and searches 
all matching DataContainers. The DataContainerContext tells the DataStore 
which fields are to be read from the database. This operation returns an 
instance of DsResultSet, that implements the usual Collection interface, but 
can be finely tuned with respect to prefetching and caching. It is accessed by 
an iterator; the actual database fetch operation may happen at any time 

the invocation of findMany (earliest possible point in time) and the 
dereferencing of the iterator (latest possible point in time). A variety of 
similar findMany methods can be implemented accepting more than one 
example connected by logical expressions. Experience shows that almost all 
queries of a typical OLTP application can be dealt with in this manner. The 
DataStore also supplies DDL-methods, so it can check at runtime whether 
the actual database layout matches the actual classes. 

The DataStore sketched here is easy to implement, especially when it can 
be copied from a template. However, it does not provide the full query 
functionality of SQL or OQL. If this is required there is an obvious work
around: a findMany() method that directly accepts an SQL or OQL query 
string. However, this pollutes the application kernel, effectively 
transforming it into AT-software, so the workaround should only be a well 
documented, rarely used hack. 

2.6 Workspaces and storables 

The Storable interface is implemented by each persistent class: 

void toDataContainer(DataContainer de); 

void fromDataContainer(DataContainer de); 

void resolv e(Workspace ws , DataContainer de); 

Oid getOid (); 

Storable clone( ); 

The to/from methods have been discussed already. They are easy to 
program: The to/from methods of a complex class call the to/from methods 
of its components; the DataContainer itself knows how to handle elementary 
data types (int, float, and so on). This is an application of the well
known streams concept that is used similarly by, for example, XDR 
(external data representation) or NDR (network data representation). The 
to/from-methods map the object onto its database representation and vice 
versa. For example, several object fields may be combined into one database 
field . This is why in general it is not a good idea to have these methods 
generated. 
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The resolve method resolves the object's references: It knows the foreign 
keys contained in the DataContainer and calls the Workspace's find-method 
in order to get an object reference or a container of references. The clone
method is needed for technical reasons. 

Inheritance is easily dealt with if the following rules are observed: 
- There is one DataContainer for each persistent object regardless of the 

number of superclasses contributing to that object. The DataContainer 
contains a discriminator indicating the actual class. 

- The toDataContainer method of any derived class first calls the 
toDataContainer method of its superclass (like a constructor). 

- The fromDataContainer method of any superclass calls the 
fromDataContainer method of the actual derived class using a switch
statement on a discriminator contained in the DataContainer. 
It is the DataStore's job to map the DataContainer according to the 

DataContainerDefinition onto one huge table (one table per inheritance 
tree), many tables (one table per class) or anything in between. 

The Workspace interface is almost identical to the DataStore interface 
except that Workspace deals with Storables whereas DataStore only knows 
DataContainers. If we implement DataContainers as Storables, then any 
Workspace implementation automatically implements DataStore and can be 
used anywhere a DataStore is expected. 

The Workspace's primary task is to call the appropriate to/from and 
resolve methods. It has, however, further reasons for existing: 
- It implements object identity, that is, subsequent finds yielding the same 

object return a reference to that object, not a copy. The Workspace needs 
the getOid() method in order to identify objects. 

- It implements a given transaction strategy. The optimistic strategy reads 
without lock and checks only at update time if there was a collision with 
a different user; the pessimistic strategy locks all objects on read. 
The idea of the Workspace is "What you say is what you get." All 

changes of objects sharing the same Workspace are immediately visible to 
all those objects that represent together an area of integrity. It is only at 
commit time that these changes are published to the DataStore behind the 
Workspace. Pursuing this idea a bit further, one can imagine an arbitrary 
tree of W orkspaces, each managing an integrity area and communicating by 
means of the publisher/subscriber pattern. 

Another extension of Workspaces could handle (not implement!) the 2-
phase-commit protocol. A Workspace could have several DataStores hiding 
different databases. The Workspace commit would be translated into the 
well-known prepare-to-commit/commit loops . This works fine and is easy 
to implement if all databases involved understand that protocol. The benefit 
is that the application is not aware of anything like a 2-phase-commit. 



www.manaraa.com

Segregating the Layers of Business lnjornu1tion Systems 401 

A Workspace should be written in the same programming language as 
the application and should be directly linked to it. A client/server cut 
between application and Workspace can be compared to accessing the STL 
by - say - CORBA. But a client/server cut between Workspace and 
DataStore is a very natural matter. It is perfectly possible to have the 
application written in Java and to provide fast access to Oracle by a 
DataSrore written in C and using OCI. All you have to do is to transform 
DataContainers between Java and C. There are many ways of doing that 
using sockets, JNI, RMI, CORBA, or combinations thereof. 

2. 7 Virtual user interface (VUI) 

The virtual window contains information about things to be displayed. A 
virtual window can be displayed as (part of) a physical window or distri
buted among several physical windows. Depending on the concrete API, the 
VUI provides callback methods for all physical events it understands. It is 
up to the designer to make virtual windows very intelligent (e.g., know 
about things like tree views) or rather dumb (e.g., 3270-based). At any rate 
the virtual window contains: 
- The definition of virtual events. It is the VUI' s main job to map physical 

events upon virtual ones thus keeping the other components free of 
knowledge about screen, mouse, keyboard, and other devices. 

- The data types of the input fields. The VUI performs all field related 
type checks. The more data types a given implementation knows the 
more checks it can perform. If a given VUI implementation encounters a 
data type it doesn't know, it calls back its VDM. 
The central method of the VUI is "processVirtualWindow". Within this 

method, the VUI listens to physical events until it recognises a virtual event 
in which case the VDM is called back. There is one instance of VUI for 
each active dialog. 

The mapping between an object and its representation as a virtual 
window is similar to the mapping between an object and its representation 
as a DataContainer. For example, it is up to the VUI to decide in function of 
the screen size to represent a given virtual window as one or more physical 
windows (that is, a window provided by the concrete API). 

2.8 Virtual dialog manager (VDM) 

The virtual dialog manager is instantiated every time a use case decides 
to execute itself. Its main ability is to present Presentables (objects 
implementing the to/fromVirtualWindow-methods) and to process virtual 
events when being called back by its VUI-instance. 



www.manaraa.com

402 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al. 

It manages the dialog by means of an lAD (interaction diagram). This is 
a finite state machine that controls the states of a dialog. For each state, 
there is a set of legal virtual events. The lAD indicates which action is to be 
executed when a given virtual event occurs and it defines the resulting state 
in function of the outcome of that action. These actions may be known to the 
VDM itself (e.g., close_ window) or they are methods of the ruling use case. 
The use case has to register these methods with the lAD. In general, most of 
the dialogs will be covered by just a handful of standard lADs. 

2.9 Virtual windows 

A common argument against this kind of architecture says that 
implementing virtual windows amounts to reimplementing the widget 
hierarchy of A WT, Motif, or whatever. This can be avoided by using 
concrete widgets directly within virtual windows, thus accepting use cases 
that are no longer A but AT. When designing virtual windows, it is 
important to know whether or not there is a binary link between use cases 
and VUI. If so, the field's data types, for example, can be simply given as 
interfaces the VUI calls back each time a field is edited. Likewise, the 
concrete widget classes can be used directly by the use case. If not, all 
information in the virtual window has to be coded as strings interpreted by 
the VUI. This latter choice is obviously suboptimal as far as performance is 
concerned, but it is ideally suited for a client/server cut between VUI and 
VDM. For example, it is possible to have a VUI implemented as an applet 
talking to a remote application (including VDM, use cases, business objects) 
written in any language into which the string based virtual window can be 
translated. 

3. BENEFITS 

Let us summarise the main benefits of QUASAR: 
- Virtual devices only know about virtual containers. Hence, it is very 

convenient to have a client/server cut between a virtual device and the 
remainder of the application. The IDL contains only a handful of class 
definitions (the virtual container and its items). As a general rule you 
shouldn't have many business objects on both sides of a client server cut: 
Maintaining consistency can be a nightmare, even with CORBA. 

- It is not hard (even without CORBA) to translate a virtual container from 
one programming language to another. This is obvious for Java and C++, 
for example, but can also be done between C++ and COBOL. It is 
possible to have a VUI written as a Java applet talking to an application 
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written in C++ talking to a DB2 database via a DataStore written in 
COBOL. 
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- Virtual containers can be dumb or intelligent. A dumb container can 
easily be mapped onto an intelligent one; the other direction is harder, 
but often possible (an OK-button can be represented as a yes/no input 
field) . Virtual containers could be standardised: The software community 
doesn't need more than two or three of each kind. 

- Implementation of use cases and business objects is not affected by any 
technical API. There is a direct transformation from the application class 
model (given in - say- UML notation) to the implementation classes. 

- The database design determines the to- and fromDataContainer methods 
and nothing else. Any change of the database layout only affects these 
mapping methods. 

- The user interface design determines the to- and fromVirtualWindow 
methods and nothing else. Any change of the windows layout only 
affects these mapping methods. 

There are two important points beyond the QUASAR story: 
1. We, the community of software designers, badly need well-defined 

interfaces between the layers of the classical architecture or variants 
thereof. Every working day there are many thousand software designer 
thinking about basically the same design problems. There must be an 
answer to that! 

2. Sooner or later the tremendous, unfiltered amount of new technical 
components will drive us crazy. There must be a way to enjoy new 
features without being forced to migrate complete systems from Java 1.0 
to 1.1 to 1.2 to l.x or from RDO to ADO to OLE-DB or to whatever is 
cool next week. 
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Abstract: The Global Command and Control System (GCCS) was one of the most 
ambitious and largest software integration tasks in the history of the 
Department of Defense. As the Chief Systems Engineer for GCCS, I found 
architectural differences among command and control systems presented 
unique integration and interoperability challenges. In this paper I present 3 
security-related examples of specific problems I encountered when I attempted 
to integrate several systems into GCCS. I also discuss the problem of system
level security analysis and introduce a framework that software engineers can 
use to evaluate security. 

1. INTRODUCTION 

The Global Command and Control System (GCCS) was one of the most 
ambitious and largest software integration tasks in the history of the 
Department of Defense. Applications in all stages of maturity were chosen to 
be integrated into a seamless system, organized around the Common 
Operating Environment (COE). The COE was a collection of software 
components commonly found in all command and control systems. As the 
Chief Systems Engineer for GCCS, I was responsible for every aspect of 
integration and development including GCCS security. 

Security proved the most difficult of all the system integration tasks for 
two reasons. First, although security specialists talked about the "security 
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architecture" of GCCS, a security checklist derived from a set of security 
requirements and policies was the best they could produce. Checklists 
provide a piecemeal approach to system security and usually lack a system 
level perspective. GCCS interoperability requirements and the process of 
integrating legacy applications highlighted the role that architectures and 
system designs played in GCCS security. Second, users ' demands for 
configuration flexibility presented significant challenges to maintaining a 
consistent level of security with each system. A team of independent security 
specialists verified the system's security just before fielding. Each security 
evaluation drained off scarce resources for several weeks at a time. The 
security team attempted to find security flaws using whatever means they 
considered reasonable. System security was re-verified each time the 
configuration of GCCS changed, which was almost monthly during initial 
fielding. 

The Department of Defense relies on a security process that is not 
compatible with modem software development processes and designs. What 
I really needed were concrete architectural and design guidance and 
methodologies for analyzing system security that did not depend on a 
security specialist's ability to defeat the system after I build it. My 
frustrations with these two problems led to my current research and the 
beginnings of a framework to help solve the second problem. 

2. BACKGROUND 

For many years the Department of Defense operated the World Wide 
Military Command and Control System (WWMCCS) as the primary 
command and control system1• WWMCCS was a distributed information 
system that linked major military command centers throughout the world, 
such as the European and Pacific theaters and the National Military 
Command Center in the Pentagon. The system processed TOP SECRET, 
SECRET, and UNCLASSIFIED information, but the bulk of information 
was SECRET. Since WWMCCS did not have multi-level security, the 
system operated as if all the information were TOP SECRET. The security 
requirements for a TOP SECRET system are greater than for systems 
processing SECRET information. 

Military computer security requirements are found in a number of 
military directives, regulations, and publications. The most well known set 
of publications are the "rainbow" series, which consist of more than 20 
books, each book a different color. The Orange Book defines the concept of 

1 "Command and control" is a term used to define the activity of monitoring, planning and 
directing military resources. 
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a Trusted Computing Base (TCB) and specifies the TCB requirements for 
increasing levels of security. UNIX systems are evaluated and classified 
based on the criteria established in the Orange Book. Ordinary UNIX 
systems usually fall into the Cl or C2 class, which is characterized by 
discretionary security protection requirements. Operating systems classified 
at the B or A level meet increasingly stricter security requirements and are 
usually highly specialized operating systems. 

The system consisted of 40 Honeywell mainframe computers that 
serviced numerous dumb terminals within each major command center and 
in isolated locations throughout the world. Initially built during the 1970's, 
WWMCCS had become quickly outdated so a modernization program was 
initiated during the early 1980's (WWMCCS 1992). Research, 
development, test, and evaluation for the modernization program was 
budgeted for $773 million, By 1987 the program was behind schedule and 
over budget so congress cut the FY 88 budget to $21 million. Technology 
rapidly passed the WWMCCS system and users became increasingly 
dissatisfied with WWMCCS capabilities. By the mid-nineties most other 
command and control systems had far exceeded WWMCCS functionality. 
However, none of the newly developed command and control systems could 
meet the WWMCCS user's functional requirements. 

3. GCCS 

The Global Command and Control System, a highly distributed 
client/server system, was conceived as the replacement for WWMCCS. The 
initial version of GCCS was a conglomeration of existing command and 
control applications and new applications that increased and replaced 
WWMCCS functionality. GCCS consisted of two parts: the Common 
Operating Environment (COE) and the Application Layer. In order to keep 
development and fielding costs to a minimum, GCCS consisted of 
commercial hardware and software and processed only SECRET 
information. Not only did this simplify the security requirements, but this 
also meant that GCCS could be fielded on standard commercial UNIX 
operating systems instead of more secure, and very expensive B2 operating 
systems. I was responsible for mitigating the risks associated with security 
weaknesses in the UNIX operating system. 

Although most major system development efforts take 5 to 10 years, the 
Joint Chiefs of Staff wanted the replacement system within 2-3 years 
beginning in 1994. The primary motivation for the rapid development cycle 
was the enormous cost of operating WWMCCS, estimated at 
$7,000,000/month. The 2-3 year development constraint was thought 
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attainable for several reasons. First, GCCS was to be built using existing 
applications, therefore, GCCS was simply considered an integration 
exercise, rather than new development. I believe there is a general 
misconception that integration efforts take less time than new development. 
Stakeholders assumed that most of the applications selected to be part of 
GCCS fulfilled enough of the user's requirements that little or no additional 
development needed to be done. Applications were selected from various 
Department of Defense agencies and services based on how well they met 
user requirements and other factors, the least of which was the ease with 
which they could be integrated, maintained, scaled, or extended. 

3.1 GCCS architecture 

The foundation of GCCS is the Common Operating Environment (COE), 
18 abstract functional components that, when implemented, form the 
infrastructure services and a set of standard components for all GCCS 
applications. All existing or legacy applications had to "migrate" to the 
GCCS COE. Migration required applications compliance with engineering 
guidance in 4 areas: integration and run-time, user interface, architecture, 
and software quality. Software for the COE came from each of the services, 
and the Defense Mapping Agency. I was charged with integrating the COE 
components and more than 20 legacy applications, all in various stages of 
development, into a single command and control system that could be 
uniquely configured at each operational site. GCCS was really a set of 
command and control applications, which any site could install components 
as needed. 

COE components fall into 3 categories (figure 1): 
1. the kernel 
2. infrastructure services 
3. common support application components 

Kernel components consist of the operating system, window libraries 
(X11R5 and Motif), printing service, executive manager, name service, and 
a security/system management service. Kernel components are considered 
essential system components, i.e. every workstation requires these services 
regardless of function. The security service provides tools to allow system 
administrators to set up various types of access control accounts. The kernel 
configuration is tightly controlled since slight deviations from the 
established configuration could cause disastrous system integration 
problems. All application developers are expected to develop to the kernel 
configuration and each developer receives a copy of the kernel and a set of 
tools to ensure that they follow the run-time integration engineering 
guidelines. 
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COE Standard API's 

Common Support Applications 

Infrastructure Services 

Operating System 

Figure I. Common Operating Environment 

The infrastructure services provide the middleware for the applications. 
The middleware consists of the following components: management 
services, communication services, distributed computing services, 
presentation and web services and data and object management services. 
Management services are network and system management tools that system 
administrators use to monitor the system. Distributed Computing 
Environment (DCE) provided the distributed computing service and the 
Common Object Request Broker Architecture (CORBA) served as the data 
and object management service, although the initial GCCS fielded system 
did not use either service. The communication service provides the interface 
to external systems. Most external interfaces consisted of messages sent to 
and from GCCS. Netscape and Internet Rely Chat implemented the web 
services, but the presentation service was not specified at the time. 

The Common Support Layer of the COE consisted of the group of 
applications that are common to all command and control systems such as 
office automation applications, situation displays, message generation and 
management software, etc. At the time, office automation applications, such 
as word processors, spreadsheets, and slide presentation software did not 
compare to the products used on personnel computers. UNIX based office 
automation software had considerably less functionality than PC products. 
The biggest drawback to the UNIX software was the incompatibility of file 
formats. Users had hundreds of Microsoft PowerPoint files that were not 
exportable to the UNIX office automation software and any files created on 
the UNIX system were not exportable to the PC system. Although PC 
emulators could have provided a temporary fix to the office automation 
problem they were too expensive. 
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3.2 Interoperability issues 

The primary drawback of the existing command and control systems was 
their lack of interoperability between services. Since joint military 
operations nearly always consist of units from the Marine Corps, Navy, Air 
Force and Army working together, joint military operations require a 
command and control system that is interoperable among the other service's 
command and control systems. As an illustration, many of the frustrations 
experienced during Desert Storm occurred because systems were not 
interoperable. Information was frequently exchanged using floppy disks or 
paper printouts which then had to be re-keyed into an electronic form. As a 
consequence of the experiences in Desert Storm, interoperability became the 
number one command and control system requirement in the Department of 
Defense. Although interoperability was a critical requirement in joint 
operations, it was not well defined. Interoperability meant different things to 
different users and under different circumstances. Ideally, systems should be 
able to efficiently exchange data without any loss of meaning or content, but 
in practice this is very difficult. The Department of Defense outlines 4 
levels of interoperability for command and control systems. The highest 
level "is characterized by the ability to globally share integrated information 
in a distributed information space."(DISA 1996). Level 4 was the ultimate 
goal for GCCS, but each application implemented lower levels of 
interoperability. 

In some cases, application portability across different hardware platforms 
or operating systems was sufficient to meet interoperability requirements. 
Data is exchanged because operators from different services are co-located. 
Each service purchased their own computer hardware so applications built to 
run on Sun Microsystems hardware did not have to be converted to the 
Hewlett Packard hardware and vice versa. The lack of portability forced 
users of one service to learn the other service's application, or for the 
application and hardware system to integrate with the larger system. 

Interoperability could also be achieved if systems could interface using 
formatted messages, e-mail, or import/export functions. In practice this 
method was flawed. Currently, all command and control systems 
communicate with other systems using standard message sets. 
Unfortunately, the "standard" message sets are not truly standard and not 
particularly efficient for transmitting all types of information. Many of the 
message standards were developed before multimedia applications became 
integrated into command and control systems. Each command and control 
system selected from several standard message sets, which meant that each 
command and control system used a different set. In addition, many of the 
sets were extended with unique messages that were not compatible with the 
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DoD standard. lnteroperability through messages design limits 
interoperability for two reasons: 
1. Users are limited by message content 
2. The information is only available when it is sent. 

A common view of the battlefield is essential to effective military 
operations. A higher level of interoperability is required when users shared 
information from the same source. A common view is ensured when all 
users have access to the same information source. In practice, different 
database schemas and data elements made it nearly impossible to share 
information from a central location. In my experience, integrating databases 
is one of the most difficult engineering tasks, however, it also provides the 
greatest interoperability. 

3.3 Architectural security issues and interoperability 

3.3.1 Interoperability incompatibilities 

However interoperability was achieved between two systems, there were 
usually security implications. If messages were exchanged then encryption 
of the messages as they pass between two systems was usually sufficient to 
control access to the information. Encryption incurs maintenance costs 
because the DoD relies on special hardware for all encryption. The DoD 
builds many types of encryption devices, all of which are incompatible with 
each other. No matter which encryption device is chosen, the hardware is 
scarce and not compatible with other systems that use different encryption 
devices. Incompatible encryption components make interoperability nearly 
impossible. This detail is often overlooked when designing command and 
control systems. 

However, when two systems share a common database, then access 
controls to the database become a primary security concern and 
incompatibilities between systems can surface. For instance, two 
applications required access to classified data in the database. One 
application used database access control mechanisms to ensure that 
unauthorized personnel did not get unlimited access to the data. Users were 
restricted from viewing or writing to particular rows, or restricted from 
certain tables in the database. The other application restricted a user's access 
to the data by controlling access to the application. Implicit in the latter 
design is an assumption that any user with access to the application has 
unlimited access to the database. These two fundamentally different, but 
valid, points of access control made integration of these applications into a 
seamless system difficult. 
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3.3.2 Additional integration problems 

GCCS interoperability requirements, integration of legacy applications 
and the user' s demand for configuration flexibility presented significant 
challenges to maintaining a consistent level of security with each system. 
Some other security integration problems with the GCS architecture were 
access control designs and application programming (API) interface 
mismatches. Access control designs of two systems created a particularly 
difficult problem. Access controls were usually based on an operator's role 
or position and the role could change during the operator's shift or an 
operator may have several roles during the same shift. Problems arose when 
one system required an operator to log out and then log in when he switched 
roles, in effect restricting operators from assuming two roles simultaneously. 
Although this simplified audit trails in that system, it was an unacceptable 
specification in another system. Security administrators needed the 
flexibility to accommodate both requirements. Eventually a scheme for 
access control was developed that was acceptable to all users . 

A third problem arose when we discovered incompatibilities between 
security technologies. Specifically, the Fortezza system developed by the 
National Security Agency (NSA) was incompatible with Kerberos. 
Fortezza, NSA's smart card technology, was the latest security mechanism 
that promised improved system security. NSA considered Kerberos 
inadequate for GCCS and insisted that GCCS implement the Fortezza 
system. Although Kerberos had recognized flaws it was available and used 
in commercial systems. Fortezza didn't have Kerberos' flaws but wasn' t 
available in production quantities. 

Furthermore, NSA had not yet developed a Fortezza card that had been 
adequately tested for SECRET systems. The initial GCCS design used 
Kerberos and later integrated Fortezza when it became available. 
Unfortunately, incompatibilities between the application programming 
interfaces (API's) surfaced, and made integration of the two technologies 
impossible until the API conflicts were resolved. NSA quickly began to 
work with members of the Open Systems Foundation, however, the process 
was expected to take at least two years . 

3.4 Architectural integration summary 

As the GCCS chief engineer, it was obvious to me that the security of a 
system does not depend solely on a collection of "silver bullet" technologies 
and checklists. I could not integrate two systems and plan to overlay the 
security later. The system security must be designed hand in hand with the 
system architecture. Interoperability requirements and legacy system 
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integration concerns are not confined to the Department of Defense. As 
commercial organizations expand and grow so do their interoperability 
requirements. Companies such as SAP specialize in integrating reusable 
components. Common system engineering questions include the following: 
- What are the design principles and engineering guidance that system 

engineers should follow? 
- How does the architecture support system security? 
- What security mechanisms are appropriate for a particular architectural 

style? 
- What are the security weaknesses associated with an architectural style? 
- What security conflicts should system engineers look for? What are the 

design pitfalls? 
- How do interoperability requirements affect security? 

The list could go on but answering any of these questions would be 
extremely useful to system developers. 

4. SECURITY IMPLEMENTATION 

In addition to the architectural issues of integration and interoperability, I 
was overwhelmed with the myriad security technologies and designs 
available at the time. While some security solutions were dictated by 
regulations, I retained a great deal of flexibility to select the mechanisms that 
constituted the system's security. Frequently, the tension between 
performance and maintainability and security, raises such questions as: Since 
GCCS is unusable when full auditing is turned on, how much auditing is 
enough? What are the alternatives? How does a particular technology fit 
with other technologies? Are there overlaps, gaps or conflicts? Is the 
technology right for the GCCS architecture? The most important question 
for me is "How does a technology affect the overall security of the system? 
Without this knowledge I find it difficult to make engineering tradeoffs 
when deciding the right mix of security technologies for the system. System 
level methodologies or frameworks to analyze security appear to be 
nonexistent. 

4.1 State of the art 

Current security models don't seem to support the idea of the system 
level perspective of security. One of the first security models, the trusted 
computing base model from the government's Trusted Computer System 
Evaluation Criteria (Orange Book), was criticized for not addressing 
network issues and relying on the hardware and software within each 
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workstation to enforce security policies. This model clearly lacks a system 
perspective. Network models have an implicit boundary that separates 
insiders from outsiders. Network models emphasize protective barriers that 
restrict outsiders from penetrating the system, however, there are many 
internal threats as well. Also, it may be difficult to determine the boundaries 
of the system in a network model. The "How To" books and trade magazines 
of security often offer advice along the following lines: 
- Identify the system resources that need to be protected. 
- Identify the threats to the resources and/or system vulnerabilities. 
- Establish security policies. 
- Implement cost-effective strategies to minimize the risk threats impose 

against the resources. 
Approaches may vary slightly, but they generally include these four 

steps. Although the books outline the approach, but they don't really 
provide any practical strategies. This last step is the kicker. As chief 
engineer, I found it relatively easy to identify system resources and threats 
for the GCCS. Implementing cost-effective strategies was difficult because I 
didn't have a way of comparing alternatives and it was difficult to 
understand how each alternative fit in the system context. 

There has been extensive cryptanalysis research, attempts to discover 
stronger cryptographic algorithms, and theoretical research in intrusion 
detection. This type of research is invaluable if we are to rely on these 
technologies in our systems, but its place in the overall context must be 
understood. For example, encryption export controls present unique 
problems when the system must be compatible with foreign military 
systems. Trade magazines and security handbooks provide high level 
guidance on how to approach security, and some handbooks such as Internet 
Security: Professional Reference by New Riders Publishing provide very 
detailed information on how to build a firewall or how to set security 
sensitive system controls. Threat information taxonomies are easily found in 
most security textbooks and journals. The Computer Emergency Response 
Team (CERT) at the Software Engineering Institute (SEI) periodically 
provides alerts and warnings about security problems and the Internet has a 
wealth of information about security. How does the system engineer pull the 
information together to see how all the policies, technologies and design 
maintain confidentiality, availability and integrity in a system? 

5. A FRAMEWORK FOR SECURITY 

As Chief Systems Engineer of GCCS, my integration tasks required that I 
see how each technology, design, or policy fit into the system. I wanted the 
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framework to reveal the system security weaknesses and allow me to see 
how alternatives compared in the system. I felt such a framework would 
allow me to make cost-effective decisions about how to choose among all 
the things I could do to maintain a particular level of security within GCCS. 
I needed to be able to describe the level of the system security. Such a 
framework was not available to me at the time. I am now a Ph.D. student at 
Carnegie Mellon University and have the opportunity to work on 
constructing such a framework. 

Instead of closing this experience with a wish list of questions for 
researchers to consider, I will lay out a preliminary sketch of the security 
framework that forms the basis of my own research. The framework takes 
advantage of the work accomplished by the Networked Systems 
Survivability Program and presented in Survivable Network Systems: An 
Emerging Discipline (Ellison, Fisher, Linger, Longstaff, and Mead 1997). 
The following outlines the components of a security analysis approach. 

The System Security Analysis Framework (SSAF) is divided into five 
components: 
1. the system 
2. security technologies, policies, and design techniques 
3. known weakness and flaws for each item described in the security 

technologies component 
4. threats and vulnerabilities 
5. the security model. 

SSAF provides a way to include both automated and non-automated 
security procedures as part of the analysis. The framework accommodates 
highly connected information systems and standalone systems. It is not 
constrained by the network topology, nor does it ignore the topology. The 
security model described in the framework places the system resources at the 
center of the model and provides a mechanism for showing how the system 
security mitigates the risk to those resources. The security model pulls all 
the other pieces together. 

1) The system component of the framework describes the system 
architecture, relevant designs, and non-functional attributes. A complete 
system description that includes how people interact with the system is 
necessary so that the system engineer can understand how technologies, 
policies and designs are implemented or fit within the planned 
implementation. Many of the security technologies adversely impact the 
other non-functional attributes such as performance, so it is important to 
understand how the other non-functional attributes will be balanced in the 
systems. Non-functional requirements such as latency, reliability, and 
performance, must be identified here. The system component provides the 
context in which the security analysis takes place. Most of the information 
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for the system component can be obtained from architectural description 
documents, design and requirement documents. Unfortunately, none of 
these documents were available for GCCS, however, most of the information 
could have been gathered from developers and software engineers. 

2) The technologies component is a collection of security technologies, 
policies and designs that make up the system security. Security technologies 
include firewalls, access control lists, auditing mechanisms, intrusion 
detection systems, cryptography, etc. Security policies describe how system 
privileges are established, processes for reporting violations, password 
procedures, and any other policy that contributes to the overall security of 
the system. Configuration settings in products such as access control 
mechanisms or firewalls enforce many security policies; others are strictly 
procedural. Each element requires a detailed description about how it is 
implemented in the system described in system section. 

3) The weakness and flaws component identifies known weaknesses and 
flaws of each of the items listed in the technology component. Security 
policies often depend on the integrity of key individuals and systems suffer 
catastrophic failures when an individual betrays his trust. Separate analysis 
of weaknesses and flaws serves two purposes. First, analysis explicitly raises 
the awareness of the weaknesses and flaws associated with each item so that 
the system engineer can address these vulnerabilities, if possible. Second, it 
identifies areas that might need special attention when the system 
configuration changes. 

4) The threats and vulnerabilities component addresses the system 
threats and vulnerabilities. Almost all security approaches advocate a threat 
identification step. None of the many threat assessment documents I have 
read provided specific guidance about threats and vulnerabilities. 
Documents usually identify a standard set of threats such as vulnerability to 
electronic eavesdropping, mal content employees, nuclear EMP, and 
hackers. Reports usually stated that hostile and non-hostile foreign countries 
might be highly interested in the information the system processed. Some 
reports might even identify a few flaws in the UNIX operating system for 
which there were known patches. These reports had relatively little value 
other than to confirm that I had followed the appropriate procedures and 
conducted a threat assessment. The threat and vulnerabilities component 
must be much more extensive if it is to be useful. 

An initial start at improving threat assessments is a comprehensive 
taxonomy of threats. Fred Cohen (Cohen, 97) identifies 94 methods of 
attack. Additional detailed attack information is available from the Internet 
or from CERT bulletins. Security journal articles offer occasional guidance 
such as the recent article in Computer & Security (Hancock, 98), which 
identified several attacks in detail. It may be impossible to collect all of the 
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system threats because there are so many information sources and new 
attacks are appearing before the old attacks have countermeasures. 
Developing the threat component of the framework will probably be an 
ongoing process. 

5) The core component of the framework is the security model (figure 2), 
which has four layers. The purpose of each of the other components is to 
help populate each of the four layers of the security model. System threats 
and vulnerabilities are external to the four layers. Each layer is populated 
with items from the technologies and policies component. The model is 
constructed using four defensive layers: 
1. protection 
2. detection 
3. mitigation 
4. recovery 

Each layer plays a different role in protecting the system resources. 
Consistent with other security models, the first step is to identify the system 
resources that must be protected. The system component should be the 
source of resource information. 

Mitigation 
Recovery 

Resources j 
Figure 2. Security framework 

The first layer is the protection layer. For each threat identified, the 
security engineer should identify the security technology or policy that stops 
the threat from gaining or denying access to a resource. This layer should be 
populated with all the security policies, products and designs that prevent an 
attack from succeeding. These policies and products have may have flaws, 
but they may still be effective against some (e.g. accidental) intrusions. 
Items that most likely fall into this layer are firewalls, passwords, 
background checks on employees, access control lists, etc. GCCS 
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implemented all of these and more. Ideally, a system engineer would like a 
one for one mapping between threats and prevention mechanisms. 

The second layer is the detection layer. Most likely, none of the 
mechanisms in the protection layer are 100% attack proof. There may not 
even be a protection mechanism for a particular threat. Hancock (Hancock, 
98) identified several attacks, some of which did not have known 
countermeasures. Without countermeasures, the system engineer needs to 
identify mechanisms that may detect an attack so that appropriate procedures 
are developed to properly react to an intrusion or denial of service attack. 
Intrusion detection systems, virus detection programs, audit trails and logs, 
special alerts and triggers are all security mechanisms that the security 
engineer should identify for the detection layer. System personnel should be 
guided by policy when responding to an attack. For each relevant threat, the 
system engineer should consider ways to detect an attack. 

The third layer is the mitigation layer. Here the system engineer 
considers technologies and mechanisms that minimize the damage an attack 
may do if it is not detected or contained. System partitioning and system 
redundancy might be two techniques a system engineer could design into the 
system to minimize the damage from an attack. The purpose of this layer is 
to consider techniques and policies that help minimize the damage done 
from an intrusion that might go unnoticed for some time. Some of the 
attacks may not cause much damage because they are not particularly 
destructive attacks, so the system engineer may decide that a particular 
attack is more a nuisance that doesn't warrant any attention. 

Recovery is the fourth layer. The system engineer must be able to 
recover from an attack. An attack may penetrate the preceding layers so the 
system engineer should consider how the system can recover from the 
damage. Back up and recovery procedures fall into this layer. Highly 
distributed systems like GCCS allow system engineers to design fail over 
and redundancy into the system without much trouble. 

I have only begun to explore the feasibility and potential of this 
framework. Even if it does not immediately provide the quantitative 
analysis that most engineers hope for, I think it has potential to compare 
alternatives relative to one another. It pulls together the essential pieces of 
information in a uniform, structured way and gives the system engineer a 
system level perspective. 

If this framework had been available to GCCS it would have served us 
well. The information was available to populate the framework. The GCCS 
security checklist would have been an excellent starting place to gather an 
initial list to populate the security technologies component of the framework. 
Also, GCCS security specialists developed a GCCS security policy 
document that outlined many of the security policies that would be included 
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in this part of the framework. Although these documents were available, 
there were many discrepancies between the policies identified in the 
document and those actually implemented. Obviously, it is important to 
distinguish between the written from the practiced. 

6. CONCLUSION 

GCCS presented many challenges. Security was the one area in which I 
felt the most helpless. It seems so much effort is put into each technology 
and so little effort into the engineering and design principles that need to 
guide system developers. Trade magazines don't provide the depth of 
advice that is needed to build the system security from the parts. The 
research community has not yet produced a model that is of direct, system
level assistance. If we don't understand how security integrates into system 
architectures today then how will know the role security plays in the domain 
architectures of the future? 
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Abstract: Suppose one COTS (Commercial Off the SheiO software supplier provides an 
interpreter for a problem oriented language, another provides an application 
generator for producing numerical solvers for a class of partial differential 
equations, and a third produces a visualization package. A team of domain 
specialists writes scripts in the problem-oriented language to define cases to be 
solved, uses the application generator to produce an appropriate solver, solves 
the generated PDE, and uses the visualization package to analyze the results 
and adjust the description of cases. Such examples illustrate that large and 
long-lived software systems can result from the combined efforts of various 
unrelated development organizations, organizations not even known to one 
another. No single design authority, to which the others report, has overall 
system responsibility. Such examples also illustrate the importance of 
including in software architecture the relationships between entities that exist 
and are used during the construction process, instead of focusing only on 
relationships between entities that exist at run time. The needs for software 
architecture for such systems are not well met by the existing literature. 

1. INTRODUCTION 

The literature on software architecture, for instance as surveyed in Shaw 
(Shaw, 1996), has largely focused on components in the sense of 
computational entities that exist at run time, and their connections in terms 
of data and control transfer. Various styles of how the same computational 
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system could be structured have been studied, considering how the structure 
could be analyzed, how individual components could be reused, and how the 
structure could be reused in other situations. Alternatively, practitioners 
(e.g., Whitney, 1995; Tzerpos, 1996; Finnigan, 1997) have sometimes used 
software architecture as a focus on definition and use relationships of entities 
that exist at runtime. These are, of course, interesting issues, but in many 
situations they are not the dominant reasons for the architectural structure 
adopted for the software system. Our definition of the term software 
architecture is that it is a high-level description of a set of entities and their 
relationships, the understanding of which is essential to the understanding of 
the overall structure of the system. This is consistent with the definition 
other authors have used, although the entities we might consider, and 
especially the relationships we might consider, are broader than some other 
authors might take. 

In some systems, physical considerations dominate the software 
architecture. In these systems, any single computer might run several 
software components, but software entities running on different computers 
are definitely considered distinct components. The software architecture thus 
reflects hardware architecture issues such as geographic locality, bandwidth, 
unique hardware resources, redundancy for reliability, replication for 
capacity, etc. It may also reflect organizational and administrative realities of 
the operators, such as what functionality is centralized, what functionality is 
replicated at each branch plant or even at each workstation, and what 
functionality is provided by computers belonging to the customers of the 
system operator, not those of the operator itself. 

In this paper we consider situations where the software is implemented 
not by a single organization, but by a number of organizations, perhaps as a 
prime contractor with subcontractors, perhaps as collaborating peers with 
different competencies, or perhaps as suppliers and users of COTS 
(Commercial-Off-the-Shelf) software products (Dean, 1997; Vigder, 1997). 
The software development organizations contributing parts of the system 
may not even be known to one another. These development organizations 
may contribute parts of the system at very different levels of abstraction. 

The situation where the development organizations are unrelated, 
interacting only as suppliers and customers of COTS software products, is 
particularly interesting because it is so far from the traditional development 
model. No single design authority, to which the others report, has overall 
responsibility for the whole system, in that, by definition, each COTS 
supplier implements his product to his own specification and timetable 
determined by his perception as to the market demand, of which this 
application is typically an inconsequential portion. Detailed specifications 
and source code for COTS products are rarely available, never mind possible 
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to influence. More seriously, the maintenance and evolution of each COTS 
component is done to its supplier's agenda, and since obsolete versions 
usually become defunct, a long-lived system must adapt to the change. When 
a part evolves and must be reintegrated, the enhancement may not even be 
implemented by the supplier of the original part - indeed, sometimes a 
plug-compatible part of completely different design is substituted. Evolution 
of such systems typically results from the evolution of the different parts, 
although the introduction of new parts and changes in the relationship of 
parts can occur. The integrator who brings together all the parts must find a 
software architecture that can use the COTS products as they are, or as they 
might be in the future. The integration role may be substantial, or it may be 
quite small, and may even be automated. 

For systems of the kind considered here, there is often not simply a single 
run time. Often components are run to produce entities, even source code, 
that will be used by other entities at a later run time. It is thus important in 
the software architecture also to include relationships between entities that 
exist, or are used, during the construction process of other entities. Some of 
the contributions, for instance macro packages, may no longer be localized at 
run-time, although they may have been localized at some earlier stage in the 
build process. Potential attributes of a component generated during a run are 
often not determinable from specific instances generated during particular 
runs, but may be inferred from the generating subsystem and the input it 
might be given. Tools used in the build process may be essential in 
establishing that constraints required at the run time of the application itself 
are in fact satisfied. The build process itself thus must be part of the software 
architecture. The system architect plans how the parts are created and 
brought together. Fortuitously, box-and-arrow diagrams are traditionally 
used both for explaining the build process and for explaining the software 
architecture. 

These issues will be illustrated by three thinly disguised examples of real 
systems, systems implemented in the past that continue to be used and to be 
evolved today. 

2. A SIMPLE EXAMPLE 

As a concrete example, consider a situation where one COTS software 
supplier provides an interpreter for a special-purpose, problem-oriented 
language, another provides an application generator for producing numerical 
solvers for a certain class of partial differential equations, and a third 
produces a visualization package. The application of the system might be, 
for instance, to analyze accidental fires. A team of domain specialists writes 
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scripts in the problem-oriented language to define cases to be solved in terms 
of geometry, fuels, atmospheric conditions, etc.; uses the application 
generator to produce an appropriate solver given the characteristics of a 
specific case; compiles the generated solver; solves the generated PDE for 
that case; uses the visualization package to analyze the results and adjust the 
description of cases; and then repeats the cycle. Because the solution of each 
individual case is a significant investment, and because investigation of an 
accident involves running many cases and similar cases may show up in 
future, successful results from each case would typically be stored in an 
object database, keyed by parameters that characterize the case in the 
potential search space. 

At a sufficiently superficial level, the software architecture is simple and 
uninteresting: a cycle of subsystems, each producing data for its successor 
(figure 1). 

Model building c:::::> Numerical solver c:::::> I Compiler I 
interpreter generator 

L J} 
Visualization Solver 
package runtime 

j} 

Figure 1. Superficial block-and-arrow diagram for example 1 

A deeper level of software architecture elaborates on what connecting to 
the successor subsystem really entails, on how to exploit previous cases to 
reduce computational effort, and on how to recover from computational 
failures such as might result from going beyond the domain of applicability 
of the physical models or the numerical procedures. Because COTS 
components produce their output in whatever representation and sequence 
that they do, and because this is unlikely to conform to the rigid 
representation and sequence required by the successor COTS component, 
insertion of, at least, a filter between them is normally required. 
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In this example, as is often the case, more is needed. The COTS 
components will not work for every input with which they might be 
presented, and consequently the architecture must be extended to make 
provision for exceptions that might be raised. Moreover, a COTS component 
produces whatever output it produces, and some of this is not actually used 
by the immediate succeeding component in the notional cycle, but should be 
passed on through to subsequent components, in the same way that passes in 
the traditional compiler pipeline burned through intermediate language 
constructs not operated on until a later compiler pass. Unfortunately, COTS 
components are unlikely to make provision for simply passing through input 
that they do not intend to process, so the glue components must facilitate 
such data bypassing the COTS component. Thus the glue components are 
normally more general than simple filters. 

In this example, the connectors between the components in the 
superficial view of the architecture are wildly different. At some level this is 
sufficient, because it shows where dominant relationships exist - and do 
not exist. At a deeper level we need to understand what they are. The output 
of the first component, the model builder, is of three different kinds: 
mathematical formulae which are the partial differential equations and also 
the description in space of the region of integration; mathematical facts 
which have been proved or are to be assumed about these formulae; and 
large numerical arrays that represent initial values, boundary conditions, and 
other parameter values. Only the mathematical facts and the mathematical 
formulae, together with a few of the parameter values, are required by the 
second component, the application generator. This application generator uses 
these facts and formulae to select among various choices of algorithms and 
data structures to produce source code for a numerical solver optimized to 
the particular kind of problem to be solved and the kind of computational 
resources available to solve it. The first connector thus filters a data stream, 
possibly reordering typed items and changing their representation. The 
second connector is a very simple pipe, taking the source code produced by 
the application system and feeding it to a compilation system. The third 
connector is more complicated, for it must run the executable image 
produced by the compilation system, and make available to it the numerical 
arrays and parameters produced by the model builder. Classically, the fourth 
connector could be very simple, for numerical solvers wrote their results to 
files which were later subject to analysis by techniques such as visualization. 
The visualization might also have required the full output from the model 
builder. Today, however, visualization is often used interactively to steer the 
computation as it proceeds, so in addition to inspection of stored partial or 
complete results, this connector must support debugger-like actions. The 
final connector, from the visualization package back to the model builder, is 
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simply rev1smg the scripts that define the problems, and is probably 
accomplished by a standard editor. 

3. USES FOR A SYSTEM ARCHITECTURAL 
DESCRIPTION 

By looking at how we might use the architectural description of a system, 
we can learn more about what it might contain, and how it would be usefully 
represented. Who is the high level description for? 

3.1 High-level description during planning stages 

From the literature, one might conclude that the principal use of an 
architectural description of a system was as a high-level planning document, 
to agree upon what must be done and what it would be nice to do, then to 
derive specifications for the components to be implemented. Such a top
down approach can be effective where all the components have to be 
designed, or even when some of them pre-exist and either the others must be 
designed to accommodate them or glue must be specified. It can be used to 
establish properties such as completeness and correctness, and to analyze for 
properties such as capacity and concurrency. It can be studied for examining 
dependencies of partial results, and hence for identifying opportunities for 
phasing computation and so reducing instantaneous demand for memory 
and other resources. It can be used to study communication requirements 
between components and hence to assess suitability for distribution in the 
sense of what should run on which node of a network. If the software system 
was to be operated jointly by a collection of organizations, the software 
architecture might be used to study distribution, in the sense of suggesting 
which components and which responsibilities be given to which 
organizational units. If the system is to be sold as a commercial product to 
many different customers, the software architecture might suggest packaging 
for optional configurations. The software architecture can also serve as a 
documentation framework, identifying where to record assumptions and 
dependencies between components. 

For software to be implemented jointly by a collection of organizations, a 
software architecture can provide a framework for considering a number of 
acquisition and implementation questions which are nontechnical but with 
potentially technical consequences. What constraints are implied by 
available components that could be used? Where would separate suppliers of 
components possibly be effective in reducing cost or improving time to 
completion? Where does intimate dependency on the same technology imply 
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that the same subcontractor should be used to avoid duplication of startup 
effort or to avoid errors due to conflicting interpretations? How should 
implementation responsibilities be divided to correspond to the 
competencies of different collaborators? And for systems where corporate or 
national security is an issue, what are the security clearance implications for 
the implementers of different components? 

3.2 High-level description during operation 

During operation of the system, the primary use of a system architectural 
description is tutorial. Because integration of components is often not 
seamless, the operators of the system often need to be aware of the roles of 
different components in the production system, and the software architecture 
often is a useful framework for teaching them. For example, systems often 
are designed with metering for monitoring and tuning purposes. The 
significance of such measurements depends on the system architecture, and 
hence the operator needs to understand the system architecture in order to 
properly interpret the measurements and act on them. As another example, 
operational problems often arise in the production use of systems not 
because of bugs in the implementation, but because intrinsic limitations in 
the underlying science restrict the domain of applicability, or because 
choices made during implementation in the absence of knowledge turn out 
not to be consistent with operational experience. When such problems arise, 
the operator needs to understand the architecture well enough to recognize 
the situation and the source of the problem, to take corrective action, and to 
plan workarounds. Also, as mentioned earlier, the software architecture can 
be useful for establishing operational responsibilities for different 
organizational units. Note that operators like this rarely have programming 
skills. 

3.3 High level description during maintenance 

Day-to-day maintenance is normally finding and fixing minor bugs, mis
configurations, and interoperability conflicts. Minor enhancements may also 
be included. For systems that operate nonstop for extended periods, simply 
monitoring for outages and interpreting logs is often difficult, and the 
maintainers not only need to understand the software architecture generally 
but may need to make detailed reference to it in order to localize and 
eventually isolate errors. Often attempting the repair immediately is not 
possible, so through knowledge of the software architecture a workaround 
must be found. Organizing for and actually conducting the repair requires 
detailed just-in-time learning of the code at the site of the error, as well as at 
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other affected sites. An understanding of the software architecture of the 
system is key to knowing what to study and the context in which it must be 
understood. Unfortunately, the skill level of staff employed for this kind of 
maintenance is often less than that of the initial developers or developers 
involved in major enhancements. 

3.4 High-level description during major evolution 

Major evolution of an existing system has much in common with initial 
implementation, except that because it is incremental there is more incentive 
to maximize reuse of components from the previous release, as well as to 
ensure interoperability with data, including control data, produced by or for 
the previous release. Working out a strategy for actually carrying out the 
upgrade or replacement of a component is particularly important, especially 
in nonstop systems. Planning as to how to add a new component or to make 
other architectural changes is important, and requires a solid understanding 
of the existing software architecture. That understanding can lead to 
identification of required competencies and appropriate allocation of 
responsibilities to carry out the change. However, such changes are 
relatively rare. The dominant kind of change, especially for a successful 
architecture, is change by upgrade of a single component. 

4. A SECOND EXAMPLE 

Another example where the software architecture is dominated by pre
existing components, although not in this case COTS software, is a training 
system for operators of an embedded system, such as a weapons fire control 
system, a SCADA (sensor control and data acquisition) system, or a 
command and control system for air traffic control. For such systems, it is 
often essential that new operators be trained on the real system, warts and 
all. Only that way will the new operators get an appropriate sense of the real 
system's capabilities and limitations, and get the feel of its responsiveness in 
real time. Consequently, the core component of such a training system is an 
instance of the real embedded system (see figure 2). 

There are three other subsystems in the training system. One is a 
debriefing subsystem. This is a subsystem that is able to record the student's 
actions, in real time, as the system responds to interesting situations, so that 
an instructor can go back through the situations with the student to point out 
where the student has done well, where the student has used bad judgement 
or made errors, and what the consequences of these have been. Because real 
time is an essential aspect of such situations, it is necessary not just to rely 
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on probes into the real system to log the displays produced by the system 
together with the student's responses to them. It is also necessary to log 
video and audio of the student's off-line activity, especially where there are 
several operators working together simultaneously with the system. Many 
parts of this subsystem pre-exist. 

Scenario 
editor 

u 
Simulated world ¢:::i Embedded ¢:::i Monitoring and 
model system debriefing system 

Figure 2. Superficial block-and-arrow diagram for example 2 

Another important subsystem is the world modeller. The real embedded 
system interacts with the real world through various sensors and actuators, 
and since use of the real sensors and actuators may be impractical for 
training purposes, they must be carefully simulated. The real sensors and 
actuators are not independent of each other, but are coupled at least through 
the real world, so the simulated world for the training system must properly 
model such interactions. Adequate simulation of the real world requires 
sufficiently precise modelling of the physical situation, with adequate 
computational power and typically with a great deal of empirically 
determined data. It also requires an understanding of what approximations 
and shortcuts can be taken to meet real-time performance without losing 
simulation fidelity . Such a simulated world may be a valuable asset that must 
also be used with trainers for other embedded systems. 

Of course to carry out the pedagogical purpose of the training system, the 
world simulator has to be directed to produce scenarios illustrating situations 
that the students are to be taught to deal with. Thus the last subsystem is a 
scenario editor for the simulated world. Obviously scenario development 
happens at a different runtime than the students lesson. A final wrinkle in 
such training systems is that qualified instructors are usually in short supply, 
so the whole training system is partially replicated to allow several students 
to be trained simultaneously. 

This example is interesting because qualifications for implementing each 
of the four subsystems are quite different. The real embedded system was 
implemented, and is frequently upgraded, by whoever, typically a systems 
contractor expert in the sensors and actuators and signal processing. The 
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debriefing system is best implemented by a company well versed in 
pedagogical techniques, so that it will be easy to capture and to replay 
appropriate aspects of the student's actions. The simulated world subsystem 
is best done by a company with strong scientific computing credentials in the 
appropriate science. The scenario editing subsystem is best implemented by 
a company that combines usability skills with a clear understanding of what 
scenarios will be needed. The example is also interesting because at a 
superficial level, understanding the relationships between the four 
subsystems is simple. Any attempt to provide a complete and correct 
description of all the interactions becomes mired in detail. 

5. A THIRD EXAMPLE 

In next example, the COTS software merely provide a platform on which 
the system is built rather than performing substantial parts of the 
computation itself, but limitations of the COTS components are the major 
cause of architectural choices, with anticipated implementation chum during 
evolution of these components also playing a role. The system itself is a 
small but long-lived interactive exhibit for displaying to the public current 
information about air quality (see figure 3). 

Two different kinds of information are presented in the exhibit. The first 
is descriptive material which is generally static but changes occasionally, for 
instance when administrative or legal actions affect what is being described. 
The second kind of information displayed is trends in recent measured data 
from a network of online monitoring stations. The core of the exhibit is a 
program written in the proprietary language of a commercial authoring 
system. This provides facilities from user dialogs to visual effects, and 
allows the exhibit designer to focus on effective communication with users 
instead of on implementation. 

Unfortunately, the authoring system has functionality deficiencies. The 
first is that it cannot generate and display the multicolour time series graphs 
required to display trends. This is solved by a plug-in available from a third
party supplier, together with some glue to remap data structures. The second 
deficiency is more serious: the network of monitoring stations must be 
polled by dial-up modem and the measurements accumulated to be shared by 
several instances of the exhibit, but the language of the authoring system, 
even with plug-ins, is too weak to support the error handling or concurrency 
control to do this. The solution is that the exhibit uses read-only optimistic 
concurrency control to read from a shared database (conceptually a circular 
buffer of records) maintained by another program. The program maintaining 
the database is written in another proprietary language, this one being the 
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communications control language of a tenninal emulator. The problem of 
being able to keep the descriptive material up to date without manually 
updating the whole exhibit each time some fact changes is addressed by 
keeping all the relevant descriptive material in a database, and using scripts 
in the database language to walk the database and generate the pages for the 
authoring system whenever a change is needed. Since the descriptive 
material includes multimedia items such as pictures, sound and video, an 
appropriate commercial product is used. 

h -... _..., 

c:::> Circular 

....... buffer 

sensor stations 

c::=:) 

c::=:) 

Exhibit program 
generator 

D 
Exhibit program 
(replicated) 

3'd party graphing 
plug-in 

Figure 3. Superficial block-and-arrow diagram for example 3 

The principal use for the system architectural description here is to 
explain to the front-line non-technical maintenance staff what actions to take 
when needed. Regeneration of the pages of descriptive material works well 
as long as maintenance personnel understand they need to update the 
database, and do not attempt to change the pages directly. Reorganizing the 
pages calls for different skills, but happens rarely. The monitoring stations 
have been a continuing source of operational problems: changed passwords 
block access, station identification is arbitrarily changed, modems go offline 
for periods stretching into months, stations are shut down and new ones are 
opened, data format is changed, manual editing of data at the monitoring 
stations produces records out of sequence, etc. Since the monitoring stations 
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are operated by a different government agency, changes occur without 
notification and they are not responsive to requests for explanation, much 
less remediation. Accommodating such situations frequently requires manual 
intervention, but bullet-proofing the system, so that it reports on detected 
problems and continues to operate, is mandatory and has architectural 
implications. The most troublesome problems however have been upgrades 
to the platforms: the hardware on which the exhibit runs, the operating 
system on that hardware, and the versions of the various COTS ·components. 
These are typically upgraded without notice, and not infrequently the newest 
versions no longer intemperate successfully. The conflicts are usually easy 
to resolve, but require technical support. Since technical support is hundreds 
of miles away and on a time and materials basis, front line support must have 
a sufficient understanding of the software architecture to localize the 
problem, perform simple corrective procedures such as reinstalling 
components, and report symptoms. 

6. CONCLUSIONS 

Systems with characteristics similar to the examples cited are being 
developed all the time. The prime purposes of the architecture descriptions 
of such systems have been for communication with, and analysis by, other 
people- automated analysis has not been a priority. Architectural styles are 
not a central issue. For communicating with people, excessive formalism is 
not necessarily more effective, and text-only descriptions have also proved 
to have shortcomings. While not entirely satisfactory, the use of block-and
arrow diagrams, supplemented by text, has proved sufficient for the uses 
cited. What shortcomings have been apparent relate to having consistent 
presentations of the software architecture at various depths and from 
different points of view. Too much detail irrelevant to one's current interest 
is obfuscating. 

Perhaps the flaw lies in thinking of the system architectural description as 
a single document, manually composed, and viewed in its entirety. Instead, 
we could think of a set of reports generated from a common database 
(Finnigan, 1997), in the way some re-engineering tools present facts gleaned 
from existing source code. The central focus would be the cognitive 
psychology focus of how to make the presentation comprehensible, rather 
than the computer science focus of how to make the basis general and 
precise. 

In practice, the decomposition into CSCI (Computer Software 
Configuration Items) for projects constructed under 2167a, and indeed the 
description of the individual CSCI themselves, often reflected more the 
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competencies of, and relationships between, the prime and the various 
subcontractors than it did functionality, data access, or allocation of software 
to hardware. Perhaps this was not so wrong! 
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Abstract: In this article we describe our experience with a software migration project in 
a telecommunication company. We started from a set of heterogeneous 
software systems (described by rather different types of software architectures) 
and we defined a migration path towards an integrated software architecture. 
On this path several intermediate versions of the software architecture were 
implemented. We discuss the purpose of these intermediate versions and the 
problems encountered in the migration path. 

1. INTRODUCTION 

The experience described in this article is from a project in the 
telecommunication industry. In this project we analyzed the available 
software and recognized that several software systems were developed or 
purchased in a rather uncoordinated manner. In contrast to many other 
companies (e.g., from the insurance or finance industry), this situation was 
not due to software systems that were maintained and extended for decades, 
but was due to a rather fast set-up of software systems for the support of core 
business processes. The company - as a rather new competitor of the former 
monopolist Deutsche Telekom- had to establish these software systems in a 
short term. The systems were developed or purchased by departments 
independently from each other. Each of these departments focused on its 
particular problem which had to be solved as soon as possible. The 
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coordination between the departments were not as tight as it would have 
been in a very well-established business context. 

As a consequence of this approach, software architectures of individual 
systems were driven by different paradigms (some are client/server 
architectures, others are not; some of the client/server systems are based on 
SQL databases as distribution paradigm, others are based on transaction 
processing monitors and others are based on Web servers) [Uma97]. Even 
worse, the functionality of software systems overlap. For example, master 
data about customers were administered in several systems. These data had 
to be reconciled in order to ensure that customers are represented in a 
consistent way. A mid-term goal was to avoid data redundancy. Another 
drawback of the initial software architecture situation was that-after a short 
time of operation-it turned out that higher levels of software system 
integration were needed in order to provide homogeneous support for the 
business processes (e.g., same style of user interfaces, same client 
platforms). 

Another organizational issue to be considered was that all systems had to 
be available all the time (24 hours a day, 7 days a week) . The risks of 
systems not being available after a new release varied from system to 
system, but, generally speaking, unavailable systems could endanger service 
delivery, customer satisfaction and business plans. 

Another important issue was that the business processes to be supported 
are supposed to change over time. One particularly critical aspect was that of 
distribution. Even though most parts of the business processes were carried 
out at the company's headquarter, the future software system infrastructure 
should allow for a flexible distribution and allocation to new sites. 

Starting from this situation, we developed a migration plan that starts 
form the existing software infrastructure and ends with tightly integrated 
software systems realized by distributed objects that support the core 
business processes of the company. On this path different levels of 
integration were (and still are) implemented. 

In the experience described we put emphasis on different ways of 
describing the software architectures we encountered in the project. These 
descriptions vary from rather high-level descriptions of functionality in 
terms of basic building blocks, to dataflow descriptions of individual 
software systems, to rather technical descriptions of telecommunication 
infrastructure needed. 

In section 2 we describe the project starting point in some more detail. 
Next, in section 3 we explain the migration path identified and the different 
software architectures on the migration path. In section 4 we sum up what 
problems occurred on this migration path. Section 5 puts our project-specific 
experience into the broader context of general work on software architecture. 
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Finally, section 6 concludes with pointing out which compromises were key 
success factors for the migration described. 

2. SITUATION OF SOFTWARE ARCHITECTURES AT 
PROJECT START 

When the project started, several departments were developing complex 
software systems to support their business processes. Because all these 
projects were carried out under high time pressure, the underlying system 
parts were developed and integrated without much coordination. This meant, 
that many software systems were developed independently of each other as 
stand-alone solutions without interfaces for data exchange. Some other 
system parts like administration systems for customer master data or 
provisioning systems did already exist and had to be reused and integrated 
into the new business context. 

2.1 Initial software landscape 

Before we analyzed individual software systems in detail, we examined 
the overall software situation. At this level, individual systems were 
considered as black boxes and we only looked at the relationships between 
the individual systems. The relationships identified were of different types: 
- data exchange (pushed by the data-sending system or pulled by the data-

receiving system; in each case characterized by the frequency of data 
exchange) 

- access to persistent data 
- call relationships 

In the following we call this view of the overall software architecture 
"software landscape." Figure 1 shows the initial landscape and some of the 
key business objects exchanged between systems. Some details about key 
business objects are discussed in section 2.2. The software landscape was 
taken as starting point for the migration. A vision of the future landscape 
defines the overall migration goal. Thus, any progress can be illustrated in 
terms of modifications of the software landscape. 

Figure 2 describes a more technical view of the software landscape. It 
shows which software systems are running on which data base management 
systems and on which operating systems. This view of a layered architecture 
was very popular in the project, but it turned out to raise many 
misunderstandings, simply because there was no consensus on the meaning 
of layers and the meaning of the relationship with neighbouring layers. 
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Figure 1. Initial software landscape 

The applications are depicted as boxes on the upper level. The 
communication between the several systems is realized with services of the 
underlying operating system, shown at the second level. The basis for 
communication within a LAN/WAN is TCPIIP. 
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Figure 2. Technical infrastructure of software landscape 

The obvious deficiencies of the software landsape (redundancies, manual 
data exchanges) are removed during the migration described in section 3. 
The result is a software landscape based on distributed objects, software 
components, and an integrated compository (compare section 4). 
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2.2 Available software systems 

The software landscape contains several software systems that are briefly 
explained below. We discuss their main purpose, their key business objects 
and for a few we sketch the release policy planned. 

The software systems identified in the software landscape are: 
a) The SAP/R3 modules used are SAPIFI for Finance and SAP/CO for 

Controlling. They deal with accounting information that is received from 
a provisioning system (see below). SAP/R3 impacts the vision of the 
future software landscape, because the structure of SAP/R3 modules and 
their relationships to other systems can hardly be modified. But because 
of the integrated data base of R3 data exchange SAP/R3 modules is no 
problem. Some further modules of SAP are planned to be integrated later. 

b) The administration tool for customer master data SAM supports 
marketing activities (analysis and control) for sales and marketing 
departments. It deals with the key business objects "sales partner" and 
"customer data" and does the assignment between them. These business 
objects are also used by a provisioning system for sales partners (PRIS) 
(see figure 1). SAM is developed as client/server application. It uses 
Oracle as RDBMS, the database access is carried out with SQL-Net. The 
first release of SAM is dealing with "sales partner" and is running since 
the middle of 1997. At the end of 1998 the second release will deal with 
private customers as further business objects. For the next extension of 
SAM, WAN-wide data access is planned. 

c) PRIS is a provisioning system for external sales partners. It creates 
accounting information for SAP/R3. It requires some data from SAM 
(business objects "sales partner" and "customer"). PRIS is client/server 
based like SAM, based on a 3-tier architecture. In a next version PRIS 
will administrate the business object "turnover". It receives these 
information from the billing system BICOS. 

d) One further individual software system is CURT, an application for 
providing reports and statistical analysis results. It analyzes and 
evaluates, for example, data concerning customers' call behaviour. The 
report system is based on 3-tier architecture with Oracle as the 
underlying database. 

e) BICOS is a billing system (derived from a standard billing system). Its 
key business objects are "overall turnover" and "call detail records." It 
has an exchange interface to PRIS. BICOS data are exported as ASCII 
files. Interfaces to other applications were planned at the beginning of 
this project. 
All existing software systems have their own data repository. Some of the 

data exchange relationships in figure 1 represent manual exchange of data. 
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This requires a lot of effort and it is the reason for frequent data 
inconsistencies. 

Besides the software systems discussed, several other systems are 
needed. These are either developed in-house or they are purchased. In case 
of purchase, the goal is to focus on standard systems as far as possible. 

3. THE SOFTWARE LANDSCAPE MIGRATION PATH 

The overall goal of the architecture migration was to start from the 
existing software architecture and to finally obtain a software architecture 
that is properly integrated (data integrated, user interface integrated, control 
integrated) and easily extensible. 

After analyzing the initial landscape of the software available it turned 
out that the proper integration of the existing systems would affect the 
architecture of the software systems available substantially. In order to 
ensure that the existing systems remain usable while they are prepared for 
integration and while they are actually integrated, it was decided to 
subdivide the migration path into several steps. This was meant to reduce the 
risks of touching working systems and to focus the effort on a few systems 
in each step. 

Another reason for this stepwise approach was that the owners of the 
individual software systems had different ideas about how fast their systems 
had to be evolved. While some wanted to stabilize their software at first 
(e.g., because a version had been released recently) others wanted to 
implement new architectural guidelines as soon as possible (e.g., because 
they were about to plan a new release anyway). These goals and specific 
ideas had to be reconciled within a common migration path. 

In the following we discuss the migration steps identified and the 
software architectures that were achieved after carrying out these steps. 

3.1 Migration step 1: data exchange support for key 
software systems 

In order to avoid the most error-prone inconsistencies as soon as possible, 
we had to ensure that at least key objects were harmonized. For this purpose, 
we introduced the data exchange system DEXS. An example for key object 
harmonization were customer master data which were provided by PRIS, 
SAM, and SAP independently from each other. While it was not possible to 
eliminate this multiple responsibility for customer master data, it was at least 
necessary that any system that gets knowledge of customers informs all other 
software systems. 
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This simple form of data integration based on systematic data exchange 
yields an architecture as sketched in figure 3. 

c=J software system 

D database 

dataflow 

[Jil filc systcm 

Figure 3. Exchange of business objects between software systems and DEXS 

This figure shows that the redundancy of customer master data is not 
eliminated, but that the exchange system ensures that all customer master 
data identified in one system is forwarded to all other systems concerned. 

business object master data flow via interface 

application A B c D E F G H 

sale partner SAM X X X X 

customer data SAM X X X X 

call detail record BICOS X X 

tu rnover BICOS X X X 

accounting information PRIS X X 

This first kind of integration is neither very ambitious from a software 
technology point of view nor does it reduce the effort that is spent for 
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managing data within several software systems, but it ensures that all 
customer master data is available to all software systems concerned. This 
first step was quite straight-forward. After identifying the common 
responsibilities for certain type of data and after identifying which data was 
produced within which business processes and by which software systems, 
the most difficult task was to agree on data exchange formats between 
applications. 

At first, the data exchange system implemented only supported the 
exchange of customer master data between SAM and PRIS. After eight 
weeks of operation it had to support a further five systems (not discussed in 
detail in this article). Since interfaces were defined in a bilateral way (i.e., by 
transforming information from the internal format of system A into the 
internal format of system B), the effort spent for the exchange system grew 
exponentially with each new system to be supported. That is why the 
architecture of DEXS has been changed. DEXS accepts several formats of, 
for example, customer master data and translates them into an internal 
format, that can be accessed by all software systems. 

Since the internal format cannot be directly processed by the software 
systems, it has to be translated into each of the application-specific formats. 
The corresponding process supported by the data exchange component is 
shown in figure 4. 

QJOT ...... ...... ....... .. .......... ..... 
Figure 4. Data exchange system DEXS with unified exchange format 
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It is described in terms of FUNSOFf nets [GG95,DG98], which are high 
level Petri nets. Rectangular symbols represent activities, the annotations 
denote the software system used. Circles represent information channels, the 
annotations denote the type of information exchanged. 

The data exchange component DEXS gets the data in an individual 
output format from one of the several software systems. It translates the data 
into a unified format, filters it into the required input format and forwards 
the translated data to the concerned software system. 

The effort for implementing this first step was rather low. The exchange 
system as sketched in figure 3 did not require any modification of the 
software systems at all. The exchange system DEXS as sketched in figure 4 
meant to provide some additional interfaces for the software systems, but 
their core functionality and their core structure remained unchanged. In 
addition, the filter "unified to individual filter" translates the unified format 
into the individual formats needed. Whenever a new system has to be 
integrated the filter has to be extended by a translation mechanism (from the 
unified format into the new individual format) . This modification is local 
and does not affect the software systems themselves. 

3.2 Migration step 2: data integration of key components 

While the first migration step did not remove the data redundancy that 
was introduced by sharing the responsibility for customer master data 
between SAM, PRIS, SAP and CURT, the second step aimed at avoiding 
data redundancy at least for key applications. In terms of software 
architecture this means to identify common components and to delegate the 
responsibility for the commonly used data to them. Figure 5 shows how a 
common customer component is extracted from PRIS, CURT, and SAM. 

PRIS 

1masterdata 

CURT 

cus omer I 
master data 

SAM 

Figure 5. Exchanging common subcomponents 
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After splitting the software systems into two parts (key functionality and 
commonly used customer component), the customer component is used by 
all three systems, thus, ensuring that only one component cares for customer 
master data. According to the model-view-controller paradigm, the three 
components can still display customer master data in the way they were used 
to do. Figure 5 shows how the architecture of applications is modified by 
extracting a commonly used customer component. 

3.3 Migration step 3: control integration of key 
Components 

The next migration step was to improve the control integration between 
components that were used independently before. This control integration 
implemented was oriented towards the business processes needed. An 
example process supported by the systems SAM, CURT, PRIS, SAP systems 
is the process "identify new customer". Figure 6 shows an overview about 
this business process (again represented by a FUNSOFT net) . It illustrates 
that first customer information is gathered by using SAM, that this 
information is complemented by associating the customer master data with a 
partner, whose provision depends on the number of customers (PRIS), that 
customer master data are forwarded to SAP (where debitor accounts are 
created), returned to SAM (where all information about the new customer is 
gathered) and that report information are forwarded to CURT (where the 
new customer is considered in the weekly "new customer report"). 

As soon as the business process "identify new customer" is enacted, the 
supporting systems have to be called in the right order and with the right 
parameters. In principle, this sounds like a workflow management problem. 
In the given situation, however, we did it without a workflow management 
system, but we hard-wired the business processes to be supported. The 
reason for doing so was that each of the available systems covers quite large 
chunks of the business process. Usually, workflow management based on 
such powerful systems leads to gross-grained process models, which are not 
very expressive. In our hard-wired solution, the control component (called 
CTRL in figure 7) enforces business processes. It knows about the processes 
to be supported (parts are directly implemented as control flow dependencies 
within CTRL, others are expressed as process parameters in the business 
process model) and calls SAM, CURT, PRIS and SAP accordingly. To move 
to a workflow based solution following the guidelines of the workflow 
management coalition demands to move the complete knowledge about a 
business process model to the business process model representation and to 
keep the CTRL component completely process-neutral. 
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Figure 6. Business process model "Identify new customer" 

Figure 7. Integration of software systems by a control component 

3.4 Migration Step 4: Implementation of Components by 
Distributed Objects 

447 

The German telecommunications market was deregulated recently. The 
business of the new telecommunication companies is not completely settled 
yet, but it is subject to changing market conditions and to evolving 
organizational circumstances. This highly flexible situation demands flexible 
software. Existing software has to be integrated with new software, business 
processes may change and have to cover more and more sites. Users to be 
supported work with software clients running on different platforms (ranging 
from PCs/laptops to workstations with different operating systems). Thus, 
flexibility and extensibility are key requirements for the software landscape 
needed. Support for various and frequently changing client platforms is a 
concrete requirement derived from the general requirement for flexibility. 
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The need for flexibility, easy assembly and support of various client 
platforms was accepted as the general guideline for the fourth and last 
migration step. Thus, we chose a component-based software architecture as 
our vision of the migration. In this vision, functionality is provided by 
components that can easily be assembled, distributed to various locations, 
and that help to keep the software landscape flexible and extensible. In order 
to provide availability on various client platforms, we decided to demand 
that components should be embedded into web browsers. That means, 
functionality offered by components can easily be accessed from all 
platforms supported by browsers. 

Obviously, the component-based vision cannot mean replacing existing 
systems by componentized versions immediately because this would mean 
spending software development effort without gammg any new 
functionality . This is not acceptable in a situation in which key systems still 
have to be developed. Instead, the vision of a component-based software 
landscape serves as long-term goal towards which all software development 
efforts are directed. Maintenance - if necessary - should try to identify 
components and to extract them from existing software. New development 
projects should deliver software components and integration into 
component-based architectures should be a key requirement for any software 
that is purchased. 

The vision of a component-based software landscape cannot serve as 
long-term goal if it is not made concrete. New software not only has to be 
component-based, it also has to match the concrete component model 
chosen. Thus, the vision of the software landscape has to be underpinned by 
an implementation vision. For implementation purposes we had to choose 
between the COM/ActiveX component model [Cha98], the CORBA 
component model [MZ95] and the Java Beans/Java Enterprise Beans 
component model [OH98]. It was decided to accept the CORBA component 
model as our basis. COM/ ActiveX was denied because it is a proprietary 
approach, Java Beans were not accepted, because it was doubted if the Java 
native interface was open enough to embed the variety of available software 
systems that were written in various programming languages. CORBA was 
accepted not only because of the component model, but also because of its 
services that provide location transparency and convenient component 
naming facilities . 

Another reason for the choice of CORBA was that it was rated as the best 
paradigm for enabling the smooth move to a component-based and Web
integrated user interface. Using the CORBA object model provided the 
chance to benefit from IIOP (Internet Inter-ORB Protocol) [OH98]. This 
protocol helps to overcome the poor interaction facilities between client and 
server as provided by HTTP. While HTTP is rather restricted with respect to 
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parameter exchange and transfer of results from the client to the server, HOP 
allows full exploitation of the advantages of exchanging objects between 
client and server. Since IIOP serves as standard for communication based on 
objects between clients and servers, the component-based software 
landscape can easily satisfy the requirement to provide the same user 
interfaces for all platforms supporting the usual web browsers. Figure 8 
sketches the vision of such an architecture (called the ObjectWeb). It shows 
that the basic idea of flexible components managed by CORBA. In order to 
access these components and the CORBA services needed, the HTIP 
protocol between web browser and web server is complemented by IIOP. 

applica1ion 
components 

SAM 

Object 
Request 
Broker 

Figure 8. Vision of the ObjectWeb 

The final software landscape that results from the steps mentioned avoids 
data redundancies, thus ensuring higher levels of consistency. It is based on 
a: component-based architecture of software systems, thus allowing for reuse 
and flexible exchange of components. It is based on web browsers, thus 
ensuring a uniform user interface and it uses an object request broker, 
thereby, implementing location transparency. Even though this software 
landscape has not been completely reached (some software systems are not 
componentized yet, some cannot be executed from within a web browser, the 
CORBA based integration step has still to be implemented), it is an 
important guideline for all software development activities. Each 
development project can be measured against the goal to contribute to the 
final software landscape. 



www.manaraa.com

450 Volker Gruhn and Ursula Wellen 

4. PROBLEMS ENCOUNTERED IN THE MIGRATION 

The migration led from a software landscape that was determined by 
loosely integrated software systems to a tightly integrated system that is 
prepared for a software architecture based on a component model [Lew98] 
and which is homogeneously accessible from web browsers [Uma97] . At 
the end of the migration process it was beyond question that the software 
architecture had been substantially improved with respect to data 
consistency, data redundancy, clarity of control dependencies, extensibility 
and flexibility of distribution of components. Nonetheless, during migration 
we encountered some problems that had to be resolved. Generally speaking, 
these problems did not occur for the initial version of the software landscape, 
but they are due to the higher level of data integration, control integration 
and user interface integration. In the following we discuss some of these 
problems: 

Security: While the protection against unauthorized access to data was 
necessary for the initial version as well as for any of the following versions, 
the protection against access during data transfer was an additional problem 
for all versions, except of the initial one. In particular, the access to software 
systems from within a web browser was a major obstacle to the new 
architecture. In order to overcome these problems we implemented a firewall 
with rather strict authorization checks. In addition, software systems that are 
accessible from the web are double-checked before released. Unless a 
system is released for this purpose, it runs on a completely separated local 
network. Thus, the production environment accessible from the web is not 
integrated at all with the internal local network. This, obviously, results in 
some problems (how to transfer a release from one local network to the web
accessible network, which criteria have to be fulfilled before a system is 
released for the web-accessible network), but this rather rigid approach was 
the only way to allow access from the web to software systems at all. 

Configuration management: While the initial version (consisting of just 
a set of separated software systems) did not require any coordination across 
the borders of applications, configuration management required more effort 
the tighter the systems were integrated. It turned out that the role of a 
configuration manager had to be established. While this role was not known 
as an explicit one before (each leader of a development team somehow cared 
for his configuration issues) the coordination of release plans for various 
inter-dependent software systems turned out to be a full-time job. We expect 
that configuration management will become easier the more the vision of a 
truly component-based architecture is reached, because the management of 
component configuration requires less coordination than the configuration 
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management for software architectures determined by the migration steps 2 
and 3. 

Convergence towards commonly used basis systems: The systems 
already available at the start of the migration, and the planned systems, used 
different database management systems and user interface management 
systems. Sometimes they were based on certain types of middleware 
(ranging from distributed database systems to message-oriented middleware 
systems). The vision of the ObjectWeb allowed details of database 
management systems to be abstracted away as long as they were accessible 
from an object broker following the COREA architecture [MZ95] (which is 
true for all database management systems used). User interface issues were 
sorted out by demanding browser-compatible interfaces, which was accepted 
for all systems (even though it was not implemented immediately). Thus, the 
most important remaining problem was that of the middleware system used. 
Here, the choice of COREA was subject to discussions, but it was finally 
accepted. Tlie implementation efforts for moving systems to a COREA
based architecture varied from system to system, but it has to be admitted, 
that efforts were quite substantial in a few cases (e.g., for the PRIS system, 
which was based on a distributed database system and on the SQLNet 
protocol from Oracle). 

Common development plan I focusing of efforts: As long as software 
systems were developed independently by departments or autonomous 
development teams, project planning was rather easy and straightforward. 
With a higher level of integration additional dependencies on the release 
requirements of other systems, quality management plans, and management 
goals became obvious. We are convinced that these dependencies did exist 
right from the beginning, but that they were hidden. That is why we believe 
that it was useful to make them explicit, even though it increased the 
management overhead. 

Common architecture model: The initially available software systems 
not only differed with respect to the platforms used and the ways they were 
subdivided into pieces, but also with respect to the architecture model 
chosen for describing software systems. Single teams had agreed on a 
vocabulary and on certain types of diagrams they used efficiently to 
communicate internally. They used layered models of software architecture, 
they used hierarchies of modules, and some used UML class and package 
diagrams. Some teams provided architecture information that showed how to 
associate software pieces with operating system processes, and explicitly 
defined communication protocols between operating system processes. 
Others just provided high-level package diagrams (which could serve as a 
starting point for a work breakdown structure, but not as a sufficient 
architecture description). A tighter integrated software landscape demanded 
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that teams had to communicate across team borders (in order to define 
requirements for components they wanted to use, in order to specify 
interface of services they wanted to use and in order to agree on exchange 
formats and communication protocols between their systems). In the project 
we introduced a distinction between an application architecture view (data 
flow between functional modules, identification of key business objects), a 
software architecture view (modules, object types, call relationships) and a 
technical architecture view (distribution issues, telecommunication 
infrastructure needed). The use of a predefined set of architectural diagrams 
and the decision to use only these diagrams was cumbersome on the one 
hand because it meant to give up certain individual kinds of architectural 
descriptions. On the other hand it helped to overcome misunderstandings and 
useless arguments concerning the style of architecture descriptions. To sum 
up, the use of a common vocabulary (represented in terms of a few types of 
diagrams) and a clear - albeit still informal - description of its semantics 
turned out to be of substantial benefit with respect to a homogeneous 
description of the software landscape. 

Management of development problems that had already started: 
While it was easy to ensure that new projects adhered to the software 
landscape and to the new architectural guidelines, it was rather difficult to 
ensure that project teams, which were in the middle of their projects, at least 
try to consider as much of landscape and guidelines as possible. In fact, we 
did not succeed in transferring our vision of the ObjectWeb into these kind 
of projects. This is all the more annoying since we spent some effort on 
doing so (in terms of walkthroughs and review discussions). Our conclusion 
from this experience is that a new vision should only be applied to new 
projects and that it is hardly possible to establish new architectural 
guidelines after project start. 

5. RELATED WORK 

The research in the roles and purposes of software architecture in general 
[SG96, PW92, Gar95], in architecture description languages [MT97, 
RMR98], and in patterns of software architecture [Sha95] seems to be well 
ahead of the industrial practice of software architecture design. While the 
research on software architecture and architecture description languages 
describes well-founded approaches to the specification of software 
architectures, software architectures in industrial practice seem to be 
determined by vague and inconsistent descriptions. Even worse, it seems as 
if we are rather far away from any kind of industrial de facto standard for 
describing software architectures. We believe that the benefits of explicit and 
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precise architecture descriptions can at best be conveyed in the context of 
smooth software migrations. Here it is possible to immediately reduce costs 
(of extensions, maintenance and restructuring) and to improve quality of 
systems delivered [BJN98]. Based on these benefits it is possible to ensure 
the use of appropriate architecture descriptions. 

The problem of describing architectures of distributed systems in 
industrial practice is even harder. Once again there is some research 
foundation [MDE95], but little consensus on how to describe distribution 
issues. Again, it should be demonstrated which benefits are to be gained by 
using homogeneous architecture descriptions. 

6. CONCLUSION 

We believe that the use of architecture descriptions should be embedded 
into a software architecture method, that explains what has to be done when 
and for what purpose. In the project discussed in this paper we introduced 
such a- still rather coarse-grained - method that is set up around the term of 
a software landscape. Even though this remains rather vague for the time 
being, we think that it allows to start where industrial projects are and to 
successively move towards more precise and expressive descriptions of 
software architectures. In particular, this not very ambitious approach helped 
to obtain architecture descriptions (expressed as software landscapes) that 
were amenable to discussions with different levels of management. 
Generally speaking, the approach to establish a common architectural model 
for the software systems of a telecommunication company demands the 
careful definition of a migration path that compromises between two goals: 
1. fast migration to a state-of-the-art software architecture 
2. smooth migration that ensures 100% availability of working systems 

The compromise between these two goals must ensure that any effort 
spent on evolving or replacing software systems must bring the software 
architecture closer to the vision of the final software landscape. 

We believe that our experience is not only typical with respect to the 
intermediate migration steps taken, but also with respect to the final vision of 
our migration. The current trends towards component-based software 
development on the one hand and towards components being executed under 
the control of a web browser on the other hand naturally lead to the vision of 
the ObjectWeb. 
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Abstract: Architectural erosion is a sign of reduced architectural quality. Quality 
characteristics of an architecture, such as its ability to accommodate change, 
are critical for an evolving product. The structure of an architecture is said to 
be eroded when the software within the architecture becomes resistant to 
change or changes become risky and time consuming. The objective of our 
work is to understand the signs of architectural erosion that contribute to 
decreased maintainability. A maintenance assessment case study is described 
in which we apply structural measurements to a product to determine signs of 
architectural erosion. It provides an understanding of a product's quality by 
examining the structure of its architecture. The ability to assess architectural 
erosion in an evolving software product allows the quality of the architecture 
to be monitored to ensure its business and maintenance goals are achieved. 

1. INTRODUCTION 

1.1 Software evolution 

Successful software systems experience continual evolution (Lehman 
1989) due to events in the system's environment, usage, and business 
domain. Software systems frequently experience increased maintenance 
(Pamas 1994) and degradation from continual changes made during software 
maintenance activities (Bohner 1991). Often, once a system begins to show 
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signs of degradation, the maintainability of the system will continue to 
worsen over time as more software changes are implemented in a system 
that has grown in size and complexity. 

During software evolution, the high-level organisation of the overall 
system, the software architecture, becomes the critical aspect of design 
(Garlan 1995; Grisworld and Notkin 1995). The software architecture 
represents the organisation of a system as a composition of components, 
connections, and constraints (Garlan 1995). The structure of the architecture 
includes the gross organisation of the system and global control structure; 
protocols for communication, synchronisation, and data access; assignment 
of functionality to design elements; physical distribution; composition of 
design elements; scaling and performance; and selection among design 
alternatives (Garlan and Shaw 1993). The structural properties of a software 
architecture can be expressed in terms of components, interrelationships, 
principles, and guidelines about their use. 

1.2 Architectural quality 

When the quality of the architecture deteriorates functional adaptations 
become difficult (Bakker and Hirdes 1995; Kogut and Clements 1998). 
Additionally, design decisions made at the architectural level have far
reaching consequences on the resultant code (Turver and Munro 1994). 
Certain architectural design decisions may restrict the ability of a software 
component or interface to be easily modified, or require many components 
to be modified. Architectural quality is also important for organisations that 
have evolving product-line architectures. A well-executed and maintained 
architecture enables organisations to respond quickly to a redefined mission 
or new and changing markets (Dike! et al. 1997; Morris and Ferguson 1993). 

The focus of our work is to understand the signs of reduced architectural 
quality leading to an increase in maintenance difficulty during the evolution 
of a product. We want to be able to monitor the maintainability of a product 
throughout its evolution, to allow functional and non-functional software 
requirements to be implemented without affecting the following factors 
- the flexibility or extendibility of the product 
- the understanding of the software architecture 
- the maintenance effort required to perform maintenance tasks 

1.3 Architectural erosion 

Our interest in architectural quality is similar to work in architectural 
erosion and drift by Perry and Wolf (Perry and Wolf 1992). Perry and Wolf 
define architectural erosion as "violations in the architecture that lead to 
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increased system problems and brittleness". They define architectural drift 
as "a lack of coherence and clarity of form which may lead to architectural 
violation and increased inadaptability of the architecture". Their work 
mentions the importance of the architecture's style to encapsulate decisions 
about the architectural elements, constraints and relationships that are 
needed to understand architectural violations such as erosion and drift. 

We have extended Perry and Wolf's definition of erosion to include the 
structure of an architecture. We define the structure of a software 
architecture to be eroded when the software within the architecture becomes 
resistant to change or software changes become risky and time consuming. 
Erosion can also be exhibited when the software is hard to understand or 
manage due to an increase in the size and complexity of the code and its 
structure. Erosion can be a result of poor design decisions made whilst 
implementing maintenance changes to the system, or a result of limited 
architectural understanding during software maintenance that may have 
constrained the flexibility of the design. 

1.4 Characteristics of erosion 

The characteristics of architectural erosion in an evolving product are 
listed below in Table 1. 

Table 1: Characteristics of erosion 

The complexity of the architecture has increased from a previous release as shown by an 

increase in the structural complexity measurements. 

The impact of a software modification results in unpredictable software behaviour (e.g., 

ripple effect). 

The architecture is not documented or its structure is not explicitly known. 

The relationship between the architectural representation and the code is unclear or hard to 

understand. 

There is a continual increase in the defect rate that is disproportionate to the amount or 

type of maintenance work performed (e.g., new functionality added or technology 

upgrades). 

Greater resources are required to implement a software change (i .e. understand, code and 

test) . 

Experience with the software becomes crucial to understanding how to implement a 

software change. 

Certain software changes may become too risky or costly to implement. 

The design principles of the architecture are violated when implementing a product 

variant (e.g., code redundancy due to cloning). 

The system may become resistant to change (i.e. "brittle"), or require additional 

operational procedures (e.g., manual tasks) to support new functionality. 
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1.5 Structural signs of erosion 

The signs of architectural erosion are determined by studying the changes 
in the size and complexity of the product's architecture. If the results of the 
measurements change in such a way to indicate increased maintainability 
(i.e., increased complexity), the architecture is studied further to determine 
if the measurements indicate the presence of erosion. The signs of erosion 
are validated by the software developers to ensure agreement that the 
software has eroded. In the long term this may be developed as a sensitive 
indicator of impending erosion, and the architectural quality preserved. 

A description of the architectural measurements we have chosen to help 
us understand architectural erosion are included in sections 2.4, 2.5, and 2.6 
of this paper. The measurements were chosen on the basis of their history of 
usage and understanding, and their ready availability. 

2. MAINTENANCE ASSESSMENT CASE STUDY 

This section describes the framework of the maintenance assessment case 
study. The objective of the maintenance assessment case study is to identify 
useful measurements that will allow us to determine the signs of 
architectural erosion in an evolving product. 

2.1 Approach 

In the maintenance assessment case study we apply structural 
measurements to the architectural properties of a product. The 
measurements are applied to each operational release of the product 
throughout the evolution of the product. They are generated using the 
Logiscope™ code analysis tool (Logiscope 1997-1998). The measurements 
between each release are compared and analysed to detect signs of 
architectural erosion. The steps in the maintenance assessment approach are 
shown in Table 2. 

Table 2: Case study process 

Step I: Select an architectural viewpoint for analysis of the system. 

• Criterion: the architectural viewpoint should conform to some accepted viewpoint 

Step 2: Take measures on selected releases of the product. 

• Criterion: structural measures selected should conform to recognised measures 

• Criterion: selected measures should be fair indicators of structural erosion as 

described in sections 1.3 Architectural erosion and 1.4 Characteristics of erosion 

• Criterion: the selected releases should give a fair view of the product 
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Step 3: Analyse the structural measures for change. 

• Criterion: change should be such as to be attributable to erosion 

• Criterion: change should be defined as outside some expected 'noise' values 

Step 4: Interpret the measures in terms of (structural) erosion. 

• Criterion: interpretation should be consistent with structural erosion as described in 

sections 1.3 Architectural erosion and 1.4 Characteristics of erosion 

Step 5: Translate the structural erosion conclusions into (maintenance) programming 

terms. 

• Criterion: use documented maintenance programming practice terms 

Step 6: Validate with project maintenance programmers (interviewees) 

• Criterion: ensure the experiment is blind, i.e. the interviewees do not know of the 

analysis before the interpretation is complete. 

• Criterion: ensure terms are fully understood by interviewees 

• Criterion: use accepted techniques such as questionnaires 

• Criterion: ensure interviewees have 'last word' on conclusions 

2.2 Proposed measures 

The proposed measures used to determine architectural erosion include: 
general measures 
basic architectural measures 
derived architectural measures 

2.3 General measures 

The general measures listed in Table 3 are taken for each selected 
software release of the product. The general product measures are used to 
understand the age and growth in the size of the product. 

Table 3: General measures 

Version No. 

Date of Release 

Lines of Code 

No. of Runtime Files 

Total Components 

2.4 Basic architectural measures 

Architectural measures are taken to provide an understanding of the 
overall view of the system. Architectural measures are based on the call 
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graph representation of the product and represent the complexity of the 
structure of the architecture. The basic architectural measures (or counts) 
are defined in Table 4. 

Table 4. Basic architectural measures 

Components (or Nodes) 

Number of Components (or Nodes) 

Number of components (or nodes) in the relative 

call graph. An architectural-level component 

represents a source code file. 

Edges 

Number of Edges 

Number of calls between components. This is 

the same as edges in the relative call graph. A 

relative call graph is a diagram that identifies the 

components in a system and shows which 

modules call one another. 

Call Paths Number of calling paths in the relative call graph, 

Number of Relative Call Graph Call- from the component to each leaf components in 

Paths the graph. 

Levels Number of hierarchical levels in the relative call 

Number of Relative Call Graph graph. 

Levels 

2.5 Derived architectural measures 

The derived measurements taken at the architecture-level (based on the 
"counts" of Table 4) are defined and explained in Table 5. The 
measurements listed in Table 5 are supported in the Logiscope™ code 
analysis tool (Logiscope 1993). 

Table 5: Derived architectural measures 

Hierarchical Complexity 

Relative Call Graph 

Hierarchical Complexity 

Structural Complexity 

Relative Call Graph 

Complexity 

Average Components/Path 

Average Paths/Component 

Average number of components per relative call graph 

level (number of components divided by number of 

levels). 

Average number of calls per component (number of 

calls between components divided by number of 

components). 

Average number of components per call path 

(components divided by call paths) 

Average number of paths per component (call paths 

divided by the number of components.) 
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3. THE CASE STUDY 

3.1 The Squid product 

In the case study we applied the aforementioned measurements to the 
Squid product (Squid), which was developed at the National Laboratory for 
Advanced Networking Research (NLANR) at the University of California at 
San Diego. Squid is an Internet object caching product. The Squid product 
was chosen as historical data was publicly available for each operational 
release of the product throughout its evolution. The Squid product is written 
in the C programming language and is implemented in the Unix operating 
environment. Six releases of Squid spaced approximately at equal time 
intervals were chosen for analysis. 

3.2 Approach 

In our approach structural measurements are taken for each release of the 
Squid product. We then interpret the measurements, and put the 
interpretations to the Squid developers to see if our interpretation of the 
measures made any sense to them. (Being our initial case study, there were 
no hypotheses developed. The purpose of this work was to see if we could 
find any encouragement for using existing structural measurements for this 
research problem.) The steps followed in the case study are outlined in 
Table 2; the sub-headings below follow the steps outlined in the table. 

3.2.1 Step 1: Select architectural viewpoint 

The ideal architectural viewpoint would be to work with the subsystems 
defined by the original software developers, and understand changes in those 
subsystems and the relationships between them. This would be in accord 
with the software architecture definition whereby one represents the 
organisation of a system as a composition of components, connections and 
constraints (Garlan 1995). 

From this perspective, Squid consists of the following major sub
systems: 
- the Client Side (icp.c, client_side.c) 
- the Server Side (proto.c, http.c, ftp.c, gopher.c, wais,c, ssl.c, pass.c) 
- the Storage Manager (store.c) 
- other sub-systems, including Neighbours; IP/FQDN Cache; DNS 

Servers; Cache Manager; Network Probe Database; Redirectors and 
Access Controls. 
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Unfortunately, to quote the Squid developers, "the Squid source code has 
evolved more from empirical observation and development rather than a 
solid design process over two years or more. It carries a legacy of being 
'touched' by numerous individuals, each with somewhat different techniques 
and terminology" (Wessels 1997). 

We have created an architectural view based on "the view from the top". 
The architecture viewpoint, which appears repeatable for procedural 
languages such as C, is to choose the 'main' routine as a reference node for 
structural measures. Our structural measures are based on the call graph, 
and are taken from the main routine alone. Thus, we will only include 
components that are called on a path from main. 

3.2.2 Step 2: Take measures of selected releases 

In this step the general, architectural, and derived architectural measures 
are taken on the selected releases of the product. 

3.2.2.1 Squid - general measures 
The general measures for Squid, as specified in section 2.3 General 

measures, are given in Table 6 below. 

Table 6: Squid general measurements 

Version No. Vl.O.O Vl.0.22 Vl.l.O Vl.l.lO Vl.l.l4 Vl.l.21 

Date of Release Jul. 1996 Oct. 1996 Dec. 1996 Apr. 1996 Jul. 1997 Apr. 1998 

No. of Files 32 33 42 44 44 44 

Lines of C Code 23587 24996 27425 30008 30222 29329 

Total Components 619 630 693 733 739 748 

3.2.2.2 Squid - architectural measures 
The architectural measures for Squid, as specified in 2.4 Basic 

architectural measures are given in Table 7 below. The viewpoint is 
from the main routine. The reduction in the number of nodes and edges 
accords with the reduction in the lines of code in Table 6 .. 

Table 7: Squid basic architectural measures (counts) 

Version No. Vl.O.O. Vl.0.22 Vl.l.O Vl.l.IO Vl.l.l4 Vl.l.21 

Levels 18 21 23 19 21 20 

Nodes 413 421 416 429 438 434 

Edges 1243 1267 1319 1399 1428 1415 

Call Paths 24264 28037 32784 40616 80848 80952 
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3.2.2.3 Squid - derived architectural measures 
The derived architectural measures for Squid, as specified in 2.6 Derived 

Basic architectural measures are specified in Table 8 below. 

Table 8: Squid derived architectural measures 

Version No. Vl.O.O Vl.0.22 Vl.l.O Vl.l.IO Vl.l.l4 Vl.l.21 

Call Paths 24264 28037 32784 40616 80848 80952 

Levels 18 21 23 19 21 20 

Hierarchical Complexity 22.94 20.04 18.08 22.57 20.85 21.70 

Structural Complexity 3.01 3.01 3.17 3.26 3.26 3.26 

Average Paths/Component 58.75 66.59 78.8 94.67 184.58 186.52 

Average Components/Path 0.01 0.01 0.01 0.01 0 0 

3.2.3 Step 3: Analyse the structural measures for change 

The major changes that occurred, and the discussion, are shown in Table 
9. Other changes were considered to be too dubious to discuss. Considering 
all the data presented to date, a strong observation can be made that the 
system started to stabilise at Vl.l.O. This is shown by a slower growth rate 
in the size of the product and a reduced rise in the complexity of the product. 
Therefore, we will only comment on changes after Vl.l.O. 

Table 9: Analysis of changes in Squid 

Property Discussion 

Components 

Call paths 

The number of components has been practically constant throughout the 

life of the project. 

The number of call paths is arguably high compared with 

recommendations in (Logiscope 1993) even from the beginning of the 

project. The number of call paths has changed by a factor of (about) 3.5 

during the life of the project, with a sharp rise between V 1.1.1 0 and 

V 1.1.14 (as shown in Table 7). 

Component The components were analysed using the ISO 9126 maintainability 

maintainability measures (ISO 1991). The component maintainability for Squid was 

consistent thought the product evolution (i.e. 2% excellent, 89% good, 

4% fair, 3% poor and 2% undefined). 

3.2.4 Steps 4 and 5: Interpretation and translation 

These steps involve interpreting the measures in terms of (structural) 
erosion and translating the structural erosion conclusions into (maintenance) 
programming terms. The analysis of changes in Squid (Table 9) suggests 
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that with the increase in call paths, and the number of components remaining 
the same, that the changed (or new) components will have become much 
harder to integrate with each release. However, the small change to 
component maintainability suggests that changes to the component itself will 
not be hard. 

3.2.5 Step 6: Validate with project maintenance programmers 
(interviewees). 

A basic questionnaire was developed based on the conclusions of Step 4: 
Interpret the measures in terms of(structural) erosion, and Step 5: Translate 
the structural erosion conclusions into (maintenance) programming terms. 
This was sent (via e-mail) to the Squid software team leader, in order to get a 
response from a maintenance programmer. The reply was then analysed, 
and interpreted back as a second series of questions. A final conclusion was 
then drawn. 

Based on this interpretation, the following statement was put to the Squid 
programmers: 

"Our conclusion would be that individual modules in 
Squid are OK to maintain, but integration of the modules 
into the Squid system can at times be difficult." 

The first response to this statement included a lack of match between the 
statement and the Squid system. This is exemplified by the two responses, 
"I do not think there is a good notion of modularity in Squid." and "Thus, I 
cannot answer your question since I do not see a lot of well-defined 
"modules" in Squid." In the light of these responses, we sent another set of 
questions: 

Our statement: Typically, the extra load of a module (doing Y and Z as 
well as X in your email) occurs as a result of change. Side effects can also 
occur as a result of change, or simply wishing to get the job done ASAP. 

Squid response: This is certainly true, but, from what I know, certain 
"extra load" was there from the very beginning of Squid. Also note that 
HTTP itself ..... often forces programmers to violate many good software 
engineering design principles. 

Our statement: You attempt to modify some part of Squid. As a result 
you find that a particular collection of code (an approximate module) is the 
most likely place to start. 
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Squid response: OK. Although any serious change would require 
modification in several files/modules. 

Our statement: You then find that a piece of code does other things as 
well, so you have to be careful to change only what you want to change. 
And then there is the question of side effects. So I relate that to being able to 
change parts of code, but finding it more difficult to get Squid running 
properly again. 

Squid response: I somewhat agree with your last statement. You see, 
when I modify a part of the code, I usually know a priori that I will have to 
modify other places. Thus, if somebody asks me a question like "is it easy to 
add feature W?", I reply based on the total amount of modifications that I 
foresee, and not based on the first change that I will make. In other words, 
most significant changes will require modification of several "modules", 
which is hard. And nobody cares about minor updates, I guess. 

3.3 Conclusion from the interviews 

If we now return to our original statement, there seems to be considerable 
reinforcement for the proposition that integration of modules into Squid is 
difficult. But, it is not obvious that individual modules are easy to maintain 
from the interview discussion. We can determine that the component level 
maintenance measures (ISO 9126) will not reflect the increased complexity 
that is shown at the architectural level (as indicated by the call path 
measure). 

The problem of software integration is due to multiple functional 
modules and side effects. This is supported by the increase in call paths, 
with little increase in the number of components. The problem of side 
effects could possibly have been seen by the decrease in the number of 
comments, as the system became older and more difficult to understand. 

3.4 Summary and conclusions 

In Table 10, a summary of the characteristics of erosion are matched with 
the measurements and interviews from the Squid software team. 

There is some promise in using structural measures to predict erosion. 
This has been an exploratory case study, but nevertheless the ability to 
predict some of the features of the Squid system are most encouraging. 
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Table 10: Characteristics of erosion matched with measures and interviews 

Characteristic 

The complexity of the architecture 
has increased from a previous 
release as shown by an increase in 
the structural complexity 
measurements. 

The impact of a software 
modification results in 
unpredictable software behaviour 
(e.g. , ripple effect). 

Measures 
Shown in structural 
measures (call paths). 

Shown in structural 
measures (call paths). 

Interviews 

Not validated, we don ' t 
have coverage of 
enough releases, yet. 

Validated 

The architecture is not documented No documentation of the Validated 
or its structure is not explicitly 
known. 

The relationship between the 
architectural representation and the 
code is unclear or hard to 
understand. 

There is a continual increase in the 
defect rate that is disproportionate 
to the amount or type of 
maintenance work performed (e.g. , 
new functionality added or 
technology upgrade). 
Greater resources are required to 
implement a software change (i.e. 
understand, code and test). 

Experience with the software 
becomes crucial to understanding 
how to implement a software 
chan e. 

Certain software changes may 
become too risky or costly to 
make. 

The design principles of the 
architecture are violated when 
implementing a product variant 
(e.g. , code redundancy due to 
cloning). 

The system may become resistant 
to change (i.e. "brittle") or requires 
additional operational procedures 
(e.g., manual tasks) to support new 
functionality. 

architecture was 
available. 

No documentation of the 
architecture was 
available. 

Unknown 
defect rate data not 
captured. 

Unknown 
data not captured. 

Suggested by structural 
measures (call paths). 

Unknown data not 
captured. 

Unknown data not 
captured, although can 
be determine based on 
changes in architectural 
views and component 
usa e. 

Unknown data not 
captured. May not be 
displayed (yet) in a 
system that is only 2 
years old. 

Validated 

Not validated 

Not validated 

Validated 

Not validated 

Not validated 

Not validated 

Our study showed that in order to understand the quality of the 
architecture one must look at the component measures, as well as the 
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structural architectural measures, in order to ascertain the origin of change in 
the structure of the architecture. For example, changes to the structure could 
occur as a result of a redesign that gives rise to the addition of components, 
thus changing the connections. Alternatively, modifications to components 
can affect the structure through additional calls to other components, and 
side effects. In the case of the Squid system, very little happened to the 
structure through redesign, as shown by the relatively constant number of 
components. However, the modules were changed to give new functionality 
(as described in the interviews), this is shown by the increase in the number 
of call paths. However, it is interesting that the number of call paths was 
high from the beginning, suggesting an early flaw in the architecture. 

4. RELATED WORK 

The most extensive software evolution study has been the FEAST project 
which started in 1997 (Lehman et al. 1997). This work and subsequent work 
on the FEAST project formed the foundation for describing the laws of 
software evolution and the properties of a E-type system. In this work the 
size of modules were used to understand the growth rate and change rate of 
the system, and its affect on software quality. Additional software evolution 
work that applied metrics included projects to determine; code degradation 
(Ash et al. 1994), entropy (Coleman 1995; Harrison and Cook 1990) and 
erosion (Kogut and Clements 1994). The focus of such work is at the 
program code level, using measurements such as LOC, Halstead, and 
McCabe, to determine the complexity of the program that may be error
prone or change-prone. 

However, quantitative approaches to understanding architectural quality 
have been limited. The evolution of a telecommunications system has been 
studied to identify modules or sub-systems in the architecture that should be 
considered for restructuring or re-engineering (Gall et al. 1997). In their 
work they considered the size of each system, the change rate and growth 
rate. The complexity of the architecture has also been measured using 
pattern coverage techniques: the proportion of an architecture that can be 
covered by patterns and the number of patterns it takes to cover the 
architecture (Kazman and Burth 1998). These are complementary measures 
of the system's regularity, and hence its architectural complexity. These 
quantitative approaches differ from our work as their focus in on identifying 
weak areas of the architecture for re-engineering. Our work uses structural 
measurements to determine the maintainability of the architecture to support 
the evolution of the product. 
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Qualitative techniques such as the Software Architecture Analysis 
Method (SAAM) (Kazman eta!. 1994), and the AQA (Architecture Quality 
Assessment) (Hilliard, Kurland, and Litvintchouk 1997) provide a method to 
gain information about a system's qualities (e.g., modifiability, security, 
portability). Such techniques can be used for multiple purposes such as, to 
consider future changes to the system or how an architecture will 
accommodate change. However, the qualitative architecture evaluation 
techniques do not clearly state a criterion for maintainability that can be 
measured and verified. Additionally, architectural evaluation techniques are 
limited in providing an understanding of the signs and causes of reduced 
quality. 

5. BENEFITS 

The maintenance assessment case study provides preliminary work in 
determining a set of measures that can be applied to understand the quality 
of a software architecture during its evolution. The ability to identify signs 
of architectural erosion allows us to make improvements to the architecture 
to increase its flexibility and longevity prior to reaching further erosion. An 
architectural maintenance assessment method can also be used to 
- derive quality benchmarks that are necessary to evolve the product; and 
- build knowledge about the factors that influence the quality of the 

product -line architecture. 
This work can also provide insights into the causes of erosion, allowing 

us to improve architectural analysis and design techniques in the early 
phases of system development. For example, proven guidelines for 
assessing the extendibility and flexibility of an architecture will allow us to 
assess the adaptability of an architecture using pre-design data (e.g. , module 
hierarchy). 

6. FUTURE WORK 

We would like to continue our research with the Squid product to gather 
measurements on additional software releases of the system as the product 
evolves. Additionally, we would like to apply this research to a system that 
is older and larger; this would allow us to study differences in the results that 
may be due to varying organisational, software process, and architectural 
design factors. 
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Abstract: Similar software products can be developed as a product family. Common 
architecture, addressing all common requirements of products in the family, 
provides the basis for wide scale reuse within the family. When independent 
products continue their evolution, they face new requirements that may prove 
to have wider scope and need addressing at the family level. However, 
changes on the family level may be very costly for the product projects. Our 
experience shows that architectural evolution is possible and practical if each 
change has been carefully planned, taking into account its organizational 
aspects. Then the change has to be carried out so that the product line does not 
stop. Large architectural changes are high-risk operations; even when they 
succeed, they tend to take much longer than expected. 

1. INTRODUCTION 

The software architecture group at Nokia Research Center was 
established in 1994. Our group has now 17 members and operates both in 
Helsinki and in Boston. We lead two international research projects ARES 
and F AMOOS within the Esprit program but our main task is to support 
Nokia business units in their product development. With the business units 
we analyze, assess and model their product architectures and give 
suggestions on how to improve them. We also participate in developing 
architecture for new product concepts. 

In the cooperation with Nokia Mobile Phones (NMP), our role has been 
to facilitate the process, introduce state of the art in architectural design and 
description to software architects from NMP, review and comment their 
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designs. The final architectural choices and their implementation have 
always been the responsibility of NMP architects. During these 4 years, we 
have had an opportunity to observe how software evolves in response to 
changing requirements and to learn how this evolution affects a software 
development organization and its development process. This experience 
report gives an overview of this process, presents examples of architectural 
evolution, and offers a classification of different architectural changes and 
an observation on how difficult they are to implement. 

Nokia Mobile Phones produces a range of similar mobile phones. It has 
an opportunity to control the properties and quality, and to reduce the 
development, maintenance, support, and marketing costs of each product by 
sharing some of the effort and parts between these phones. In order to 
manage such sharing, the phones are organized into a product family. There 
are many reasons for variation in the mobile phone family. Different market 
segments have different characteristics and the products must offer a choice 
of functional features and capabilities to satisfy a wide spectrum of customer 
requirements. National standards often impose constraints on product 
functionality. Cultural differences and fashion add variation to the user 
interface design. Advances in technology require frequent migration of 
products to new platforms and environments. 

Software architecture provides the basis for reuse within the product 
family but it also ties the products together and limits their evolution 
potential. Architecture can only be designed to accommodate anticipated 
variation. Some of the reasons for variation in the mobile phone family are 
rather stable (like different languages) but most are volatile and can only be 
anticipated few years ahead. Once the architecture can no longer support the 
product family, it has to be changed. 

Architectural changes can be very costly. Much work is needed to update 
everything and changes in the basic premises may force redesign of large 
parts of the system. There are many sources of architectural changes; some 
changes can be avoided by careful planning but others are unavoidable. If 
the products based on the architecture are successful, new products with new 
properties will be added to the family. Architecture has to be periodically 
updated to support the new needs. This paper summarizes the architectural 
evolution of Nokia mobile phone product family . 

2. NOKIA MOBILE PHONE FAMILY 

Traditionally a cellular phone consists of a transmitter and a receiver for 
communication with the network, a user interface consisting of a keyboard 
and a display, a battery, a microphone, and a speaker. In addition, the phone 
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has a processor and memory for the software needed for controlling the 
hardware. The phone may also have facilities for some auxiliary services, 
such as data communication. 

A cellular phone communicates through the cellular network. Nokia has 
developed phones for various network standards, e.g., for analogue standards 
NMT, AMPS and TACS, and for digital standards such as the Japanese JDC 
and the European GSM. TDMA and CDMA are adopted in North America. 
For each cellular standard, Nokia provides several phones for different 
market segments. These phones vary in style, functionality and price. The 
variation is implemented both in the hardware and in the software. The 
development organization is large and globally distributed. 

The complexity of the product family, the structure of the development 
organization, and the need to introduce new features as they become 
available in the networks, makes mobile phone software development a 
challenging task. Hardware development is the basis for competition but in 
order to benefit from this potential, new phones have to be on the market 
before the competitors' models using the same hardware. Software 
development time costs money. 

So far, the evolution of the mobile phone has had only a few basic 
drivers. Miniaturization has shrunk the size from portable (like a suitcase) to 
devices weighting less that 100 grams. At the same time operation-time with 
a standard battery has grown from hours to weeks and price has dropped 
from the status-symbol level to that of an affordable personal phones for 
each family member. Through this evolution, the product concept has been 
rather stable: mobile phones are used for voice communication. Now we also 
see evolution of the product concept. The phone has an increasing role as a 
portable terminal to an information system and as a communication device 
between information systems. Intelligent add-ons see the phone as a center 
of a distributed system, car electronics as a general-purpose communication 
device, and Internet based systems as a portable browser. This change in the 
product concept has a large impact on the product structure. 

3. INITIAL ARCHITECTURE AND 
DEVELOPMENT PROCESS 

Initially, the software architecture of the phone addressed only the basic 
requirements variation in the hardware, the communication standards, and 
the user interface. These domain characteristics formed the basis for the 
initial module architecture and this architecture had only three subsystems: 
1. A cellular subsystem for managing the connection to the network. 
2. An application subsystem that includes the user interface software. 
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3. A device subsystem for interfacing with the hardware. 
The separation of the cellular subsystem is critical since it allows easy 

development of different phones for each network and similar phones for 
different networks. Separation of the device subsystem is also crucial to be 
able to benefit from constant hardware evolution. 

The development process for this architecture was very product centered. 
The development organization would base each new project on some earlier 
version of the subsystems and make the necessary modifications. This 
allowed each development organization to be rather independent supporting 
the rapid growth of a distributed organization. 

4. TENSION IN THE INITIAL ARCHITECTURE 

The initial architecture and the development process were very 
successful. However, the architecture had many inherent problems. The very 
separation of application software from cellular subsystem creates a 
problem. Different network standards have different capabilities and thus 
application software is in reality coupled with the cellular subsystem. The 
coupling is visible in the specifications since some user interface 
applications involve complex protocols and their specification is included in 
the protocol standards. 

The subsystems are too large. Divide and conquer does not really work 
well if you only divide by three. Naturally subsystems have internal structure 
but their interfaces are handled on a subsystem level. Consequently, 
subsystem interfaces grow very wide. Wide interfaces and dependability 
between the cellular subsystem and the application subsystem leads to high 
coupling between them. The device subsystem does not suffer from the same 
problem because it is just a composition of rather independent hardware 
drivers, each having its own interface. 

The subsystems are not equal. Hardware drivers and cellular software 
have a clear role. The application subsystem is "everything else". It becomes 
the controller of the phone, knowing its global state. This creates state 
coupling and even content coupling between the subsystems. Finally, phones 
are not as homogenous as assumed by the architecture. Some have special 
functionality (e.g., data communication) to be accounted for. 

5. EVOLUTION 

Initially the variance in the subsystems was mainly functional. Some 
phones had special features and accordingly there was a special part in the 
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software handling it. Then the coupling between application subsystems and 
others started to play its role and increasingly variance in one place in the 
software was just a reflection of variance in another part. 

Required configurations were implemented by using a configuration 
management system together with more fine grained mechanisms like 
source-code pre-processing using macros and compiler flags, or 
programming language based mechanisms like indirection and late binding 
of functions, variables and types. 

The elements of variability supported by these mechanisms (text lines, 
functions, variables, and files) are not the elements of variability required by 
products (features, platform differences, interface styles). In particular, 
source-code preprocessing using compiler flags is problematic. It is the most 
versatile variance mechanism, allowing the possibility of making every 
source line a special case, but it does not build any abstractions. From the 
source, it is practically impossible to determine what each flag means, or 
what combinations of flags are permissible. 

As the variance kept growing, it became hard to control the mapping 
between desired product variance and its implementation. This happened in 
the golden years of artificial intelligence and the "natural" solution was to 
automate this mapping by developing an expert system setting the compiler 
flags based on a list of features that the phone was supposed to have. 

At the same time, the development organization was growing and 
subcultures started to emerge. Since each site was mainly responsible of 
development for a particular market area sites did not have to deal with 
variance in network standards. They started to maintain their own versions 
of application subsystems to get rid of the variation caused by multiple 
network standards. This confined the reuse benefits into small groups of 
products but it did also cut the cost of reuse and increased independence of 
each site. 

The initial architecture proved to be very stable. A number of small 
subsystems were added as the mobile phones got new functions but the 
initial architecture maintained its central role over several phone generations. 

As the phones kept evolving, new functionality was added. Now that the 
application subsystem was diversified, it became apparent that the cost of 
porting new functionality across the product family is substantial. 
Maintenance problems with the application subsystems also made it clear 
that the application subsystem had to be redesigned to be more flexible . 

The redesign was carried out according to an object oriented user 
interface design style separating control, presentation and functionality Ut Ia 
MVC). The redesigned application subsystem replaced the old application 
subsystems and an attempt was made to keep its interface as backward 
compatible as practical. This attempt succeeded. The development was 
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carried out parallel to the product development based on the old application 
subsystem. 

When the new application subsystem was taken into use, the organization 
had to be restructured accordingly. We identified three different 
development categories: 
1. The infrastructure development group improves the application 

framework and ports it on different hardware platforms. 
2. The component group develops reusable presentation and application 

components. 
3. The product development projects compose their application subsystems 

using existing components and develop new components when 
necessary. 
The whole process is driven by the product development projects. They 

place requirements on the infrastructure and request new components. 
Up to this point, we had been able to accommodate each change either by 

adding new modules to the architecture or by reworking existing elements. 
Recently we had to face a bigger challenge. 

Markets continued to develop and new product ideas were put into 
practice. This led to erosion of the basic premises underlying the initial 
software architecture. We could no longer assume that there would be only 
one cellular system in each phone since phones should be able to operate in 
different networks. Auxiliary equipment continued to become more 
intelligent. In addition to the user interface, phones could be controlled by 
infrared and serial connections. In one setup, the phone had to act as a 
central controller for a large distributed system and in another it was 
completely subordinate. The success of the Java programming language also 
pushed downloadable software to phones. Clearly, we needed a new 
architecture. 

The basic idea behind this new architecture is to separate the service 
identity from the identity of its provider and make service usage and 
provision location independent (see Figure 1). With dynamic configuration 
management, we can have several providers for the same service and these 
providers can be plugged in or taken out without restarting the system. 
Architecture supports both local and remote message passing and object 
management, task scheduling and event control. This architecture is also 
much better described. It defines software components, message interfaces 
between components, essential use cases, component grouping and 
deployment structure. The initial architecture had only interface and runtime 
architecture descriptions. 

The biggest challenge in this new architecture was not how to design it 
but how to adapt to it without stopping the product line. We approached the 
problem by moving into the new architecture gradually. A roadmap of new 
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architecture versions was outlined. Each version has more capabilities than 
earlier ones. Architecture versions are developed concurrently with product 
development projects and each project is based on a version that satisfies its 
needs. Currently our new phones are based on the second version; a third 
version is being implemented, and fourth is under design. 
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Figure 1. Basic module classes for the new architecture 

This architecture evolution roadmap that was planned to help us to 
control the move from the old architecture to the new one is going to be 
permanent. It gives a view of the future and helps the product development 
projects to assess what will be possible and when. It is also a basis for 
reasoning about how to develop further the product family . 

6. LESSONS LEARNED 

It is often assumed that the development and management of an 
architecture addressing all the common requirements of a product family and 
providing the basis for wide scale reuse would always be economical. This is 
not quite true. When independent products continue their evolution, they 
face new requirements. These requirements can be tackled only in the 
product development project that control the resources and have the 
responsibility. Later, some of the new requirements may prove to have wider 
scope and they can be tackled on the family level. However, changes on the 
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family level may be very costly for the product projects. Commonality 
management also requires communication and cooperation. Such a 
cooperation between different organization over wide distances is complex 
and costly. Reuse and modifiability must be balanced according to the 
product development organization and market needs. 

Our experience shows that architectural evolution is possible and 
practical. We made three different types of changes. 
1. Adding components, which turned out to be rather easy as long as they 

required no special services. 
2. Redesigning components, which was difficult whether you changed the 

interface or not. 
3. Redesigning the architecture with new communication mechanisms, a 

new execution architecture, and new component roles, which was very 
difficult and costly. 
Note that all the changes were incremental; nothing was ever built from 

scratch. 
This experience shows that architectural change has to be carefully 

planned, taking into account its organizational aspects. Then it has to be 
carried out so that product line does not stop. Large architectural changes are 
high-risk operations. Even when they succeed, they tend to take much longer 
time than expected. New products cannot wait for the new architecture. 

This history also demonstrates that variation management and reuse are 
tightly connected. If your variation management runs into trouble, you may 
ease the situation by decreasing reuse. The gray area between a perfectly 
organized product line and completely independent development projects is 
wide. 

It takes time to react to the changes in the domain of requirements and a 
practical product line is never optimal. Make a roadmap showing what you 
intend to implement and when. Base the changes on the needs of product 
projects and product concept developers . It is hard to give reliable 
economical justification for each change but it is easier to compare different 
change requests. 
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Abstract: As manager of the software support group for a full-service civil engineering 
firm, my major challenge is in composing project-specific software solutions 
from pre-existing parts. Too often, the available parts are not quite right for 
the task; or the parts work individually but make incompatible assumptions 
about interaction, representation, or other aspects of integration; or a solution 
works on prototypes but does not scale up for production. For seven example 
cases, I describe the architectural integration problems and what we did about 
them. None of the specific examples presents a major challenge- my real 
problem is that each such example must currently be solved as a special case. 
The architecture research community could help me most by developing 
general methods and tools to help me identify and resolve these integration 
problems systematically and routinely. 

1. INTRODUCTION 

Baker Engineering is a full service civil engineering firm. We design and 
build structures such as highways, bridges, buildings, airports, and 
subdivisions. We have a division that operates and maintains clients' 
facilities. We also have a Geographic Information Systems division that 
creates geographic databases for clients. Some of our services are software 
intensive. We use engineering design analysis tools, geographic information 
systems, and Intranets both in-house for our engineering tasks and as 
products that we deliver to clients. 
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The software is bought, provided by clients or government agencies, and 
developed internally to various degrees. We often adapt software and 
packages from previous projects. We prefer to create projects from existing 
components whenever possible, resorting to new code development only as 
necessary. The various departmental groups within Baker typically develop 
these projects with consultation from our small software group. When we 
know in advance that the software aspect of the project is problematical 
and/or requires extensive internal development, our software group may do 
the primary software development and then tum over the project to a 
departmental group. These groups typically do not have a person who is 
dedicated to software development. They typically do have an engineer or 
technician who, as a sideline to his production responsibilities, provides 
immediate computer support to his department. 

I manage the software development staff that provides software 
consulting services to the various other units of Baker. We usually take on 
projects requiring one to three man-months of effort, although we may have 
one or two longer-range projects going on at any one time. 

My biggest ongoing problem is the difficulty of adapting existing 
software to new projects, creating the glue that makes separate software 
components work together, and scaling/hardening prototypes for production 
use. For example, 
- Projects often create or acquire interactive tools to prototype the 

production phase. When the project goes into production, we must 
process large batches of data- an operation best done in batch. But the 
interactive tools sometimes don't provide enough program hooks to run 
in batch. 
Projects adopt tools that provide good immediate functionality but have 
proprietary representations. As time passes, we need to add 
functionality, but available components that perform the new functions 
can't handle the proprietary representation. 

- Professional engineers (i.e. non-software types like civil, mechanical) 
who are not programmers may develop or adapt applications that are 
good for personal use and later the company wants to expand the use to 
other individuals or larger projects. This may involve simply adding a 
better user interface and more robust error detection and handling, or it 
may require the replacement of some components with more general or 
scalable ones, or it may involve re-implementing the concepts in some 
language/application that will scale to a larger volume or more users. 

- Cost considerations sometimes force us to assemble solutions from parts 
or even write fresh code, even when technically adequate solutions 
already exists. Often the critical cost is not the initial cost of the 
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application, but the cost of deploying its viewers, browsers or other client 
components to all potential users. 
In the body of this paper I describe several specific examples. Each of 

these can be solved in isolation; the solution is often straightforward. 
Indeed, the solution is often included in the example. The major challenge I 
face as the manager of the software development group is not solving any 
particular problem, but the sheer volume of problems like these and the drain 
it places on our software development resources. 

The important point behind these examples- the pervasive architectural 
issue - is that these problems come along as regularly as rush-hour traffic, 
and each one consumes resources, sometimes significant resources, for its 
special-case solution. Further, we generally spend more resources in 
discovering the incompatibilities and shortfalls, than in fixing them. The 
consequence is that we don't realize the promised benefits of component 
reuse, and we get less done at more cost than we should. Even worse, there 
are projects we would like to do but do not even try, because we can see how 
the petty aggravating integration details will more than offset the benefits. 

2. EXAMPLES 

2.1 LIDAR: Improved aerial mapping 

2.1.1 Problem background 

Lidar is an aerial mapping technology for producing high precision 
contour maps to be used in engineering design. A specially equipped 
airplane uses prototype technology for high-precision data acquisition. 
Software developed by an external research organization does the initial 
conversion from data acquisition to xyz coordinates. We (Baker) had to take 
this software and tum it into a production product that would efficiently 
process over 30 Gigabytes of data per county scanned. Plans are in place to 
process over 50 counties in the next year. 

The airplane acquires data in the form of scan lines at 3-meter spacing. 
Points along the scan line are 3-meters apart. This gives us a grid of points 
3-meters by 3-metters. Each point consisting of the distance from the 
airplane to the ground, the GPS (Global Positioning Satellite) location of the 
aircraft, and the rolVpitch/yaw information for the aircraft. The data must be 
converted to topographic maps by the process: 
- Do internal calibration and correction of the data acquisition system 
- Calculate the <x, y, 'Z> location of each spot on the ground through 

spherical trigonometry 
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- Transform the <x, y, 1> location for geographic projection 
- Produce a contour map 
- For quality control, produce difference maps for overlapping areas; also 

compare the contour maps to known low-precision maps 
- Merge adjacent flights where the data overlaps 

We use a mixture of pre-built and custom software to accomplish this. 

2.1.2 Computing obstacles and resolutions 

Contouring package format incompatibility. The program was 
originally developed on a Sun workstation. The developer created <x, y, 1> 

output ASCII files that were formatted for a graphical display package. The 
display language provides commands to specify scale, viewpoint and sun 
angle. It allowed comments with a # sign in column 1. The contouring 
package wanted the data in <y, x, 1> order and comments with a semicolon 
in column 1. The initial workaround was a Perl script that did the format 
conversion. A better one was a parameter to the conversion program that 
told it which format to output. This of course required us to rework the 
program to find all the places that output data. 

Difference package worked in interactive mode, but failed in batch. 
Some of the flights covered the same ground area. In particular one of the 
early flight was flown perpendicular to most of the other flights. By 
checking this flight against later flights we could verify that the data 
acquisition system did not drift over time. We do this check by calculating 
the difference between the two generated ground surfaces. The difference 
program worked fine in the interactive environment, but produced no output 
when I tried to run it in batch. Since I was planning to do about 8,000 of 
these differences, this was unacceptable. I sent data to the vendor and they 
were able to reproduce the problem. It took three weeks to get the fix back. 
They sent me the patch, but it was for the wrong package. The software we 
use is structured in 12 to 15 sub-packages each with specific functionality. 
You buy as few or as many of the sub-packages as you need. There is 
overlap in the functionality. The difference routine was in three of the sub
packages. They sent me the patch for the only one of the three that I had not 
bought. The workaround was to get an evaluation serial number for the 
unpurchased package. Hopefully they will issue the update to the package 
that I have purchased before the evaluation period runs out. 

Display package couldn't handle volume. Because of the high density 
of the data, (a point every 3 meters) the contouring package produces lines 
that are very ragged, rather than the smooth lines that are on a typical 
contour map. This makes the display files 20-50 times larger then usual, and 
they exceed the allowable file size of the display package. The workaround 
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was to process the data in sections. Two programs were written: one to split 
the data into reasonable-sized chunks, and the second to tell the display 
package to display the multiple files required to cover the specified area. 

Coordination with our partner company. The development was a 
joint venture with an external research organization. Each group had 
separate responsibilities. We had a difference of interpretation with the 
partner company. The original data met the specifications but showed a 
systematic error. In our opinion, the specification was not quite right, 
because it allowed systematic, correctable errors. The specs called for an 
error of plus or minus one foot. The data showed a systematic error of plus 6 
inches on every tenth scan line. There was a physical explanation for the 
error. One of the pieces of the apparatus was a spinning ten-faceted mirror. 
Since it was the partner company's responsibility to produce the <x, y, z> 
data, I thought it was their job to determine the exact magnitude of the error, 
and produce the 10 adjustment factors . Their response was that the data was 
within specs and therefore they were not going to do anything about it. 
Since I knew the eventual clients of the data would not accept data with this 
kind of error, I had to modify the partner's program to accept the adjustment 
factors and to determine the values. 

Dropping information too soon in the process. To make the problem of 
removing the systematic error a little more interesting the data acquisition 
hardware reported out the rotation angle of the ten-faceted mirror in a 17 -bit 
integer. Since the original programmer did not care which facet was being 
processed, he simple extracted the low order sixteen bits (2 bytes) from the 
data stream to obtain the angle of the mirror for each data point. This meant 
that when I needed to determine which facet was being processed, I had to 
determine where in the data stream the 17 bit was located and merge it with 
the other 16 bits before determining the facet number. Obviously a better 
interface between the modules would have made this task simpler. 

Scaling up the data sizes. When the program was in the developmental 
stage the length of a data collection stream was relatively small, less than 2 
miles of data. At a sample rate of 30 points per second, this produced 1300 
points and the programmer declared his arrays and structures at 2,000. The 
production environment uses longer flight lines. There turns out to be a 
system constraint of about 35 miles. These limits were nicely "#defined" 
in C so I upped the limit from 2,000 to 32,000 and got "program exceptions" 
for some medium size cases. It turns out when you do a rnalloc of a 
double precision variable (8 bytes) for 2,000, the answer (16,000) is less than 
16,384 so storing the rnalloc calculation in a small integer works. I had to 
find all the rnallocs (there turned out to be 23 of them) and change the 
calculated variable from an integer to a long. And, of course, after I had set 
the limit to 32,000, 5 flight lines out of about 400 exceeded that limit. This 
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required increasing the limit above 32,768 to process those lines. I had to 
revise the program so that all array accesses were done with long integers. 

Miscommunication of operator procedures. To process a flight line of 
data requires 7 related files. To provide for the batch processing and to 
reduce the chance for operator error, I devised a file-naming scheme in 
which the first 5 characters of the file name established a relationship. This 
scheme apparently was not conveyed correctly to the person producing the 
files . They did not observe the naming rules. This resulted in a group of files 
with the wrong names, which therefore could not be processed 
automatically. Since the data was burned onto a write once CD after being 
created it was not a correctable by a one time renaming of the files. To 
resolve the problem I wrote a rename script that the operators must execute 
each time they copy files from the CDs 

2.2 GeoMedia Web 

2.2.1 Problem background 

One of our long-standing utility clients was interested in a web server for 
displaying geographic data. He wanted to ask questions like "where are all 
my open work orders" and see a display on a map with all the selected 
buildings filled in red. He also wanted to click a telephone line on a map 
and have the system trace it back to the central office. The drawing files 
were in Intergraph CAD (Computer Aided Design) file format. Intergraph 
has a product called GeoMedia Web, which will take a one of their CAD 
files, or a portion there of, and reformat it to a standard web format (.CGM) 
for which there exist plug-ins and ActiveX controls. 

Another of our clients, with our help, had populated such a database and 
had developed the queries and Perl scripts to do those kinds of queries. They 
were willing to allow us to use a small sample of the data from the existing 
web site and demonstrate it to the other client. So the task was to take a 
working web site, move it to another server, and reduce the size of the data 
set. 

2.2.2 Computing obstacles and resolutions 

This task turned out to be an adventure in incompatible assumptions and 
hidden configuration files with hardwired information. 

We installed GeoMedia Web on the new server. We copied the existing 
web directories from the working server and attempted to access the home 
page on the new server. We got a "404 page not found" error message. 
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Different web servers assume different default names when you request the 
home page. In one case it was index.htm, in the other it was default.htm 

We next discovered that the GeoMedia Web program had some internal 
configuration files that it used to let itself know what "projects" were 
available. It kept these files within its own directory structure, rather than in 
the Web's directory structure. We had to go back to the original web and 
obtain this file, and then modify it to contain only the demo project, not the 
other five projects that were on the original site. 

Another of the configuration files contained the name of the ODBC entry 
that pointed to the database. On the new machine the ODBC name was 
different and the original user id and password did not exist. 

Still another configuration file contained a list of file names within the 
project. These names were fully qualified and therefore had the wrong drive 
letter and upper-level directories for the new web servers file location. 

Once the cause of each problem and the associated configuration file was 
identified, it was straightforward and easy to fix. However, to discover the 
cause of the problem took some time. In general, the error messages just 
indicated that something did not work or was missing. It took some 
sleuthing, debug tracing and debug prints to find out exactly what was 
wrong. Finding and resolving these problems could have been easier if there 
had been a configuration description and updating tools. 

2.3 GIS version control 

2.3.1 Problem background 

Intergraph offers a suite of programs for working with GIS (Geographic 
Information System) data. It includes a basic nucleus package, an 
administrator package, a digitizing package, several kinds of analysis 
packages, etc. In all, there are about 12 to 15 specialized packages, each of 
which does a collection of related tasks . The specialized packages are sold 
separately. These packages use a database to store some of the configuration 
and attribute information. 

One of the things Intergraph did right some years ago was to develop an 
interface between the packages and the various database engines. They 
created an internal definition of SQL, which all the packages use. This 
interface package processes the internal SQL and transforms it into 
acceptable SQL for the given database engines that is attached at your site. 
Microsoft users will recognize the ODBC model. lntergraph calls it RIS 
(Relational Interface System). 
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2.3.2 Computing obstacle and resolution 

I recently needed to use another one of these packages. I downloaded 
and installed the new package. When I ran it, I immediately got an invalid 
database message. Since the database in question was working with the 
other packages I knew that was not the problem. 

Upon investigation I discovered that lntergraph was in the process of 
upgrading the packages to use Microsoft's ODBC database interface rather 
than RIS. The working packages were the updated versions, which I had 
associated with a Microsoft Access database using the ODBC interface. The 
non-working package had not been updated and would only work through 
the RIS interface. 

To accomplish my project I needed to be able to run the different GIS 
packages that were at different version levels. The solution was to transform 
my Microsoft Access database to an Oracle database and attach the Oracle 
database that would work in both version levels. 

2.4 Upgrade version compatibility problem 

2.4.1 Problem background 

I was working with a commercial package that had a number of 
command-line processing commands, each of which had 6 to 10 parameters. 
These were expressed in the Unix command line style of minus sign, 
followed by a single letter identifying the parameter, followed by a space, 
and then the parameter value: 

task -I input file -0 output file -L level 

We had put together an extensive series of scripts to process some data. 
This collection contained over 10,000 lines of script. We have been using 
these scripts in a production environment for over 12 years now. 

2.4.2 Computing obstacle and resolution 

As you can imagine, over the 12 year life of the system the underlying 
commercial package has gone thorough a five major revisions and many 
minor revisions. Each revision has brought changes in the parameters and 
parameter letters. The changes generally made the letters more consistent 
amongst the various commands, but sometimes additional functionality 
added more parameters. To compound matters, the scripts were being run in 
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several locations, on many different machines, which made it infeasible to 
do a simultaneous switch among versions. 

At first, every time a new version appeared, we would install it on a 
development station and proceed to test the scripts. When an incompatibility 
was found, tests were inserted into the scripts to determiljle which revision 
was running. Based on the revision number different sections of the script 
were executed. After a while the scripts got pretty ugly looking, and it 
became hard for maintainers to follow. 

After the third major upgrade the software/scripts were stable enough that 
we did not install the next two upgrades. So we are now running on packages 
that are two versions (about 6 years) back. This gives us grief when 
problems do occur because we can not get any support from the vendor. In 
addition the hardware maintenance cost on the older machines is expensive 
compared to the purchase cost of today's machines. At some point the 
maintenance costs are going to force us to redevelop all that software. 

The overall problem is that the vendor's architecture did not provide a 
migration path between versions. Nor did it provide a reasonable way to run 
multiple versions of the same software on multiple machines with shared 
scripts. 

2.5 Image library 

2.5.1 Problem background 

The Corporate Communications Department wanted to make available a 
collection of public relation images for projects to use. These were 
photographs of past projects, generally of high quality. These photos would 
be used in marketing brochures and in proposals to other clients. 

One of the primarily software selection criteria was the mandate to allow 
as many people as possible within the corporation to have viewing, selection 
and download capability of these images. 

We considered several packages. Most give us the required functionality 
of filing an image, assigning keywords to that image, performing a search on 
the keywords, displaying thumbnails of the search results, and downloading 
selected images. Of those that met the requirements the costs ranged about 
$2-5K for a server and $20-30 per client plus the cost of deployment. For 
the corporate communications application we estimated a need for 100-200 
clients. Other departments could also use a similar system for the storage 
and deliver of drawing details, inspection report photos and progress report 
photos. 

Instead of purchasing one of these systems, we decided to implement a 
package in-house using a web-based approach. This was almost purely a 
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cost decision, since some of the packages did exactly what we wanted. The 
difficulty of maintaining client viewers on several hundred workstations was 
also a deterrent. 

2.5.2 Computing obstacle and resolution 

The in-house application was built from scratch. It uses Microsoft' s 
active server page technology to access a database that contains information 
about the images. The images are stored in a directory on the web server. 
The system consists of about eight or nine different web pages that are 
populated on demand from the database. 

One of the web pages consists of a display of a number of images that 
had been selected by a search request. To make the system work at 
acceptable speeds this display had to show a thumbnail view of the images. 
The thumbnail would be a 96 by 96 pixel image that would download and 
display very quickly. By clicking on this image the user could obtain a 
larger, more detail picture. 

We found three free or cheap applications that would convert a directory 
of high resolution images to a set of thumbnails. However, all were 
interactive. An operator had to select/display the images, invoke a command 
from a pull-down menu and perhaps enter new file names and/or directory. 
One of these applications would do some commands via a DDE interface. 
Given a DDE interface it is possible to write code that will call the 
application in a batch environment. However, the application did not expose 
the functionality for the process that we were executing. 

Since we were dealing initially with only 500 to 600 images, we decided 
to grunt it out. We used the macro facility of PhotoShop to do the re-sizing 
and naming work. The operator loads the image, invokes the macro, and 
then goes on to the next image. 

As a side note: After the 600 conversions to thumbnails were completed, 
another application became available that allowed the creation of the 
thumbnails in a batch environment. 

2.6 Resume library 

2.6.1 Problem background 

The Document Services Department maintains a collection of resumes of 
the professional staff to be used in writing proposals. The resumes are 
formatted electronically in WordPerfect, using a house style, including 
logos. They are available on a shared server. Proposal-writers who want to 
incorporate a resume into proposals could attach to the server, copy the 
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relevant WordPerfect file to their hard drive and make the necessary 
changes. In general, these changes would be textual, not format. The changes 
might include deleting paragraphs that were not relevant to the proposal and 
adding paragraphs to emphasize relevant experience. Once the proposal is 
submitted the modified version is discarded. 

The task was to make this collection of documents more widely 
available, easier to search and easier to obtain. The obvious choose was to 
make the data available on the internal Intranet. 

2.6.2 Computing obstacle and resolution 

No available WordPerfect-to-HTML converter works well enough. 
Everything we could find butchered at least the house formatting and 
sometimes everything else as well. 

We needed a full-text search. Sometimes a proposal author wanted to 
include a resume of an individual with a particular expertise that was not 
commonly exploited by the company. In such a case knowledge of who had 
that experience would not be available from mental memory. 

Although the resumes are loaded on a central server, the updating is done 
throughout the company by the various departments and individuals. 

To avoid the problems with multiple copies of the same information, the 
resumes were kept on a single shared server. Typically the remote offices 
would not be attached to this server, so they would have to go through the 
procedures to attach to the server before they could access the data. 

We examined several alternatives: 
There exist web browser plug-ins (KeyView, QuickView) that have the 

capability to display the Word Perfect format. However at $30-50/client 
plus installation, the plug-in route is expensive, both in initial outlay and in 
distribution/installation/update costs. 

PDF format is another alternative. The user would view the PDF 
formatted document, but download the Word Perfect version for the 
proposal. Version control is the main reason that this was rejected. Updating 
is done rather frequently and by many people in the WordPerfect formats. 
Getting the updater to create the PDF file whenever a change is made is 
problematical, and would require the Adobe Distiller at many desktops. 
Automatically invoking the PDF converter would have to be programmed. 

Another package (Net-it Central) converts any printable document into 
its own proprietary format (.jdoc), which is displayable by a browser using a 
Java applet. This package will work in a scheduled batch mode, converting 
any documents that have changed since the last time the package was run. 
This batch process creates a table of contents for the documents. However, 
the resulting table of contents isn't wholly satisfactory. Net-it Central does 
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provide a template facility to modify the header/footer/table of contents of 
the resultant pages that it is creating. This solution adopts yet another 
document fonnat, and yet another user interface for controlling a display. 
The buttons for moving around the document are separate controls, not 
integrated into the browser buttons or scroll bar. It is yet another interface 
for the user to know and use. 

Any of the above solutions will work. None of them, however, would 
give us an increase in functionality or availability over using the shared 
server great enough to warrant the expense and aggravation of the change. 
As a result, we decided not change existing procedures. 

2.7 Database communication 

2.7.1 Problem background 

A database server provides verification of customer infonnation for small 
retail companies. The current system has one server and N clients. The user 
works off-line preparing query data. The client machine then calls the server 
via modem. Once a connection is established, it sends the query, retrieves a 
report, and hangs up. The user then displays/prints the report off-line. 

The system has been in place for a number of years and was designed and 
built before the widespread availability of the Internet. The users are 
becoming more sophisticated and they want to replace the telephone 
connections with an Internet connection. 

2.7.2 Computing obstacle and resolution 

The best of all possible worlds would be to find an existing Internet 
interface package that provides the same procedure calls as the modem 
interface package. At present we have not found such a package. 

One alternative is to re-write the modem interface, to establish the 
connection using sockets. The calling sequence and actions are roughly the 
same whether you are using a modem or a socket. The sub tasks are to link 
up with the remote machine, login a session, pass data back and forth, and 
then disconnect. 

Another alternative is to strip out all the modem interface code and 
replace it with remote procedure calls directly to the various routines in the 
server module that do the work, then use the Microsoft DCOM concept to 
establish the connection between the server and the client. 

This task is on the low priority list so we are still looking at technologies 
and evaluating our alternatives. 
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3. DISCUSSION 

As mentioned in the introduction my biggest ongoing problem is the 
difficulty of adapting existing software to new projects, creating the glue that 
makes separate systems work together, and scaling/hardening prototypes for 
production use. 

The examples show some of the problems that I deal with on a day to day 
basis. They illustrate the classes of architectural problem that make a large 
fraction of my work: 
- Interactive programs and procedures are sometimes difficult to convert 

over into a batch environment. 
- Different components sometimes can not be joined together even though 

the data that one component is outputting is of the type expected by 
other. The problems are both simple, like format and sequence of 
information and more complicated, like incompatible demands and 
assumptions. 

- Reasonable existing solutions may be precluded by economic 
restrictions. Either projects just do not get done, or in-house solutions are 
developed which have a limited but adequate set of capabilities. 

- Vendor upgrades will generally cause problems for existing systems that 
are built on top of the product. Vendors tend not to have backward 
compatibility. 

- Software may not scale in size or performance. 
- Not all default assumptions are documented, or their documentation is 

scattered in none obvious places. 
I am trapped in a Turing tarpit: Everything is possible, but nothing is 

easy. The tarpit is not one of creating individual programs to use as 
components: that's pretty straightforward now. The tarpit is filled with the 
glue that we create ad hoc to stick together components. The glue is 
necessary either because the parts were not initially designed to fit together 
(different vendors), or the connection tools are primitive (command scripts), 
or the style of use does not meet production needs (interactive vs batch). 
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Abstract: We report on the problems (and solutions) that we have been facing in 
defining an architecture that enables us to automatically synthesise production 
code (COBOL, CICS, SQL) from a higher level specification language that 
includes both primitives that handle business and architectural requirements. 
Our experience has been drawn from a real-life project in the banking industry 
where object-oriented models for large-scale projects were used. With these 
models, the application architecture was conceived to be robust to change, 
accommodating new behaviour in a systematic and encapsulated way. 

1. INTRODUCTION 

Critical aspects of today's banking management information systems 
include time to market (dealing with component development and re-use), 
evolution (volatility of business requirements), requirement conformance 
(take decisions upon correct information), scale and complexity of systems, 
parallelism, maintenance, robustness and security. Product distribution, 
management information systems and decision support systems are typical 
banking applications facing these problems. 

A particularly acute aspect of the problems that financial companies are 
facing today is the need for a technology migration plan from current 
traditional systems to future open systems. An encapsulation mechanism to 
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hide "legacy systems" is essential to guarantee a smooth transition, coping 
with the business support extensibility. 

Our purpose in this paper is to report on the experience that we have had 
in the combined use of formal architecture and transformations for assisting 
the migration of a banking application. More specifically, we will discuss 
the role of architectures in enabling us to automatically synthesise 
production code (COBOL, CICS, SQL) from a higher level specification 
language that includes both primitives that handle business and architectural 
requirements. 

Our approach is based on the use of object-oriented models for large
scale projects. By using such models, the application architecture can be 
conceived to be robust to change, accommodating new behaviour in a 
systematic and encapsulated way. 

In section 2, we briefly introduce some of the requirements and describe 
the banking project itself. In section 3, the main problems that we had to 
face are identified and the possible solutions are discussed. Finally, in 
section 4, a technique for automating production code based on 
transformations applied over a chosen architecture is presented. 

2. PROBLEM DESCRIPTION 

The global purpose of the project at hand was to migrate and improve the 
information system of a European mid-size bank with the following 
characteristics: 
- 430 branches and 5000 PCs; 
- 1 million transactions per day (average); 
- 2 seconds of maximum response time; 
- System hardware - IBM Mainframe; 
- System software - MVS, CICS, DB2; 
- Language- COBOL, SQL. 

Our task was to migrate and improve the Retail Network, which meant 
re-construction of the Branch Transaction System (more or less 90 
transaction types - opening accounts, withdrawals, deposits, transfer orders, 
etc.). 

The main business requirements for this project were to: 
- Improve the system functionality to deal with the new European currency 

(EURO); 
- "Solve" the year 2000 problem; 
- Adapt the system in order to inter-operate with a new package that 

manages the "financial products" offered by the bank; 
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- Adapt the system so that the bank could be open 24 hours a day (mainly 
because of Internet access). 

The main implementation requirements for the project were: 
- The client tier could not be changed, meaning that the format of all 

communication messages (between the client and the server) had to be 
preserved; 

- The target technology (MVS, CICS, DB2, and COBOL) was fixed; 
- Some functionalities, like check-digit validation, time-stamps, etc. were 

supplied by already existing routines which we were obliged to use; 
- The format of communication with other modules was fixed and not 

changeable; 
- All the technical documentation formats were also fixed and had to be 

followed; 
- Some customer implementation techniques had also to be followed. 

The kinds of problems we had to face in this project are very common to 
real projects. Even with the availability of many commercial CASE Tools 
supporting object-oriented methods (and in particular supporting UML), our 
main problems were to come up with answers to the following two 
questions. 
1. How to synthesize the final production code automatically from the high 

level specifications? 
2. To achieve the previous goal, what language/method should we follow to 

specify the system, including all of its details? 

3. OUTLINE OF THE MODELLING APPROACH 

An obvious answer to the second question above was to choose UML 
because it is a standard visual-modelling notation that is already in place. 
However, from our experience, in order to use UML it is necessary to have 
confidence in all of the notations and techniques that are offered. 
Furthermore, integrating such techniques and notations seems to be a 
difficult task, the feasibility of which needs to be demonstrated particularly 
if the goal is to automatically obtain code from specifications. 

Given these caveats, we decided instead to use a rich, yet integrated and 
precise subset of the UML notations - which we called OBLOG - adding to 
this subset a rigorous and formal specification language supporting the 
generally accepted 00 key properties of 
- support for encapsulation of services and state as objects 
- the ability to create object instances from class templates 
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- the ability to define new object templates by monotonic modification of 
existing ones (base classes) 
OBLOG introduces new specific features such as 

- integration of the concept of module in the class concept as a way to 
introduce different levels of abstraction and encapsulation; 

- specialised language constructors to define object behaviour at distinct 
levels of detail; 

- visibility of objects defined by contracts as an architectural style for the 
construction of complex systems. 
These features are supported with full integration of graphical diagrams 

and textual specifications. 
- The graphical notation is compliant with the UML standard. 
- It allows for a continuous path from high to low-level design 

specifications, always using the same specification language. 
- The textual language is mainly used for the design details. 

An effort was made to provide OBLOG with a well defined semantics as 
a means of supporting key aspects of object-oriented construction such as 
method composition and extension, direct object interaction and event 
multicast, behaviour inheritance, composability, and encapsulation. Some 
properties relevant to wider software engineering were also included, namely 
the ability to specify concurrent behaviour properties and to deal with non
normative behaviour (exception handling); allowing the systematic 
refinement of specifications to code, preferably in a compositional manner. 

According to these principles, an information system is treated as a 
collection of interacting concurrent objects. An object is an abstraction of 
an entity with a persistent identity, a public interface defined by the provided 
services and recognised events and an internal body. The internal body 
includes hidden local methods implementing the public interface, possibly 
calling some hidden local auxiliary services, a computation state indicating 
the object situation in its life cycle, an internal state (represented by its slot 
values) storing the effects of method executions, hidden enabling conditions 
constraining services and reactions, and hidden invariant conditions 
constraining state changes. 

In practice, specifications tend to involve a large amount of objects which 
makes understanding and managing them a real problem. OBLOG deals with 
this problem by providing a decomposition mechanism that allows complex 
objects to be defined that can be later detailed in terms of other simpler 
objects. 

The ability to decompose specifications also allows the analyst to 
introduce new objects at any level of the specification. The way of making 
those new objects, introduced locally for a given complex object, visible to 
other objects, is through a contract mechanism. In this sense, contracts are 
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used to enrich the interface of a certain object, allowing some of its 
components to be seen by others. 

In the following example (Figure 1), an Account object makes a contract 
with a Customer object (named CtWithAccount) . This allows for public 
objects defined in the decomposition of Customer (e.g., CustomerProfile) to 
be used by Account and any object in its decomposition. On the other hand, 
the contract CtWithCustomer allows for obligations to be defined between 
Customer and Account. 

Figure I. Contract between Account and Customer 

Contracts are the privileged architectural style for OBLOG 
specifications. They are used to express dependencies that characterise 
collaboration relationships between objects. These kinds of relationships 
allow the analyst to perceive the way objects work together in order to 
perform some task. 

Table /. Withdrawal obligation requirements 
Detailing obligation to define the withdrawal requirements 
Involved concepts Customer obligations 
X : Account Customer Y own Account 
Y : Customer X 
Z : Amount Balance of Account X is 
W: Balance greater than Amount Z 

owns (Y, X) 
X.balance >= Z 

Deriving formal pecifications from the above requirements 
(Account withdrawal operation declaration) 

Account obligations 
Balance W of Account X 
is decreased by Amount Z 

X.balancc = X.balancc - Z 

PRE-CO DITIO : ?owns(self,Y)=TRUE A D self.Balance() > Z 
OPERATION: withdrawal(Y: Customer, Z: Amount) 
POST-CO DITIO :self. Balance()= old.Balance()- Z 

Contract-based architectures are also used for evaluating the impact of 
changes and to maintain traceability of concepts. In fact, when objects 
contract between them the components they need, they are explicitly, 
creating strong dependencies between them. These dependencies are of the 
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outmost importance, and constitute a very important input when analysing 
the impact of changes in a model. Contracts between objects enable the 
OBLOG tools to check for those dependencies and to make available to the 
analyst, at any level of the specification, detailed reports about them. 

In order to achieve the production code generation, OBLOG provides 
some concepts to define detailed behaviour of operations and interactions. 

Object interaction can be direct (calling a service operation of a known 
target) or indirect (event multicasting). Events are incidents (or stimuli) 
requiring some response. 

An operation may be classified as 
- service -executed by direct demand of a caller object 
- event reaction - starts method execution for every object that recognises 

the event 
- self-initiative action- internal operation initiated only by the owner 

object, when some condition holds 
Conditions may constrain operation execution. Enabling conditions take 

into consideration the internal state of the object, avoiding invariant 
violations. Preconditions are specified only on the service and event 
parameters, indicating the operation client obligations when using that 
service, and giving no guarantee about the result of an operation if its 
method is executed outside them. 

An operation execution is supported by a main method and a set of 
possible alternative methods. The main method is the one selected for 
execution whenever the operation happens. Only when the main method 
can't execute due to its enabled conditions, the object tries an alternative 
method for that operation, if defined. 

Methods are composed of local variables and quarks that exist only 
within the method scope, and during a method execution. A quark is the 
minimal unit of object dynamic specification, with a guard condition and a 
body responsible for the effect on local state and interactions. 

4. OUTLINE OF THE PROPOSED 
ARCHITECTURE 

Having chosen a set of concepts that is rich and precise enough to build 
the intended models (as an answer to the second question posed at the end of 
section 2), the problem is then reduced to the following questions. 
- What architecture should be chosen for COBOL/CICS/DB2 applications 

in order to support these concepts? 
- How do we automatically synthesise production code from the defined 

architectures? 
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- How would we be able to easily interact with already existing 
applications, with that interaction clearly and rigorously expressed in our 
models? 
Figures 2 and 3 give an overview of the approach that we implemented. 

TR02 

TR01 

Figure 2. Logical architecture 

This first figure shows the way we conceived the logical architecture for 
the project. The whole model is seen as an OBLOG object and therefore has 
an interface; in this interface we declared the set of transactions that could be 
called from the clients. Then, for each transaction, we created an active 
object that implements it, and used a delegation mechanism to direct the 
client calls to the right server object. 

Having an object for each transaction enabled us to locate in those 
objects all the auxiliary operations needed for the transaction, implementing 
specific behaviour for that transaction. General business rules were 
implemented in a separate object. 

We also defined two kinds of auxiliary objects. 
1. objects that implemented wrappers to the data persistence mechanism 

(object named DB), to the external applications we had to interact with 
(objects EUCLIDE and BESDEP), and to the operating system (object 
SYSTEM) 

2. an object that aggregated all of the general business rules that were used 
by some (or all) of our transactions (object LOGICAL) 
Objects of the first kind gave us an invariant on the environment, 

allowing us to develop the code of the transactions without having to 
concern ourselves with the external changes that could have an impact on 
our implementation. The second object had a similar objective in the sense 
that it was designed to ensure that all the general business rules were 
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fulfilled by all transactions, and that changes in those rules would have an 
immediate impact on all transactions. 

Between the wrappers referred to above, there was one that hid the data 
persistence mechanism, one for which we will provide a little more detail. 
The OBLOG language has a set of primitives that enables the software 
engineer to directly manipulate the storage and retrieval of objects from disk. 
Though it seemed to be the natural solution to implement data persistence, 
there were several reasons that led us to take a different approach, 
implementing it as an external object. 
- Data persistence is frequently a delicate point in time-critical systems, 

where fine tuning is often needed for performance reasons. 
- In the first stages of development it was not yet decided if all of the data 

persistence was managed by DB2 or if we had also to deal with VSAM 
files. 

- Using a wrapper was already the chosen solution for other "collateral" 
problems. 
In fact, the wrapper that was hiding the data persistence ended up being 

developed as an OBLOG model on its own, and all of the data access code 
was generated automatically. 

TRA SACTIO 
INTERFACE 

Extern 
Reusable 
Code 
(Costumer& 
Account 
Management) 

v 
[COBOL 
/CICS] 

Environment 
Specific 
Routines 
(External 
Code) 
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OPERATING 
SYSTEM 

[COBOUCICS] 

BUSINESS OPERATIO S 
(RESUABLE CODE) 

[COBOL] 

DATABASE ACCESS 
OPERATIO S 
(Data Model Encap ulation Code) 

[COBOUSQL] 

v 
SQL(DB2) 

Figure 3. Physical architecture 

The physical architecture is organised in terms of different layers, each of 
which takes care of specific tasks. 
- The first layer is the interface for the clients and implements the logic of 

each transaction (basically, a sequential composition of logical services). 
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- The second layer contains all the general services that are reused by the 
transactions. This layer contains COBOL code only. 

- The third layer implements all the data persistence operations and is 
coded in COBOL with SQL instructions. 

- Also present are modules that implement the connections to exterior 
services, whether they be operating system services (e.g., get current 
date), standard services (e.g., check-digit validation) or accesses to other 
business applications (e.g. , validate client information, perform changes 
on account balance). 
In summary, the underlying ideas for the proposed architecture were 

- choosing an architecture for COBOL programs/transactions in a way that 
they can be seen as a composition of sub-routines, each one 
implementing an object operation from the specification. With this 
strategy, we can achieve encapsulation of objects. 

- Although polymorphism cannot be implemented using traditional 
COBOL, a certain degree of inheritance (in the perspective of code re
use) can be achieved using a code inclusion mechanism. 

- Persistence of objects can be managed by a relational database (DB2). 
For this purpose, a model object can be created for ensuring data 
persistence, encapsulating all of the data accesses (either supported by 
DB2 or by any other mechanism). The database and the access to SQL 
tables are then defined through a module whose interface consists in 
creation, modification, retrieval, and deletion operations per object, 
hiding internal optimisations; 

- All external components interacting with our system are isolated, in a 
systematic way, clearly defining the communication points and avoiding 
undesired collateral effects. 
The next section describes how, given such an architecture, code can be 

automatically produced from specifications in a rigorous and continuous 
process. 

5. SYNTHESISING PRODUCTION CODE 

Automated code generation is a goal developers have been trying to 
include in project life cycles for a long time. It is usually viewed in two 
ways 
1. as a feature that produces only part of the expected result, which makes it 

largely unused (the pessimistic view), or 
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2. as a feature that, when well managed, can bring significant productivity 
gains (the optimistic view). 
The most common view is probably the first, due to the inability of 

current tools to address some key points in automated generation. The usual 
problems that real projects face are, among others: 
- Insufficient code is generated (most of the times only templates) . 
- Code tuning may not be preserved on consecutive generations. 
- Incremental generation is not available. 
- There is a lack of strong customisation facilities. 

We use the expression "automated generation" in the general sense of 
producing automatically any written information from already built models. 
This typically includes source code and several kinds of documentation. 

With the OBLOG tools we have addressed the previous problems using 
the following key features. 
- use of a rich specification language 
- use of an open repository model 
- support for customisable repository query/report technology and tools 

We now discuss this technology, its principles, and how it was used in 
the project for enabling code generation. 

The generation is a transformation process based in rewrite rules. A 
model transformation process is the application of rules to a set of objects in 
a certain order and according to a given strategy. The principle of a rule is to 
define an elementary transformation on repository objects. By 
transformation we mean the process of querying the repository and 
generating information from it, either in a textual form or into another 
repository (possibly the same). 

In the following we briefly present the characteristics of the rule 
language, with small examples. 
- A rule perform actions. These actions are of several types, including 

elementary actions to output text and values to files, creation and 
modification of objects, output to user, manipulate variables, etc. 

- Rules can access object properties and relations, including the repository 
hierarchy. 

- A rule can use other rules. This allows for rules to be applied in isolation, 
or to be used in a call sequences (procedural way). 

- Iteration mechanisms are provided to iterate over lists of objects, the 
repository hierarchy, numerical intervals, etc. Several groups of actions 
may be defined on iterations to help the processing of a list, like actions 
to be executed before/after the iteration, as a separator/terminator of each 
element, etc 
A rule always has a context object of execution. This provides an object
based view of rules. Whenever a rule is applied there is always an 
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underlying context object. When a rule uses another rule it is implicitly 
applying it on the current context object. 

- Some actions may change the current context object, like when iterating 
through a list objects. An explicit way to change the context to a given 
object is also provided. 

- Rules are polymorphic (on the invocation context object class). A rule 
body may be defined to be applicable only of objects of a certain 
repository class. The same rule may have several bodies for different 
classes. According to the context's class the corresponding rule is applied 
at invocation time. 

- Rule bodies may have pre-conditions. At invocation time, only the rule 
body for which the condition is true will be applied. If no condition is 
true, the rule fails and a warning is given to the user. 

- Rules have a simple organisation structure based on hierarchical modules 
A particular kind of model transformation is source code generation and 

project documentation. In this particular case we used transformations from 
OBLOG representations to RTF and HTML in order to obtain, 
automatically, all the project documentation. And we used transformations 
from OBLOG representations to COBOL, CICS, SQL to automatically 
obtain source code. Figure 4 illustrates some of the above characteristics 
using a simple text generation. The following example concerns the rules to 
generate DDL code, from which we present a simplified fragment. 

<$ public ddlCreateTable> 

<! •creates one table"> 

<foreach Slot> 

<before> 

'-- TABLE ' $0bjName <nl> 

'CREATE TABLE '$ObjName ' (' 

<? v_targetDB K_DB2> ' \\ ' </?> 

<nl> 

</before> 

<call ddlTableAttributeCreation> 

<sep> 

',' <? v_targetDB = K_DB2> ' \\ '</?> 

<nl> 

</sep> 

<after> 

<? v_targetDB K_DB2> ' \\ ' </?> 

<nl>')' 

<? v_targetDB K_SQLSERVER> 

<nl>'go' 
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<else> 

</?> 

'.' 

<nl 2> 

</after> 

</foreach> 

, 

</$> 

<$ COMTClass: :GenerateCHead > : := 

'cl ass ' $0bjName <nl> ' is ' <nl> String utput 
<foreach Slots> 

<before> 
<tab> 'Attributes:' <nl> 

</before> 
<call GenerateCHead> 
<ter> '; ' <nl> </ter> 

</foreach> 

-.itcratio on 
object . ets 

'end' 
</$> 

COMTSlot::GenerateCHead> 
<pre isPublic = TRUE> __.... Value Output 
<tab 2> 'public : ' $0bjName ' : 

<@ Codomain> $0bjName </ @> 

</$> ----------. 

COMTSlot: :GenerateCHead> :: = Conte Switch 

</$> 

<pre isPublic = FALSE> 
<tab 2> 'private: ' $0bjName 
<@ Codomain> $0bjName </@> 

I 
I 
I 
I 
I 
I 
I 
I 
I class Classl 

is 
Attributes: 

publ ic: Slotl : int; 
private: Slot2 : BOOL; 

end 

Figure 4. Some of the rule characteristics 
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In a real project, the ability to customise the generated output is a key 
issue. It is not reasonable to think that a general code generator can serve all 
needs. Several aspects may contribute to this. 
- A project may use a very specific underlying architecture, and specific 

(non-standard) target languages. 
- There are proven results for some design and architecture patterns that 

work better in certain kinds of systems. 
- Each organization has its own rules and standards that must be fulfilled. 

The full customisation of code generation according to well defined 
architectures, enabled us to develop the project with a consistent high quality 
level. 

OBLOG provided us with a default set of rules that performed a standard 
code generation for a CICS/COBOL/DB2 architecture in a MVS 
environment. However, those rules had to be changed to meet the project 
needs, in terms of naming normalisation, machine-dependent details, project 
dependent constraints, etc. In fact, during the development phase of this 
project we had two major examples of almost importance concerning the 
ability of easily customising source code generation. 

First of all, as we said previously, we had to preserve the format of all 
communication messages sent by the client. In those messages, together 
with the semantically important parameters, there was some machine
dependent header information (totally irrelevant to the specification) and 
some obsolete parameters. To make things even more complicated, all of 
the message was compacted in a stream of characters that was the only real 
parameter that physically arrived at the server, and that was supposed to be 
sent back. 

In our models, it made no sense to declare both the obsolete parameters 
and the machine-dependent header parameters. Moreover, we didn't want to 
embed in the specification some machine-dependent details. However, the 
idea was to generate executable code from the models, and in order to do 
that, those architecture-specific details had to be somewhere in our 
specifications. 

We solved this problem by acting upon the set of generation rules, 
defining new rules where those project specifics were expressed. This way, 
we were able to design "clean" models, where only the semantically relevant 
information was defined and no "noise" was introduced, and yet we were 
able to automatically obtain the production code, with all the needed 
particularities. 

The second major problem was a self-inflicted one. Our project was, at 
first, designed to implement only OLTP branch transactions. As we managed 
to do that before the scheduled date, our prize was to implement all of the 
batch transactions as well. When we made the analysis of those transactions, 
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we realised that most of the business rules that were used for the OLTP 
transactions applied to the batch ones. This sounded like good news to us, 
but again we had an architectural problem to solve: the "call" mechanism 
that we used for communicating between the OL TP transactions and the 
object that provided all of the general business rule validations was not 
acceptable for a batch process, because it was too resource consuming (we 
had about 1500 calls in our models) . As the code generation algorithm is 
expressed in a set of rules, it was very simple to change the call mechanism 
into a "code inclusion" mechanism, with no changes on the specification, 
coping with the environment constraints. 

There were other project activities where we envisaged the use of this 
technology, namely model validation and impact analysis, although we did 
not apply it to its full extent. In terms of impact analysis, it is possible to 
produce reports on the interdependencies between objects, in particular the 
ones that are system-critical in terms of change management. 

The rule engine presented above also provides a mechanism on which 
rules may be executed under the control of an integration model. This 
allows for transformations between a source model and a target one to be 
recorded in a way that they can be re-played later. In this way, consistency 
between source and target can be maintained much more easily. Traceability 
reports on transformations or inconsistency reports are easy to produce. 

In the context of this project, this mechanism was applied to integrate the 
conceptual object-oriented OBLOG model and the relational database 
model. Rules were provided to transform a class model into a relational one, 
over which the DDL/DML generation rules were applied. 

We also want to stress that the power of using specific queries on the 
models is increased by the facility that the tool provides in categorising 
objects, and relations between them, in many different ways. By classifying 
the objects according to some user-defined categories (e.g., architectural, 
persistency, interface) the application of transformation rules is much more 
flexible and targets correctly each object role in the system. 

6. CONCLUDING REMARKS 

To really have a continuous process from specification to production 
code it is mandatory to have 
- a rigorous specification language with concepts for business as well as 

architectural requirements, a methodology to explain how to use these 
concepts to create models, and a computational tool environment 

- a process to obtain production code 100% automatically generated from 
the specification models 
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- a flexible mechanism (based in interpreted re-writing rules) to query the 
repository meta-models to make the necessary transformations 
In this approach, extendible transformation rules play an important role, 

because they are the only way to precisely incorporate in a generic software 
development process the specifics of a particular project. 

Recall the three axes approach to the software development cycle (see 
figure 5). The solution must be clearly expressed without any concerns with 
the system architecture or the target software environment. Then, the 
solution must be matched to a given system architecture, and the target 
software environment must be chosen, so that the appropriate set of rules can 
be used. 

Technology bind Z 
(e.g, Windows Clients, 
Server Unix, MVS, DB2, 

CJCS. OOCOBOL) 

Model X 
(e.g. Bank model) 

Architecture Y 
(e.g , client/server 3tiers, 
relational database, OL TP 

system) 

....•. ······ 

Figure 5. Software construction dimensions 

At the moment, we have achieved a clear separation between the domain 
axis and the other ones. However, we still need to work on the separation of 
the system architecture and the software environment, which are currently 
too tied up in the rule scripts. In order to do that, we are working on the 
definition of architecture patterns that will be recognised by rules that will 
contain only the knowledge of how to translate a certain model and a given 
system architecture to a target software environment. 
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Abstract: This paper summarizes the primary criteria for evaluating software/system 
architectures in terms of key system st.akeholders' concerns. It describes the 
Model Based Architecting and Software Engineering (MBASE) approach for 
concurrent definition of a system's architecture, requirements, operational 
concept, prototypes, and life cycle plans. It summarizes our experiences in 
using and refining the MBASE approach on 31 digital library projects. It 
concludes that a Feasibility Rationale demonstrating consistency and 
feasibility of the various specifications and plans is an essential part of the 
architecture' s definition, and presents the current MBASE annotated outline 
and guidelines for developing such a Feasibility Rationale. 

1. ARCHITECTURE EVALUATION CRITERIA 

A good software/system architecture satisfices among a number of 
potentially conflicting concerns. Table I (from Gacek et a!., 1995), 
summarizes the major architecture-related concerns of a number of system 
stakeholders. These serve as a set of evaluation criteria for the architecture. 

For example, the customer is likely to be concerned with getting first
order estimates of the cost, reliability, and maintainability of the software 
based on its high-level structure. This implies that the architecture should be 
strongly coupled with the requirements, indicating if it can meet them. The 
customer will also have longer-range concerns that the architecture be 
compatible with corporate software product line investments. Users need 
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software architectures in order to be able to clarify and negotiate their 
requirements for the software being developed, especially with respect to 
future extensions to the product. The user will be interested at the 
architecting stage in the impact of the software structure on performance, 
usability, and compliance with other system attribute requirements. As with 
architectures of buildings, users also need to relate the architecture to their 
usage scenarios. 

Table 1. Stakeholder concerns as architecture evaluation criteria. 

Stakeholder Concerns I Evaluation Criteria 

Customer 

User 

Architect 
and 
System Engineer 

Developer 

lnteroperator 
Maintainer 

• Schedule and budget estimation 
• Feasibility and risk assessment 
• Requirements traceability 
• Progress tracking 
• Product line compatibility 
• Consistency with requirements and usage scenarios 
• Future requirement growth accommodation 
• Performance, reliability, interoperability, other quality attributes 
• Product line compatibility 
• Requirements traceability 
• Support of tradeoff analyses 
• Completeness, consistency of architecture 
• Sufficient detail for design and development 
• Framework for selecting I assembling components 
• Resolution of development risks 
• Product line compatibility 
• Definition of interfaces with interoperator' s system 
• Guidance on software modification 
• Guidance on architecture evolution 
• Definition of interoperability with existing systems 

Architects and systems engineers are concerned with translating 
requirements into high-level design. Therefore, their major concern is for 
consistency between the requirements and the architecture during the process 
of clarifying and negotiating the requirements of the system. Developers are 
concerned with getting an architectural specification that is sufficient in 
detail to satisfy the customer's requirements but not so constraining as to 
preclude equivalent but different approaches or technologies in the 
implementation. Developers then use the architecture as a reference for 
developing and assembling system components, and also use it to provide a 
compatibility check for reusing pre-existing components. lnteroperators use 
the software architecture as a basis for understanding (and negotiating about) 
the product in order to keep it interoperable with existing systems. The 
maintainer will be concerned with how easy it will be to diagnose, extend or 
modify the software, given its high-level structure. 
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2. THE MBASE LIFE CYCLE APPROACH 

In order to determine whether a software/system architecture is 
satisfactory, with respect to the criteria in Table 1, one needs considerably 
more than a specification of components, connectors, configurations and 
constraints. Considering the architecture as an island, entire of itself, puts 
one at a serious disadvantage in evaluating its adequacy. 

We have been developing, applying and refining an approach called 
MBASE (Model-Based Architecting and Software Engineering) (Boehm
Port, 1998) to address this issue. It focuses on ensuring that a project's 
product models (architecture, requirements, code, etc .), process models 
(tasks, activities, milestones), property models (cost, schedule, performance, 
dependability), and success models (stakeholder win-win, IKIWISI (I'll 
Know It When I See It), business case) are consistent and mutually 
enforcing. 

3. MBASE OVERVIEW 

Figure 1 summarizes the overall framework used in the MBASE 
approach to ensure that a project's success, product, process and property 
models are consistent and well integrated. At the top of Figure 1 are various 
success models, whose priorities and consistency should be considered first. 
Thus, if the overriding top-priority success model is to "Demonstrate a 
competitive agent-based data mining system on the floor of COMDEX in 9 
months," this constrains the ambition level of other success models 
(provably correct code, fully documented as a maintainer win condition). It 
also determines many aspects of the product model (architected to easily 
shed lower-priority features if necessary to meet schedule), the process 
model (design-to-schedule), and various property models (only portable and 
reliable enough to achieve a successful demonstration). 

The achievability of the success model needs to be verified with respect 
to the other models. In the 9-month demonstration example, a cost-schedule 
estimation model would relate various product characteristics (sizing of 
components, reuse, product complexity), process characteristics (staff 
capabilities and experience, tool support, process maturity), and property 
characteristics (required reliability, cost constraints) to determine whether 
the product capabilities achievable in 9 months would be sufficiently 
competitive for the success models. Thus, as shown at the bottom of Figure 
1, a cost and schedule property model would be used for the evaluation and 
analysis of the consistency of the system's product, process, and success 
models. 
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Success Models 
Win-Win, IKIW lSI, Business-Case, Mission Models , ... 

Process Models 
• Life-C yc Ie 

-Waterfall 
- E vo lutio nary 
- Incremental 
- WinWin Spiral 

• Anchor Points 
• Risk Management 
• Activities 

-CMM KPAs 

Property Models 

Product Models 

- Requirements 
-Architecture 
-Code 
-Documentation 

• Packaging 
-Embedded 
- S brink Wrap 
-Turn Key 

• Product Line 

Cost & Schedule , Performance, Assurance, Usability, ... 

Figure I. MBASE integration framework. 

In other cases, the success model would make a process model or a 
product model the primary driver for model integration. An IKIWISI (I'll 
know it when I see it) success model would initially establish a prototyping 
and evolutionary development process model, with most of the product 
features and property levels left to be determined by the process. A success 
model focused on developing a product line of similar products would 
initially focus on product models (domain models, product line 
architectures), with process models and property models subsequently 
explored to perform a business-case analysis of the most appropriate breadth 
of the product line and the timing for introducing individual products. 

3.1 Anchor point milestones 

In each case, property models are invoked to help verify that the project's 
success models, product models, process models, and property levels or 
models are acceptably consistent. It has been found advisable to do this 
especially at two particular "anchor point" life cycle process milestones 
summarized in Table 2 (Boehm, 1996). 

The first milestone is the Life Cycle Objectives (LCO) milestone, at 
which management verifies the basis for a business commitment to proceed 
at least through an architecting stage. This involves verifying that there is at 
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least one system architecture and choice of COTS/reuse components which 
is shown to be feasible to implement within budget and schedule constraints, 
to satisfy key stakeholder win conditions, and to generate a viable 
investment business case. 

Table 2. Content ofLCO and LCA packages. 

Milestone 
Element 

Definition of 
Operational 
Concept 

System 
Prototype(s) 

Definition of 
System 
Requirements 

Definition of 
System and 
Software 

Architecture 

Definition of 
Life-Cycle 
Plan 

Feasibility 
Rationale 

Life Cycle Objectives (LCO) 

• Top-level system objectives and 
scope 

- System boundary 
- Environment parameters and 

assumptions 
- Evolution parameters 
• Operational concept 
• Operations and maintenance 

scenarios and parameters 
• Organizationallife-cycle 

responsibilities (stakeholders) 

• Exercise key usage scenarios 
• Resolve critical risks 

• Top-level functions. interfaces. 
quality attribute levels, including: 

Growth vectors 
Priorities 

• Stakeholders' concurrence on 
essentials 

• Top-level definition of at least one 
feasible architecture 

- Physical and logical elements and 
relationships 

- Choices of COTS and reusable 
software elements 

- Identification of infeasible 
architecture options 

• Identification of life-cycle 
stakeholders 

- Users. customers, developers, 
maintainers, interfacers, general 
public, others 

• Identification of life-cycle process 
model 

- Top-level stages, increments 
- Top-level WWWWWHH* by stage 

• Assurance of consistency among 
elements above 

- Via analysis, measurement, 
prototyping, simulation, etc. 

• Business case analysis for 
requirements, feasible architectures 

Life Cycle Architecture (LCA) 

• Elaboration of system objectives and 
scope by increment 

• Elaboration of operational concept by 
increment 

• Exercise range of usage scenarios 
• Resolve major outstanding risks 

• Elaboration of functions, interfaces, 
quality attributes by increment 

Identification of TBDs (to-be
determined items) 

• Stakeholders' concurrence on their 
priority concerns 

• Choice of architecture and elaboration 
by increment 

- Physical and logical components, 
connectors, configurations. constraints 

- COTS, reuse choices 
- Domain-architecture and architectural 

style choices 
- Architecture evolution parameters 

• Elaboration of WWWWWHH* for 
Initial Operational Capability (IOC) 

- Partial elaboration, identification of 
key TBDs for later increments 

• Assurance of consistency among 
elements above 

• All major risks resolved or covered by 
risk management plan 

* WWWWWHH: Why, What, When, Who, Where, How, How Much. 
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The second milestone is the Life Cycle Architecture (LCA) milestone, at 
which management verifies the basis for a sound commitment to product 
development (a particular system architecture with specific COTS and reuse 
commitments which is shown to be feasible with respect to budget, schedule, 
requirements, operations concept and business case; identification and 
commitment of all key life-cycle stakeholders; and elimination of all critical 
risk items). The AT&T/Lucent Architecture Review Board technique 
(Marenzano, 1995) is an excellent management verification approach 
involving the LCO and LCA milestones. The LCO and LCA have also 
become key milestones in Rational's Objectory Process or Unified 
Management (Rational, 1997; Royce, 1998). 

4. EXAMPLE MBASE APPLICATION 

4.1 Digital library multimedia archive projects 

Our first opportunity to apply the MBASE approach to a significant 
number of projects came in the fall of 1996. We arranged with the USC 
Library to develop the LCO and LCA packages for a set of 12 digital library 
multimedia applications. The work was done by 15 6-person teams of 
students in our graduate Software Engineering I class, with each student 
developing one of the 6 LCO and LCA package artefacts shown in Table 2. 
Three of the 12 applications were done by two teams each. The best 6 of the 
LCA packages were then carried to completion in our Spring 1997 Software 
Engineering II class. 

Table 3. Example library multimedia problem statements. 
Problem Set #2: Photographic Materials in Archives 
Jean Crampon, Hancock Library of Biology and Oceanography 

There is a substantial collection of photographs, slides, and films in some of the Library's 
archival collections. As an example of the type of materials available, I would like to suggest 
using the archival collections of the Hancock Library of Biology and Oceanography to see if 
better access could be designed. Material from this collection is used by both scholars on 
campus and worldwide. Most of the Hancock materials are still under copyright, but the 
copyright is owned by USC in most cases. 

Problem Set #8: Medieval Manuscripts 
Ruth Wallach, Reference Center, Doheny Memorial Library 

I am interested in the problem of scanning medieval manuscripts in such a way that a 
researcher would be able to both read the content, but also study the scribe's hand, special 
markings, etc. A related issue is that of transmitting such images over the network. 
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Project Objectives 
Create the artifacts necessary to establish a successful life cycle architecture and plan for adding a 
multimedia access capability to the USC Library Information System. These artifacts are: 

I. An Operational Concept Definition 
2. A System Requirements Definition 
3. A System and Software Architecture Definition 
4. A Prototype of Key System Features 
5. A Life Cycle Plan 
6. A Feasibility Rationale, assuring the consistency and feasibility of items 1-5 

Team Structure 
Each of the six team members will be responsible for developing the LCO and LCA versions of one of 
the six project artifacts. In addition, the team member responsible for the Feasibility Rationale will serve 
as Project Manager with the following primary responsibilities: 

I. Ensuring consistency among the team members' artifacts (and documenting this in the Rationale). 
2. Leading the team's development of plans for achieving the project results, and ensuring that project 

performance tracks the plans. 

Project Approach 
Each team will develop the project artifacts concurrently, using the Win Win Spiral approach defined in 
the paper "Anchoring the Software Process." There will be two critical project milestones: the Life Cycle 
Objectives (LCO) and Life Cycle Architecture (LCA) milestones summarized in Table I. 
The LCA package should be sufficiently complete to support development of an Initial Operational 
Capability (IOC) version of the planned multimedia access capability by a CS577b student team during 
the Spring 1997 semester. The Life Cycle Plan should establish the appropriate size and structure of such 
a team. 

Win Win User Negotiations 
Each team will work with a representative of a community of potential users of the multimedia capability 
(art, cinema, engineering, business, etc.) to determine that community's most significant multimedia 
access needs, and to reconcile these needs with a feasible implementation architecture and plan. The 
teams will accomplish this reconciliation by using the USC Win Win groupware support system for 
requirements negotiation. This system provides facilities for stakeholders to express their Win Conditions 
for the system; to define Issues dealing with conflicts among Win Conditions; to support Options for 
resolving the Issues; and to consummate Agreements to adopt mutually satisfactory (win-win) Options. 
There will be three stakeholder roles: 

• Developer: The Architecture and Prototype team members will represent developer concerns, such as 
use of familiar packages, stability of requirements, availability of support tools, and technically 
challenging approaches. 

• Customer: The Plan and Rationale team members will represent customer concerns, such as the need 
to develop an lOC in one semester, limited budgets for support tools, and low-risk technical 
approaches. 

• User: The Operational Concept and Requirements team members will work with their designated user
community representative to represent user concerns, such as particular multimedia access features, 
fast response time, friendly user interface, high reliability, and flexibility of requirements. 

Major Milestones 
September 16, 1996 
October 14, 1996 
October 21-23, 1996 
October 28, 1996 
November 4, 1996 
December 6, 1996 

Individual Project Critique 

All teams formed 
Win Win Negotiation Results 
LCO Reviews 
LCO Package Due 
Feedback on LCO Package 
LCA Package Due, Individual Critique Due 

The project critique is to be done by each individual student. It should be about 3-5 pages, and should 
answer the question, "If we were to do the project over again, how would we do it better - and how does 
that relate to the software engineering principles in the course?" 

Figure 2. Multimedia archive project guidelines. 
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The multimedia archives covered such media as photographic images, 
medieval manuscripts, Web-based business information, student films and 
videos, video courseware, technical reports, and urban plans. The original 
Library client problem statements were quite terse, as indicated in Table 3. 
Our primary challenge was to provide a way for the student teams to work 
with these clients to go from these terse statements to an LCO package in 7 
weeks and an LCA package in 11 weeks. 

We enabled the students and clients to do this by providing them with a 
set of integrated MBASE models focused on the stakeholder win-win 
success model; the WinWin Spiral Model as process model; the LCO and 
LCA artifact specifications and a multimedia archive domain model as 
product models; and a property model focused on the milestones necessary 
for an 11-week schedule (see Figure 2). Further details are provided in 
(Boehm et al, 1997) and (Boehm et al, 1998). 

4.2 MBASE model Integration for LCO stage 

The integration of these models for the LCO stage is shown in Figure 3. 
The end point at the bottom of Figure 3 is determined by the anchor point 
postconditions or exit criteria for the LCO milestone (Boehm, 1996): having 
an LCO Rationale description which shows that for at least one architecture 
option, that a system built to that architecture would include the features in 
the prototype, support the concept of operation, satisfy the requirements, and 
be buildable within the budget and schedule in the plan. 

Figure 3. MBASE model integration: LCO Stage 
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The beginning point at the top of Figure 3 is the multimedia archive 
extension domain model furnished to the students, illustrated in Figure 4. 
The parts of the domain model shown in Figure 4 are the system boundary, 
its major interfaces, and the key stakeholders with their roles and 
responsibilities. The domain model also established a domain taxonomy 
used as a checklist and organizing structure for the Win Win requirements 
negotiation system furnished to the teams. 

I. System Block Diagram: 
This diagram shows the usual block diagram for extensions providing access to and 
administration of multimedia information archive assets from an existing text-based 
information archive (lA) System: 

System Boundary A System Infrastructure Opera. 
and Maintenance (O&M) 

The system boundary focuses on the automated applications portion of the operation, 
and excludes such entities as users, operators, maintainers, assets, and infrastructure 
(campus networks, etc.) as part of the system environment. The diagram abstracts out 
such capabilities as asset catalogues and direct user access to O&M support and asset 
managers. 

2. Some Stakeholder Roles and Responsibilities 
2 .1 Asset Managers. Furnish and update asset content and catalogue descriptors. 
Ensure access to assets. Provide accessibility status information. Ensure asset-base 
recoverability. Support problem analysis, explanation, training, instrumentation, 
operations analysis. 
2.2-2.5 Similar roles and responsibilities defined for system operators, users, 
maintainers, and infrastructure service providers. 

Figure 4. Multimedia archive extension domain model 

As shown at the left of Figure 3, this taxonomy was also used as the table 
of contents for the requirements description, ensuring consistency and rapid 
transition from WinWin negotiation to requirements specification. The 
domain model also indicated the most frequent risks involved in multimedia 
archive applications. This was a specialization of the list of 10 most 
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frequent software risks in (Boehm, 1989), including performance risks for 
image and video distribution systems; and risks that users could not fully 
describe their win conditions, but would need prototypes (IKIWISI). 

The sequence of activities between the beginning point and the LCO end 
point were determined by the Win Win Spiral Model. As illustrated in Figure 
5, this model emphasizes stakeholder win-win negotiations to determine 
system objectives, constraints and alternatives; and early risk identification 
and resolution via prototypes and other methods (Boehm-Bose, 1994). 

I. Identify rext-level 
Stakeholders 

7. Review, comnitrrent 

6. Validate prodoct 
and process 
definitions 

5. D::fine rext level of 
pr<XIoct and process -
in:luding partitions 

Recrncile win corrlitions. 
Fstablish next level 
objectives, constraints, 
alternatives 

4. Evaluate prodoct and 
JX'(ICeSS alternatives. 
Resolve Risks 

Figure 5. The Win Win spiral model 

4.3 Project results 

We were not sure how many of the 6-student teams would be able to 
work concurrently with each other and with their Library clients to create 
consistent and feasible LCO packages in 6 weeks and LCA packages in 11 
weeks. With the aid of the integrated MBASE models, all 15 of the student 
teams were able to complete their LCO and LCA packages on time (3 of the 
applications were done separately by 2 teams). The Library clients were all 
highly satisfied, often commenting that the solutions went beyond their 
expectations. Using a similar MBASE and Win Win Spiral Model approach, 
6 applications were selected and developed in 11 weeks in the Spring of 
1997. Here also, the Library clients were delighted with the results, with one 
exception: an over-ambitious attempt to integrate the three photographic
image applications into a single product. 

The projects were extensively instrumented, including the preparation of 
project evaluations by the librarians and the students. These have led to 
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several improvements in the MBASE model provided to the student teams 
for Fall 1997, in which 16 teams developed LCO and LCA packages for 15 
more general digital library applications. For example, in 1996, the Win Win 
negotiations were done before the LCO milestone, while the prototypes were 
done after the LCO milestone. This led to considerable breakage in the 
features and user interface characteristics described in the LCO documents, 
once the clients exercised the prototypes. As a result, one of the top three 
items in the course critiques was to schedule the prototypes earlier. This was 
actually a model clash between a specification-oriented stakeholder win-win 
success model and the prototype-oriented IKIWISI success model. The 
1997 MBASE approach removed this model clash by scheduling the initial 
prototypes to be done concurrently with the Win Win negotiations. 

Another example was to remove several redundancies and overlaps from 
the document guidelines: as a result, the 1997 LCO packages averaged 110 
pages as compared to 160 in 1996. The 1997 LCA packages averaged 154 
pages as compared to 230 in 1996. A final example was to strongly couple 
the roles, responsibilities, and procedures material in the Operational 
Concept Description with the product transition planning, preparation, and 
execution activities performed during development. Further information on 
the 1997-98 projects is provided in (Boehm et al., 1998). 1996-97 and 1997-
98 projects can be accessed via the USC-CSE web site at 
http://sunset.usc.edu/classes/classes.html. 

5. THE ARCHITECTURE FEASIBILITY 
RATIONALE AS FIRST-CLASS CITIZEN. 

As indicated in Table 2, the MBASE approach treats the Feasibility 
Rationale as a first-class citizen in the Life Cycle Objective and Life Cycle 
Architecture packages. For each of the LCO and LCA components in Figure 
2, we have developed an annotated outline and set of guidelines for 
producing the component. Below is the current version for the Feasibility 
Rationale. 

5.1 Document overview 

Why (objective): The Feasibility Rationale (FR) is the glue that holds 
the other components of the Life Cycle Objective (LCO) and Life Cycle 
Architecture (LCA) packages together. It provides evidence of the feasibility 
and consistency of the LCO and LCA package components. 

What (content): The Feasibility Rationale includes a business case 
analysis demonstrating that the resources invested in the project will 
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generate capabilities providing a satisfactory return on the investment. It also 
includes several satisfaction rationales addressing the various aspects of this 
question: 

If I build the system using the given architecture and life cycle process, 
will it satisfy the requirements, support the operational concept, remain 
faithful to the key features determined by the prototype, and be achievable 
within the budgets and schedules in the life cycle plan? 

Intended audience: The primary audiences are the LCO and LCA 
Architecture Review Boards. The parts dealing with client satisfaction must 
be understandable by the client representatives on the ARB. The technical 
parts must be sufficiently detailed and well-organized to enable the peers and 
technical experts to efficiently assess the adequacy of the technical rationale. 
The FR is also of considerable value to developers and other stakeholders in 
providing a rationale for key decisions made by the project. 

Participants: The project manager is responsible for the overall content 
of the FR. Frequently, the business case is prepared by the author of the 
Operational Concept Description (OCD). Demonstrating the feasibility and 
consistency of portions of the LCO and LCA packages is the shared 
responsibility of the associated project participants. Other stakeholders may 
make their concurrence on win-win agreements contingent on demonstration 
of the agreement's feasibility in the Feasibility Rationale. 

High level dependencies: The thoroughness of the Feasibility Rationale 
is dependent on the thoroughness of all the other LCO and LCA 
components. Issues incompletely covered in the Feasibility Rationale are a 
source of risk which should be covered in the Life Cycle Plan's (LCP) Risk 
Management section. 

Overall tool support: Well-calibrated estimation models for cost, 
schedule, performance, or reliability are good sources of feasibility rationale. 
Others are prototypes, simulations, benchmarks, architecture analysis tools, 
and traceability tools (See Table 4 below for further information). The 
rationale capture capability in the Win Win tool is also useful. 

5.2 Document outline 

This section provides a table of contents for the Feasibility Rationale. 
Even though not all projects are alike, the people responsible for the 
Feasibility Rationale should consider all of these items carefully. If it is felt 
that some of them are not applicable, it should be noted as such for future 
reference. Similarly, the document outline can be expanded if there is a need. 
The recommended table of contents for the Feasibility Rationale document is 
as follows: 
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1. Overview 
1.1. Software Product Objectives 
1.2. Feasibility Rationale Objectives 

2. Product Rationale 
2.1. Business Case Analysis 

2.1.1. Development Cost Estimate 
2.1.2. Operational Cost Estimate 
2.1.3. Estimate of Value Added and Relation to Cost 

2.2. Requirements Satisfaction 
2.2.1 . Capability Requirements 
2.2.2. Interface Requirements 
2.2.3. Quality Requirements 
2.2.4. Evolution Requirements 

2.3. Operational Concept Satisfaction 
2.4. Stakeholder Concurrence 

3. Process Rationale 
3.1. System Priorities 
3.2. Process Match to System Priorities 
3.3. Consistency of Priorities, Process and Resources 

523 

The following will explain in more detailed each of the items above, 
provide a rationale for them, show their dependencies to other sections 
within this document and to other documents, provide examples of their use, 
and give tool support recommendations whenever possible. 

5.3 Document guidelines and rationale' 

1. Overview 
This section tells why the product and the plan are being developed. 

1.1. Software Product Objectives 
Provide a link to Section 1.1 of the Operational Concept Description 
(OCD). It contains a short description, in user terms, of the primary 
functions the product will perform, of its envisioned concept of 
operation, and of the user benefits expected from the product. 

1.2. Feasibility Rationale Objectives 
•To demonstrate that a system built using the specified architecture 
and life cycle process will satisfy the requirements, support the 
operational concept remain faithful to the key features determined by 

1 Text in bold can be used as is. Text in roman font indicates where project specific 
information needs to replace the general description provided. Text in italic font indicates 
specialization for Software Engineering I that would likely be tailored differently for other 
kinds of projects. 
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the prototype, and be achievable within the budgets and schedules in 
the life cycle plan. 
•To rationalise development decisions in a way the prime audience (the 
customer and users) can understand 
•To enable the customers to participate in the decision process and to 
express their satisfaction with the product 

Integration and dependencies with other components: 
• Item 1.1 is a link to the Objective items in Section 1.1 of the OCD. 
• Item 1.2 may be used as is. 

Additional guidelines: 
None needed. 

2. Product Rationale 
This section furnishes the rationale for the product being able to satisfy 
the system specifications and stakeholders (e.g. customer, user). 

2.1. Business Case Analysis 
The Section describes the impact of the product in mainly monetary 
terms. How much does it cost to develop and to operate, how much 
added value does it generate, and thus how high is its return on 
investment. However, non-monetary factors may be also decisive. For 
instance, "added value" can include the improved quality of the service 
provided by the product. 

2.1.1. Development Cost Estimate 
Provide a summary of the full development cost, including hardware, 
software, people, and facilities costs. 

2.1.2. Operational Cost Estimate 
Provide a summary of the operational cost. Include also maintenance and 
administration cost and other costs which accumulate during transition of 
the product into production use (e.g. training). 

2.1.3. Estimate of Value Added and Relation to Cost 
Provide a summary of cost with and without the product and how much 
value is added by it. The value added may also describe non-monetary 
improvements (e.g. quality, response time, etc.) which can be critical in 
customer support and satisfaction. Include a return-on-investment analysis 
as appropriate. 

2.2. Requirements Satisfaction 
This section summarizes how well a system developed to the product 
architecture will satisfy the system requirements. 
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2.2.1. Capability Requirements 
Show evidence that the system developed to the product architecture will 
satisfy the capability requirements, e.g., "capability 
described/demonstrated/exercised as part of included COTS component", 
with a pointer to the results. There is no need to restate obvious mappings 
from the requirements to the architecture. 

2.2.2. Interface Requirements 
Show evidence that the system developed to the product architecture will 
satisfy the interface requirements. These should include the interfaces and 
standards associated with the University Computing Services infrastructure 
and the USC Integrated Library System. 

2.2.3. Quality Requirements 
Show evidence that the system developed to the product architecture will 
satisfy the quality requirements. 

2.2.4. Evolution Requirements 
Show evidence that the system developed to the product architecture will 
satisfy the evolution requirements. 

2.3. Operational Concept Satisfaction 
Summarize product's ability to satisfy key operational concept elements, 
such as scenarios. 

2.4. Stakeholder Concurrence 
Summarize stakeholder concurrence by reference to WinWin negotiation 
results, memoranda of agreements, etc. Stakeholders may be anybody 
involved in the development process. For instance, a developer may claim 
that a certain response time cannot be achieved in a crisis mode unless 
nonessential message traffic is eliminated. Similarly, a customer may claim 
that the product does not satisfy his/her win conditions (e.g. cost). This 
section serves as a record of how such claims were resolved to the 
stakeholders' satisfaction. 

Integration and dependencies with other components: 
This section is highly dependent on all other documents. The cost 

estimates in Item 2.1 are strongly dependent on development cost (from 
LCP) and operational cost (from OCD). Item 2.2 maps requirements to 
design, which create a high dependency between the System and Software 
Requirements Description (SSRD), the System and Software Architecture 
Description (SSAD), and often the prototype. Similarly, item 2.3 creates a 
dependency between the OCD, the SSAD, and often the prototype. The 
stakeholder concurrence in Item 2.4 provides the basis for stakeholders to 
ratify their commitment to the project LCO and LCA packages at the ARB 
meetings. 
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Additional guidelines: 
Table 4 summarizes the strengths and potential concerns for leading 

architecture attribute analysis methods. The rationale capture capability m 
the Win Win tool is also useful. 

Table 4. Summary of software architecture attribute analysis methods 
Method Examples Strengths Potential Concerns 

Current RDD-100, StP, 

ADLs UMURose 

New Rapide, Unicon, 

Generation Wright 

ADLs 

Scenario SAAM 

Analysis 

Simulation; Network 2.5; 

Execution UNAS 

Parametric COCOMO et 

Modeling al., Queuing 

Models, 

Reliability 

Block Diagrams 

3. Process Rationale 

• Static integrity (partial) 

• Traceability 

• Static, dynamic integrity 

• Some performance 

• Subjective attributes 

- Usability, Modifiability 

• Human-machine system 

attributes (partial) 

- Safety, security, 

survivability 

• Performance Analysis 

• Some dynamic integrity 

• Some reliability, 
survivability 

• Cost, schedule analysis 

• Reliability, availability 

analysis 

• Performance Analysis 

• Dynamic integrity 

• Performance, cost, schedule analysis 

• Subjective attributes 

• Model granularity and scalability 

• Cost, schedule, reliability, full 

performance 

• Subjective attributes 

• Largely manual, expertise-dependent 

• Scenario representativeness; method 

scalability 

• Verification/Validation/Accreditation 

• Integrity, performance, cost, schedule 

analysis 

• Model granularity and scalability 

• Input scenario representativeness 

• Verification/Validation/Accreditation 

• Cost, schedule, subjective attributes 

• Subjective attributes 

• Static, dynamic integrity 

• Verification/Validation /Accreditation 

• Input validation 

This sections describes the rationale of the development process being 
able to satisfy the stakeholders (e.g. customer). 

3.1. System Priorities 
Summarize priorities of desired capabilities and constraints. Priorities may 
express time and date but also quality and others. (e.g. performance). 

3.2. Process Match to System Priorities 
Provide rationale for ability to meet milestones and choice of process model 
(e.g. anchor points in spiral model or increments, etc.). 

3.3. Consistency of Priorities, Process and Resources 
Provide evidence that priorities, process and resources match. E.g. budgeted 
cost and schedule are achievable; no single person is involved on two or 
more full-time tasks at any given time. 
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Integration and dependencies with other components: 
Like the previous section, this section is also highly dependent on other 

documents, foremost the Life Cycle Plan (LCP) and System and Software 
Requirements Description (SSRD). Item 3.1 maps primarily to the 
capabilities in SSRD and milestones in LCP 2.2 and 2.3. Item 3.2 is a 
summary of LCP 4.2 which emphasis on priorities above. Item 3.3 is 
reasoning that the LCP is consistent and doable (especially LCP 4). 

5.4 Potential pitfalls/best practices 

The Feasibility Rationale is highly dependent on other components. 
A void duplicating these where mappings among components are obvious. In 
writing the Feasibility Rationale you should keep in mind that the primary 
audience is the Architecture Review Board (ARB), a mix of technical 
experts and general stakeholders. Portions of the FR should be tailored to the 
assessment needs of the various ARB members. Common pitfalls include 
over-reliance on vendor claims, neglect of critical off-nominal scenarios, and 
over-analysis of low-priority issues. 

5.5 Quality criteria 

The key quality criteria for the Feasibility Rationale are derived from its 
pitfalls. It needs to be highly consistent with the other components and it 
needs to be able to answer the key stakeholder questions about the feasibility 
of the product. It also needs to present selected system views demonstrating 
feasibility and consistency among the other components. 

6. CONCLUSIONS 

In specifying a software/system architecture, it is important not to treat 
the architecture as an isolated island. The architecture needs to be related to 
the operational concept it is supporting; the requirements the system will 
satisfy; the life cycle plan identifying the system's stakeholders, budgets and 
schedules; and any prototypes providing views of the desired system. 

The satisfaction of these relationships is best recorded in a Feasibility 
Rationale for the architecture. For effective management review and 
commitment to the architecture, it is essential that the Feasibility Rationale 
be a first-class citizen in the architecture package. It is encouraging to note 
that this is so in the current draft of IEEE Standard 1471, "Recommended 
Practice for Architecture Description", (IEEE, 1998, Section 5.6) 
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Abstract: The importance of software architecture in the design of large software 
systems is unquestioned in both the academic and industrial software 
engineering communities. At Siemens, software is an important, often 
dominant, factor in the success of our products and this trend towards software 
is increasing as software becomes even more prevalent in our product 
spectrum. Our experience indicates clearly that attention to three aspects - to 
people, to process, and, in particular, to architecture - are important for 
successful product developments. This paper lists some of the challenges that 
we face in the area of software architecture, what approaches we have taken 
as well as a set of issues that require further attention in future . 

1. INTRODUCTION 

The importance of software architecture in the design of large software 
systems is unquestioned in both the academic and industrial software 
engineering communities. In the past few years, there has been a growing 
body of good literature (e.g. , Bass, Clements and Kazman, 1997, Garlan and 
Shaw, 1996, Jacobson, Griss and Jonsson, 1997, Kruchten, 1995, Perry, 
1997) on the topic of software architecture as well as conferences and 
workshops focusing on this topic. At Siemens, we welcome the efforts, such 
as this Working IFIP Conference on Software Architecture, to provide a 
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forum for practicing software architects to exchange information with the 
academic and research community in this area. Practicing software 
architects are, generally, very busy people because their skills are so 
important and are in such high demand. We hope that this event will help 
make it possible for practicing architects to learn as quickly and effectively 
as possible what techniques are currently available and what techniques will 
soon be sufficiently mature to be applied. 

Siemens is a large, globally-operating, electrical engineering and 
electronics company with a very diverse range of products. Siemens consists 
of about a dozen groups that cover the core business areas: 
- energy (e.g., power plants) 
- industry (e.g., industrial plants) 
- communication (e.g., switching systems and mobile phones) 
- information (e.g., software products) 
- transportation (e.g., control systems for trains and cars) 
- health care (e.g., medical imaging equipment) 
- components (e.g., ASICs) 
- lighting 

Global development (e.g., geographically distributed and culturally 
diverse teams all working on one project) and global sales (e.g., country
specific customization of products) play a significant role in the product 
development of software, systems, and industrial plants at Siemens. Some of 
our products are highly customized individual solutions; others are more 
oriented towards the mass market. Many of our products have strong 
requirements in the areas of safety, reliability, robustness, and performance 
and this is further complicated by the fact that this often has to be achieved 
in real time. Furthermore, the maintainability and serviceability (sometimes 
over decades!), as well as the evolution of our products is important for our 
businesses. 

Due to the nature of our products, many of the Siemens groups have had 
a strong orientation towards hardware, electrical engineering, or mechanical 
engineering. But software is increasingly becoming an important, often 
dominant, factor in the success of their products and this trend towards 
software seems to be increasing more rapidly all the time. To give you a 
feeling for the importance of software at Siemens, consider that: 
- More than 50% of our enterprise-wide sales stem from software-based 

products or systems. 
- 27,000 software engineers are employed worldwide (about 10% of our 

employees). 
- Some of our projects are very large, global projects, e.g., one with 2000 

developers in 13 countries. 
We see software as the key to being able to meet the challenges of 

flexibility, time-to-market, and reducing costs while maintaining quality. 
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Because of the importance of software for our company an enterprise-wide 
"software initiative" was founded in 1995 as part of the "top" initiative 
(Gonauser, 1997). A dozen groups (e.g., automation, automotive, train 
transportation, health care, communication, etc.) as well as regional units 
like Siemens Austria in Vienna and Siemens Switzerland in Zurich actively 
participate in the enterprise-wide software initiative. One of our main goals 
of this initiative is to promote an intensive and extensive exchange of 
information in regards to people, process, and architecture within the 
various Siemens groups, so that we can learn from each other and improve 
and help maintain our software expertise. The software initiative focuses on 
particular topics that are most important to their businesses, e.g., cycle time, 
cost, quality, process innovation, architecture evolution, measurement-based 
management, component-oriented development, etc. 

The authors have a good overview of the challenges facing our business 
groups in the areas of software, in particular in the areas of software 
architecture, software processes, and the human factors involved in both. 
This paper lists some of the challenges that we face (especially in the area of 
software and systems architecture), what progress we have made thus far, 
and what areas we intend to focus on in the future. 

2. PEOPLE, PROCESS, ARCHITECTURE 

Our experience indicates clearly that attention to all three aspects 
(people, process, and architecture) are important for successful product 
developments. Of course, there are many areas where process, people, and 
software are intertwined, e.g., in our increased focus on component-oriented 
development, we need to concentrate, not only architectures, but also the 
processes, and people that support this approach. It is a well-known fact that 
the capabilities and motivation of the people involved in software 
development can and does vary widely. Having clearly defined processes 
and architectures is an important factor both directly and indirectly (via the 
thereby satisfied customers) in employee satisfaction and motivation. 

One of our central research and development departments has a long 
history (since 1993) of performing process and architecture assessments and 
associated improvement projects. In the past five years, this group has 
conducted about I 00 process assessments and 10 architecture assessments 
(Mehner et al., 1998). The main objectives of the assessments are: 
- to analyze and evaluate processes and architectures. Architectures are as 

important as processes for optimizing the triad "costs - quality -
schedule" and simultaneously being flexible enough for introducing new 
and innovative products in the market in time. 
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- to identify in detail the potential to start and perfonn improvement 
projects. 

- to specify in detail measurements to improve the evaluated process and 
architecture and realize this potential. 

We place significant emphasis on measurement and evaluation, 
because our belief is that you can only effectively improve what you can 
measure. To get optimal insight into the process capabilities of an 
organization, various interrelated measurement and evaluation techniques 
have to be applied. In order to drive changes in software and engineering 
processes, it is necessary to set precisely defined goals and measure 
progress towards these goals . These goals may be at the project, process, 
or business level. At Siemens, we have developed and use the so-called 
tops;, controlling instruments (Lebsanft and Rheindt, 1998) for the 
software-related business (this includes metrics and controlling 
instruments at the process, project, and management level) . These allow 
us to control the six success factors : 

I. customer satisfaction 
2. quality 
3. cycle time 
4. productivity 
5. process maturity 
6. technology maturity 

These final two, process maturity and technology maturity, are where 
architecture aspects are relevant. As in the capability maturity model 
(CMM) of the Software Engineering Institute, the process maturity 
measurement includes a focus on design/architecture issues (e.g., to what 
extent are architecture reviews perfonned, how architectures are 
embedded in the product line management, etc.). The technology maturity 
indicates the importance of technological trends and how well an 
organization can adapt to them for business benefit. One aspect of this is 
related to architecture issues (e.g., the use of COM/DCOM, CORBA, 
Java, etc.). 

Tailored to the needs of the various business groups, the tops;, aim to 
give an objective appraisal of the current state and to allow the early 
detection of changes. Furthennore, interpreted together, they provide a 
good understanding of the capability of the organization to develop 
software. Several of the business groups already have extensive 
experience with these and other measures and can report on their 
effectiveness, especially in relation to controlling and improving their 
development processes. 
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2.1 Architecture assessments 

Due to the increased complexity and size of today's systems, an increased 
focus on the software architecture of a system is needed. The architecture 
gives the overall structure of the system and identifies the main components 
and their interactions. The long-term success of a system depends in large 
part on the quality of the software architecture. At Siemens, we have 
developed a method called "system architecture analysis" (SAA) (Gloger et 
al. 1997) that allows us to evaluate the major technical concepts of an 
architecture as well as to serve as the basis for proposed improvements for 
the evolution of the architecture. It includes the determination of the 
evaluation and weighting of the criteria for the architecture, an analysis of 
the design decisions, an analysis of the interdependencies between the 
design decisions, and the evaluation of this information that makes the pros 
and cons of the various design alternatives clearer (see Figure 1). 
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Figure 1: Making design alternatives clearer and indicating where action is required 

In comparison to the "Software Architecture Analysis Method" (SAAM) 
(Kazman et al., 1994), our approach is narrower and more focused on the 
immediate needs of our business groups. 
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3. EXPERIENCE AND LESSONS LEARNED 

The following section describes some of our experiences and lessons 
learned in the area of software architecture at Siemens. 

3.1 Use innovative processes 

We have found that being willing and able to use more innovative 
processes that, for example, take the purchasing of commercial off-the-shelf 
software and standard components into account and/or that allow regular 
and incremental development (e.g., weekly builds) to be effective. Results 
on the order of 50% reduction in cycle time and 35% reduction in 
development costs over a period of about five years are not uncommon. An 
additional advantage is the ability to meet customer requirements and/or 
react to our competition more quickly. Some organizations are moving from 
a product-oriented to a process-oriented development approach and the 
initial results here are very positive, both for the development costs, 
accuracy at meeting the deadline, as well as for the motivation of the staff. 

3.2 Migrate from software "construction" to "composition" 

The migration from construction to composition has a strong effect on 
both the process and the architecture. It is becoming more common to at 
least consider the integration of existing components (either our own or 
third-party commercial off-the-shelf (COTS) products). This is considered 
for various reasons, for example, to focus on our core areas of technical 
expertise, to reduce costs, to enhance productivity, to adhere to standards, 
etc. It is, however, very important to be aware both of the potential problems 
due to architectural mismatch (Garlan, Allen and Ockerbloom, 1995) and 
the potential process-related challenges associated with the integration of 
components in a product, for example: 
- In order to be flexible and meet the needs of a large number of potential 

users, the components may be slower and larger than components 
developed to more closely match the actual needs 

- Changes are often impossible (e.g., "black box" components) or difficult 
(because one has to understand the architecture to change it) 

- There are complicated legal and contractual issues, such as liability, 
associated with this approach. 
Typically, we have found that incremental processes work better for 

composition because they allow the integration of the "foreign" components 
earlier in the development and because they allow for the early analysis of 
key performance issues. Not only a good process, but also a clear software 
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architecture, is necessary for this approach to work well. 

3.3 Architecture review sessions are effective 

At least one of our business groups regularly holds architecture review 
sessions in which a real architecture is presented and discussed in detail. 
This has been shown to have advantages both for those directly involved in 
the architecture, because they receive valuable suggestions for improvement, 
and for the other participants who profit from a better understanding of the 
architecture. 

3.4 Frameworks are useful for both process and 
architecture 

We have found that frameworks are a key for achieving an optimal 
balance between stability and flexibility for both development processes as 
well as for the software architecture. For example (Volker and Wackerbarth, 
1997) cycle time was reduced in the digital switching system area by 50% in 
the past five years due, to a large extent, on the structure of their 
development processes. It provides a globally agreed-upon "process 
framework" giving the stable structure and within the "process 
components." There is a significant amount of flexibility allowed for use in 
the specific business groups. 

Similarly, we have found a framework approach for software 
architecture to be effective for software development. In our experience, 
although there is a significant investment that has to be made in such a 
framework up front, in the long term the return on investment can be 
substantial. In three of our business groups we have been able to show that 
approaches based on components, design patterns (Gamma et al. 1995, 
Buschmann et al. 1996, Beck et al. 1996), and frameworks have led to 
significant reductions in cost and faster and more accurate time-to-market 
(i.e., that the investment in the architecture has started to pay off). In one 
business group the total software development costs that had been 
increasing by 30-35% annually have now actually decreased by 10% 
annually. This reduction is due to their architecture-based approach and 
their investment in components, design patterns and frameworks, despite 
similar time constraints and requirements. 

As cited in (Buschmann et al., 1998), the decision as to whether a 
framework approach for software architecture is worthwhile depends on a 
number of factors, for example, the stability of the subject area and the 
technology. An in-depth analysis should be done beforehand to decide 
whether the investment is likely to pay off in the long run. Note also that the 
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benefit is not just in the reduced development time of the nth framework; the 
stable framework is likely to be better understood and more tested (i .e., 
usually of higher quality) than a new development. 

The stability and flexibility given by the framework approach is also 
particularly useful in our global developments since it allows a clear 
definition of the interactions involving the geographically-distributed 
people, the processes, and the architecture. 

3.5 Investment in domain analysis/product family/product 
line can be worthwhile 

Having a good software architecture is the key to building systems that 
are scaleable and configurable and thus can be used effectively for a product 
family or product line. We have had, for example, the case where, for 
historical reasons, two independent product families had been developed 
and it became clear that it would make business sense to merge them. We 
applied our so-called "Harmonization of Software Architectures and 
Platforms (HAP)" process (Gloger et al., 1998) to harmonize these 
heterogeneous product spectrums (see Figure 2) . 
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Figure2: The harmonization of software architectures and platforms (HAP) process 

The basic principles of this process are to: 
Determine the current state (i.e., what products have harmonization 
potential) and the cost-benefit factors. This is done in a set of workshops 
that includes both the development teams and the marketing and sales 
departments. 
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- Determine the requirements of the reference architecture. This is a list of 
requirements together with a set of priorities indicating their 
significance. 

- Define the reference architecture. The aforementioned SAA method 
(Gloger eta!., 1997) is used here to help structure the alternatives and 
make the decision-making process more transparent. As part of this 
phase, we also develop a plan for the migration to the new reference 
architecture. 
Note that, although the harmonization approach is of benefit in the 

product development phase, the benefits further down the line, especially in 
the logistics (e.g., the installation, commissioning, maintenance, and service 
phases of the product) are even more dramatic. Configuring, delivering, and 
installing a dozen different versions of a product is time-consuming and 
error-prone; architecture harmonization helps reduce the number of 
alternatives. 

From the business perspective it is also important to note that such a 
harmonization approach can only work if the development processes are 
also changed accordingly. If multiple units within an organization focus 
only on their own cost/benefit scenarios, it is very difficult to get them to 
support such a merged approach. Certainly, attention to the process 
implications of the product line approach is essential (see also Perry, 1996). 

3.6 N-tier architectures are popular, especially for 
distributed systems 

4-tier (user interface, web-top server, application server, 
database/network) or n-tier architectures are used increasingly especially 
because the browser-based interface offers increased platform
independence. This approach is particularly popular for large distributed 
systems and IT systems; for example, the "ComUnity" approach of Siemens 
Nixdorf Information Systems is based on such a structure. This approach 
can also be very suitable for mobile devices. 

3.7 Maintain an online repository of "best practices" 

Several groups have established centers of particular technical 
competence within their groups and have found this approach to be 
effective. The software initiative has begun extending this notion by 
encouraging so-called "best practice networking" in which key staff 
members serve as "champions" of a particular topic area in our online 
information repository. 
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4. PROBLEMS FACED BY SOFTWARE ARCHITECTS 
IN INDUSTRY 

Although section 3 lists some of the areas where our architecture 
approaches are effective, there are a great deal of unsolved or insufficiently 
solved problems in the global software architecture community. In this 
section we list some software architecture problems we encountered in 
professional software projects within our company. We hope that the 
discussions at the WICSAl working conference will help find ways to 
address these issues. 

4.1 Increasing system complexity 

With the move from monolithic systems to client-server architectures 
and n-tier systems, system complexity was reduced by cutting the system 
into pieces. At the same time, complexity was increased by introducing 
distribution and heterogeneity. 
a) To cope with distribution, communication layers and middleware 

platforms were added which are not always understood by the average 
programmer. 

b) The interworking of different operating systems, GUis, database 
systems, middleware platforms, etc. imposes a number of technical 
difficulties and requires a combined expertise which is rarely found in a 
single software architect. 

c) "Standard" communication schemes and interfaces are developing 
rapidly, causing incompatibility issues and necessitating continuous 
updating of the system components. 

d) Programming environments, testing/monitoring tools, and even most 
conventional programming languages are designed for monolithic 
systems, but support for distributed environments is still rudimentary. 

e) Designing complex systems requires design methods which are sound, 
but lead to tangible results in a reasonable time. The use of design 
patterns is one example, but still, architecture design is seen as more of 
an "art" and the architectural design process is not well-defined. 

4.2 Architecture of high-lifetime and rapidly evolving 
systems 

In our company, there exist systems that have a system lifetime of 30 
years, like railway control systems. Other systems have a considerable 
product life time, with continuous development according to technical 
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progress, like public telephone switching systems. Systems with a high 
lifetime and/or those that evolve rapidly pose the following problems: 
a) Architectural drift is a well-known issue. A properly defined architecture 

is being continuously degraded by modifications and added functionality. 
As designers and architects move within the organization, the knowledge 
about the original architecture fades away, and developers are not 
capable of preserving the proper architecture when making changes. To 
improve preservation of architectural knowledge, better ways to 
document architectures - in the large - are desirable. 

b) Once the above has happened, the system with its degraded architecture 
is considered a "legacy system". It is a common approach to avoid 
changes to legacy systems, and rather complement them with new 
components when functionality is to be added. Here we need standard 
approaches for ensuring interoperability of old systems with new 
systems. One example is the use of wrappers for legacy systems. 

c) A well-designed architecture must support change - it must be stable to 
allow flexibility of the systems which are built after this architecture. 
This includes system scalability, in order to be able to provide a family 
of systems according to user needs, but also the potential to fulfill new 
requirements, interoperate with other systems, or adapt to technological 
changes. To achieve this, assessment schemes for architectural quality 
are required. 

4.3 Issues caused by organizational structure 

In large companies like Siemens, a clear organizational structure is 
required for business needs . There is a strong trend to enforce the separation 
of business units, product lines, etc. While this is a commercial necessity, it 
can impede the enforcement of an architectural strategy: 
a) When developing systems in a vertical structure, each system 

architecture is typically designed independently. Different approaches 
may be used and different platforms may be chosen. lnteroperability and 
scalability are in question, and support for various entirely different 
systems may be required, with high development and maintenance cost 
incurred. In such a situation, a harmonization of these architectures (as 
described in section 3) may help, but this is a non-trivial task. 

b) To avoid the problem in an early stage, it is recommended to enforce an 
architecture strategy across organizational boundaries. A way to achieve 
this is to install an architecture group that works closely with the system 
designers. In a few cases, we have seen the cooperation of system 
designers with architects fail. Architects did not have the power or the 
acceptance to enforce a valid strategy, and were made redundant in the 
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end. Best practice studies are required to find the correct approach for 
the empowerment of the architects and the way to cooperate with 
designers. 

c) When the focus of a design and development team is on short-term 
commercial success, a "quick and dirty" approach may be favored over a 
properly designed system architecture. While this may lead to a short
term success, it may be costly in the long run. We must find ways to 
properly count the value of an architecture as an investment. As an 
example, consider the framework approach: As a rule of thumb, a 
framework needs to be used three times before the cost of its design and 
implementation is offset by the reduction in system development cost. 
Framework development is thus an investment. 

4.4 Architectures including COTS components or 
platforms 

It is a common trend in system development projects not to develop all 
software from scratch, but rather include commercial off-the-shelf (COTS) 
software components in the system. When we talk about software 
components, we do use the term in the narrow sense of component-based 
software; we mean that certain parts of the software system are obtained 
from commercial software suppliers as standard products. Example of such 
components include operating systems, database systems, and middleware 
platforms. In a modern software development environment the portion of 
COTS software in systems being developed is steadily increasing. 

The goal of using COTS software is clear: Development cost and time
to-market is reduced, system functionality is improved, well-proven 
components are expected to have far fewer programming errors than newly 
developed code, and the component supplier is expected to take care of 
component maintenance. Nevertheless, these goals are not always met and 
we have seen some COTS-based development projects fail; why? 
a) Traditional software engineering methods and development processes do 

not take COTS components into account. A top-down design approach 
will usually not lead to an architecture which fits the components 
available, rather a mixture of top-down and bottom-up is required. In the 
development process, a strong coupling of the requirements engineering 
stage and the design stage, incorporating rapid prototyping steps, are 
required, as the properties of the COTS components may strongly 
influence the properties of the resulting system. Working with COTS 
components is still more a matter of professional software-engieering 
experience than something that is well-understood and taught in courses. 
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b) Software components are more complex than nuts and bolts. Their 
behavior is-in the best case--only partially documented. The behavior 
of such a component in a given environment, where it interoperates with 
custom software and-worse-with other COTS software components, 
is often unpredictable. Suppliers of COTS components will in most cases 
give no guarantee that certain non-functional requirements will be met. 
Moreover, COTS components are not tailored for the specific purpose 
they are needed for. As a result, they provide unnecessary functionality, 
at the cost of increased resource consumption and degraded performance. 
Quality assurance techniques for software components are required. 

c) Software development effort is now substituted with different tasks: 
Selection of components and suppliers, quality assurance and, often, 
negotiation of licenses. These "new" tasks require different skills and the 
techniques for implementing them is not widely established yet. When 
component evaluation and contract negotiation are required, a 
considerable amount of time may be spent-perhaps even more than the 
time saved in the reduced development time. 

d) When a system is built with a COTS software platform as the base, there 
is a high risk that the system will be tailored to this platform, which leads 
to the so-called "vendor lock-in" problem. When this occurs, the system 
is strongly dependent on the base platform and its supplier. This is a 
considerable commercial and technological risk. When the platform is 
not available any more, for whatever reason, a major redesign of the 
system can be expected. Platform updates may require costly 
modifications to the overall system. Measures to reduce the risk, like the 
provision of an isolation layer, are not always appropriate, or may not be 
chosen, for example, due to the additional overhead and complexity. It is 
also well known that certain software vendors use this issue to improve 
their position in the market. 
The above shows that the use of COTS components has its price, and 

that there are quite a few open questions. For some of them, research is 
under way, but solutions are not widely established yet. 

5. OUTLOOK 

In addition to the open issues mentioned in section 4, our company is 
particularly interested in the following issues: 
a) What are the interrelationships between product families and process 

families (e.g., as discussed in Sutton and Osterweil, 1996)? 
b) How can we ensure the quality of the individual components? 
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a) What can we foresee about the quality for software architectures built 
out of components? In other words, if we use a set of components with 
particular non-functional properties (e.g., very robust and another very 
safe) are there any conclusions we can make about the non-functional 
properties of the whole as opposed to the parts (e.g., as discussed in 
Clements et al., 1995)? 

b) What techniques have proven most effective for the evolution of 
software architectures? We want to continue to build architectures that 
are easy to upgrade and that maybe even can be so "clever" as to adapt to 
particular configurations without human intervention. 

c) Software architects are very busy and rightly so, since their knowledge is 
of great value to the company. How can we make sure that they have 
enough time not only to work on project-specific issues, but to stay up
to-date with current and future directions. 
Within Siemens, both the software initiative and in the projects we have 

been involved in, we have seen that the exchange of information in these 
areas can be very beneficial. We hope that by further increasing the 
interaction with the international software engineering community and 
sharing some of our experiences that we can provide even more valuable 
information to our practicing software architects. 
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Abstract: Architectural design occupies a pivotal position in software engineering. It is 
during architectural design that crucial requirements such as performance, 
reliability, costs, etc., must be addressed. Yet the task of achieving these 
properties remains a difficult one and it is made even more difficult with the 
shift in software engineering paradigm from monolithic, stand-alone, built
from-scratch systems to componentized, evolvable, standards-based, and 
product line oriented systems. Many well-established design strategies need to 
be reconsidered as new requirements such as evolvability, reusability, time-to
market, etc., become more important. This paper outlines an approach that 
formulates architectural properties such as modifiability and performance as 
"softgoals" which are incrementally refined. Tradeoffs are made as conflicts 
and synergies are discovered. Architectural decisions are traced to 
stakeholders and their dependency relationships. Knowledge-based tool 
support for the process would provide guidance during design as well as 
records of design rationales to facilitate understanding and change 
management. 

1. INTRODUCTION 

The importance of architectural design is now widely recognized in 
software engineering, as evidenced by the recent emergence of seminal 
reference texts e.g., (Shaw & Garlan, 1996; Bass, 1998) and several 
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international workshop series and special sessions in major conferences. It is 
acknowledged, however, that many issues in software architecture are just 
beginning to be addressed. One key task that remains a difficult challenge 
for practitioners is how to proceed from requirements to architectural design. 

This task has been made much more difficult as a result of today's 
changing software environment. Systems are no longer monolithic, built 
from scratch, or operate in isolation. Systems built in the old paradigm have 
contributed to the legacy system problem. Today's systems must be 
developed quickly, evolve smoothly, and intemperate with many other 
systems. Today's architects adopt strategies such as reusability, 
componentization, platform-based, standards-based, etc., to address new 
business level objectives such as rapid time-to-market, product line 
orientation, and customizability. Two important aspects may be noted in this 
shift in software engineering environment: 
1. There have been significant shifts in architectural quality objectives. 
2. Architectural requirements are originating from a much more complex 

network of stakeholders. 
System-wide software qualities have been recognized to be important 

since the early days of software engineering. For example, (Boehm, 1976) 
and (Bowen, 1985) classified a number of software attributes such as 
flexibility, integrity, performance, maintainability, etc. It is well known that 
these quality attributes (also referred to as non-functional requirements) are 
hard to deal with, because they are often ill defined and subjective. The 
recent flurry of activities on software architecture involving researchers and 
practitioners have refocused attention on these software qualities since it is 
realized that system-wide qualities are largely determined during the 
architectural design stage (Boehm, 1992; Perry, 1992; Kazman, 1994; Shaw 
& Garlan 1996; Bass, 1998). With the shift to the new, fast-cycled, 
component-oriented software environment, priorities among many quality 
objectives have changed, and new objectives such as reusability and 
standards compliance are becoming more prominent. While performance 
will continue to be important, it must now be traded off against many kinds 
of flexibility. As a result, many architectural solutions that were well 
accepted in the past need to be rethought to adapt to changes in architectural 
objectives. 

When systems were stand-alone and had definite lifetimes, requirements 
could usually be traced to a small, well-defined set of stakeholders. In the 
new software environment, systems tend to be much more widely 
interconnected, have a more varied range of potential customers and user 
groups (e.g., due to product line orientation), may fall under different 
organizational jurisdictions (at any one time, and also over time), and may 
evolve indefinitely over many incarnations. The development organization 
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itself, including architects, designers, and managers, may undergo many 
changes in structure and personnel. Requirements need to be negotiated 
among stakeholders. In the case of architectural quality requirements, the 
negotiations may be especially challenging due to the vagueness and open
endedness of initial requirements. Understanding the network of 
relationships among stakeholders is therefore an important part of the 
challenge faced by the architect practitioner. 

These trends suggest the need for frameworks, techniques, and tools that 
can support the systematic achievement of architectural quality objectives in 
the context of complex stakeholder relationships. 

In this paper, we outline an approach that provides a goal-oriented 
process support framework, coupled with a model of stakeholder 
relationships. The paper includes simplified presentations of the NFR 
Framework (Chung, 1998) and the i* framework (Yu, 1995). A web-based 
information system example, incorporating a KWIC component, is used to 
illustrate the proposed approach. 

2. GOAL-ORIENTED PROCESS SUPPORT FOR 
ARCHITECTURAL DESIGN 

Consider the design of a web-based information system. There would be 
a set of desired functionalities, such as for searching information, retrieving 
it, scanning it, downloading it, etc. There would also be a number of quality 
requirements such as fast response time, low storage, ease of use, rapid 
development cycle, adaptability to interoperate with other systems, 
modifiability to offer new services, etc. The functional side of the 
requirements are handled by many development methodologies, from 
structured analysis and design, to recent object-oriented methods. Almost all 
these methods, however, focus overwhelmingly, if not exclusively, on 
dealing with functional requirements and design. While there is almost 
universal agreement on the crucial importance of achieving the quality 
requirements, current practice is often ad hoc, relying on after-the-fact 
evaluation of quality attributes. Techniques for evaluating and assessing a 
completed architectural design ("product") are certainly valuable. However, 
such techniques usually do not provide the needed step-by-step ("process") 
guidance on how to seek out architectural solutions that balance the many 
competing requirements. 

Complementary to the product-oriented approaches, the NFR Framework 
(Chung, 1993, 1998) takes a process-oriented approach to dealing with 
quality requirements. In the framework, quality requirements are treated as 
(potentially conflicting or synergistic) goals to be achieved, and used to 
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guide and rationalize the various design decisions during the 
system/software development. Because quality requirements are often 
subjective by nature, they are often achieved not in an absolute sense, but to 
a sufficient or satisfactory extent (the notion of satisficing). Accordingly, the 
NFR Framework introduces the concept of softgoals, whose achievement is 
judged by the sufficiency of contributions from other (sub-) softgoals. 
Throughout the development process, consideration of design alternatives, 
analysis of design tradeoffs and rationalization of design decisions are all 
carried out in relation to the stated softgoals and their refinements . A 
softgoal interdependency graph is used to support the systematic, goal
oriented process of architectural design. It also serves to provide historical 
records for design replay, analysis, revisions, and change management. 

For the purpose of illustration, let us consider a small part of the example 
in which a keyword in context (KWIC) system is needed. The KWIC system 
is part of a web information system, used to support an electronic-shopping 
catalog. Suppose the KWIC system architect is faced with an initial set of 
quality requirements: "the system should be modifiable" and "the system 
should have good performance". In the aforementioned process-oriented 
approach, the architect explicitly represents each of these as a softgoal to be 
achieved during the architectural design process. Each softgoal (e.g., 
Modifiability [system]) is associated with a type (Modifiability) and a topic 
(system), along with other information such as importance, satisficing status 
and time of creation. Figure 1 shows the two softgoals as the top level nodes. 

As these high level requirements may mean different things to different 
people, the architect needs to first clarify their meanings. This is done 
through an iterative process of softgoal refinement which may involve 
reviewing the literature and consulting with domain experts. After 
consultation, the architect may refine Modifiability [System] into three 
offspring softgoals: Modifiability [Algorithm], Modifiability [Data 
representation], and Modifiability [Function]. This refinement is based on 
topic, since it is the topic (System) that gets refined, while the softgoal type 
(Modifiability) is unchanged. This step may be justified by referring to the 
work by Garlan and Shaw (Garlan, 1993), who consider changes in 
processing algorithm and changes in data representation, and to Garlan, 
Kaiser, and Notkin (Garlan, 1992), who extend the consideration with 
enhancement to system function. Similarly, the architect refines Performance 
[System], this time based on its type, into Space Performance [System] and 
Time Performance [System], referring to work by Nixon (Nixon, 1993). 

Figure 1 shows the two refinements. In the figure, a small "arc" denotes 
an "AND" contribution, meaning that in order to satisfice the parent 
softgoal, all of its offsprings need to be satisficed. As will be shown later, 
there are also other contribution types, including "OR" and partial positive 
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( +) or negative (-) contributions. Contribution types are important for 
deciding the satisficing status of a soft goal based on contributions towards it. 

Modifia 'ty 
(Algorithm] 

Modifiability 
[System] 

Perfonnance 
(System] 

0 

odifiability Time Performance 
[Function] (System] 

Figure 1. A softgoal interdependency graph showing refinements of quality requirements 
based on topic and type 

In parallel with the refinement of quality requirements, the software 
architect will consider different ways of meeting the KWIC functional 
requirements in the context of the web information system. At various points 
during the design process, the architect will go through a number of 
interleaving activities of componentization, composition, choice of 
architectural style, etc. Each activity can involve consideration of 
alternatives, where NFRs can guide selection, hence narrowing down the set 
of architectural alternatives to be further considered. 

For example, the architect can consider architectures with varying 
numbers of (main) components: 
- Input, Circular Shift, Alphabetizer, and Output 
- Input, Line Storage, Circular Shift, Alphabetizer, and Output 
- etc. 

Each choice will make particular contributions to the NFRs. With either 
choice the architect can further consider alternatives about control, for 
example, one with a Master Control and one without. Yet another decision 
point might concern the way data is shared: sharing of data in the main 
memory, sharing of data in a database, sharing of data in a repository with an 
event manager and so forth . 

Figure 2 describes some of the above alternative architectures using 
"conventional" block diagrams. The diagrams were redrawn by one of the 
authors based on (Shaw & Garlan, 1996). 



www.manaraa.com

550 

Direct JfemoTY Access 
Subprogram Call 
System I/O 

I 
I 

I 
I 

ii·JNl '}.(,..... I 

Implicit Invocation 

ii•JNl '}.( ...... I 

1 Input 

/ 
I 

llnprJJ 'M.Iiw• I 

L. Chung, D. Gross, and E. Yu 

Architecture 1: Shared Data 

Archltecture2: Abstract Data Type 

\ 

\ 
\ 

Architecture 3: Implicit Invocation 

output 

"'< I O<lti""'Mufiuml 
Architecture 4: Pipe and Riter 

Figure 2. Architectural alternatives for a KWIC system 

Let us assume that the architect is interested in an architecture that can 
contribute positively to the softgoal Modifiability [Data representation], and 
considers the use of an "Abstract Data Type" style of architecture, as 
discussed by Parnas (Parnas, 1972) , and Garlan and Shaw (Garlan, 1993): 
components communicate with each other by means of explicit invocation of 
procedures as defined by component interfaces. 

As the architect would learn sooner or later, the positive contribution of 
the Abstract Data Type architecture towards modifiable data representation 
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is made at the expense of another softgoal, namely the time performance 
softgoal. Figure 3 shows the positive contribution made by the abstract data 
type solution by means of "+" and the negative contribution by "-" 
contribution link. 

The architect would want to consider other architectural alternatives in 
order to better satisfice the stated softgoals. The architect may discover from 
the literature that a "Shared Data" architecture typically would not degrade 
system response time, at least when compared to the Abstract Data Type 
architecture, and more importantly perhaps it is quite favorable with respect 
to space requirements. This discovery draws on work by Parnas (Pamas, 
1972), and by Garlan and Shaw (Garlan, 1993) who considered a Shared 
Data architecture in which the basic components (modules) communicate 
with each other by means of shared storage. Not unlike the Abstract Data 
Type architecture, however, the Shared Data architecture also has some 
negative influence on several other softgoals: a negative (-) impact on 
modifiability of the underlying algorithm (process) and a very negative (--) 
impact on modifiability of data representation. 

Figure 3 shows both design steps along with the various contributions 
that each alternative makes towards the refined softgoals. Note that the 
diagram is build iteratively rather than in one step, according to the 
architectural "discovery process" of the architect. 

Modifia 1 ity 
[Algocithm] 

Modifiability 
[Data Rep] 

Modifiability 
[System] 

Shared Data 

+ 

Abstract Data Types 

Perfonnance 
[System] 

Time Perfonnance 
[System] 

Figure 3. Contribution of the Shared Data and Abstract Data Type architectures 
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Interestingly, Figure 3 shows tradeoffs between the architectural 
alternatives that have been considered so far. The architect can continue to 
consider other architectural alternatives, including hybrid solutions, or 
decide which of the two better suits the needs of the stakeholders. How can 
the architect go about doing the latter, if that is what she so desires? One 
way to do the tradeoff analysis is by using the degree of criticality (or 
priority, or dominance, or importance) of the quality requirements. In the 
context of a particular web information system, for example, the 
stakeholders might indicate that performance is more critical than 
modifiability. In this case, then, the architect would choose Shared Data over 
Abstract Data Type, since Shared Data is more satisfactory with respect to 
both space and time performance, hence the overall performance 
requirements (recall the "AND refinement"). 

During the process of architecting, the architect needs to make many 
decisions, most likely in consultation with stakeholders. As the above 
discussion suggests, an interesting question is: "how can the architect 
evaluate the impact of the various decisions?" The NFR Framework 
provides an interactive evaluation procedure, which propagates labels 
associated with softgoals representing their satisficing status (such as 
satisficed, denied, undetermined, and conflict) across the softgoal 
interdependency graph. Labels are propagated along the direction of 
contribution, usually "upwards" from specific, refined goals towards high 
level initial goals. 

Because of the subjective nature of quality requirements, the software 
architect will want to explain and justify her decisions throughout the 
softgoal refinement process. This can be done in the NFR Framework using 
"claims". Claims can be attached to contributions (links in the graph) and to 
softgoals (nodes) . Claims can themselves be justified by further claims. 
These rationales are important for facilitating understanding and evolution. 
For example, Shared Data may by and large have advantage over Abstract 
Data Type with respect to space consumption. This general relationship, 
however, may need to be argued for (or against), in the context of the 
particular web information system. If, for example, the volume of the data to 
be maintained by the system is low, the relative advantage of Shared Data 
may not matter much. If this is indeed the case, the expected data volume 
can then be used as a claim against the relationship: "Shared Data makes a 
strong positive ( ++) contribution towards meeting space requirements". This 
might then lead the architect to choose Abstract Data Type as the ultimate 
architecture. 

Figure 4 shows a softgoal interdependency graph for the KWIC system, 
taken from work by Chung, Nixon and Yu (Chung, 1995) which is based on 
(Garlan, 1993) and Garlan, Kaiser, and Notkin (Garlan, 1992). 
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Figure 4. A softgoal interdependency graph for the KWIC system 

3. MEETING DIFFERENT STAKEHOLDER 
REQUIREMENTS 

553 

We now illustrate the need to relate organizational context to the process, 
and consequently the outcomes, of architectural design. The illustration will 
be done through three scenarios, which will show that different sets of 
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stakeholder concerns are transformed by the architectural design process into 
different architectural choices for information systems. More specifically, 
each different set of stakeholders and their concerns leads the architects to 
reason about different quality concerns, make and evaluate different design 
decisions, and finally leads, in our case, to the most appropriate architectural 
designs to be used in a particular web-based information system context. 

3.1 Scenario 1 

An e-shopping software vendor specializes in offering software products, 
which can be used in advertising, selling, and shipping goods and services in 
an Internet-based virtual market. The products should generate, among other 
things, e-catalogs so that any Internet user can search for goods using a web
browser. The e-catalog application architect realizes that she needs a 
component which can generate an index, here an alphabetized list of the 
words in the descriptive text of each catalog item such that each word in the 
list is associated with a list of all catalog items pertaining to that word. Such 
a list, however, is just what a KWIC system generates. Hence, the e-catalog 
application architect asks a KWIC component architect to built an indexing 
system. This is a brief description of the essential functional aspect of the 
scenario. We will shortly describe the quality aspect of the scenario, along 
with more details of the functional aspect. 

Figure 5 depicts the relationships among the three types of stakeholders, 
using the i* framework proposed by Yu (Yu, 1994). The i* framework 
allows for the description of actors and their dependencies in organizational 
settings. A circle represents an actor (e.g., e-shopping software vendor) who 
may be dependent on some other actor (e.g., e-catalog application architect) 
to achieve some of its goals (e.g., developing an e-catalog application). Not 
unlike the NFR Framework, the i* framework also distinguishes a quality 
requirement, denoted by a cloud like shape (to suggest softness), from a 
functional one, denoted by a rectangle. In the i* framework, a dependency is 
described by a directed link between two actors. The semi-circle on the 
directed link stands for the letter "D" which denotes the notion of 
dependency. This type of graph is called a Strategic Dependency model in 
the i* framework (the other type of graph in i*; the Strategic Rationale 
model will not be discussed in this paper). 

In the current scenario, the e-shopping software vendor depends on the e
catalog application architect to deliver an e-catalog application, who in tum 
depends on the KWIC component architect to deliver an indexing system. 

This kind of diagram shows where requirements originate. It also serves 
as a basis for determining what kind of negotiated delegations should take 
place, how different architectural decisions affect the various stakeholders, 
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and possibly what kind of requirements to allocate to, and how to partition 
the system into, sub-systems and components. Just like a softgoal 
interdependency graph, it becomes a basis for justification and 
system/software architectural evolution. 

Figure 5. Organizational context for thee-catalog application 

Now we describe the quality concerns of the stakeholders. To start with, 
the e-shopping software vendor expects the application to be easy to use. 
The vendor also has other concerns. As the catalog items are expected to 
grow quite rapidly, storage space resource is a very important concern, as is 
fast response time. Also shown in Figure 5 is multiple-vendor support, 
namely, allowing for the integration of catalogs that reside on various server 
machines in physically remote vendor organizations. The exclamation marks 
denote the criticality of a quality. The highest priority is assigned to two 
exclamation marks, medium priority to one, and low priority none. 

As a matter of fact, the list of quality requirements and their criticalities 
is determined through cooperation between the e-catalog application 



www.manaraa.com

556 L. Chung, D. Gross, and E. Yu 

architect and the e-shopping software vendor who go through a process of 
recursive refinements, in the manner of the previous section, which may also 
require the KWIC component architect's involvement at least occasionally. 
The list then becomes what is commonly known as the user requirements. 

When the user requirements are more or less satisfactory, the e-catalog 
application architect directs her attention more towards defining the system 
requirements, whose clarification may need more of the KWIC component 
architect's involvement than before. The system requirements may inherit 
some of the user requirements more or less directly, such as good space and 
response time requirements. The system requirements will also come from 
the system's perspective. For example, the "ease of use" requirement now 
may be translated more specifically into interactivity (such as configuring 
indexing options dynamically) and extensibility (such as allowing for the use 
of international language character sets, categorical search and phonetic 
search). Another system requirements that might be considered is the 
modifiability requirement, here for changing the overall algorithm which 
builds those indices transparently in a distributed setting. The criticalities 
may also change, due to the new requirements and the derived requirements. 
For example, in the presence of the extensibility requirement, which is new, 
the criticality of the good time performance requirement is lowered from 
critical to medium. 

With the organizational context in place, the KWIC component architect 
uses the process-oriented NFR Framework to refine the quality softgoals, 
consider architectural design alternatives, carry out tradeoff analysis and 
evaluate the degree to which softgoals are satisficed, all in consideration of 
the context. The top portion of Figure 6 represents those softgoals that 
originated from the e-shopping software vendor, and are negotiated and 
delegated through the e-catalog application architect to the KWIC 
component architect. The relative criticality values are preserved in the 
softgoal interdependency graph. Figure 6 shows the result of the process 
whereby the architect has arrived at four architectural alternatives in an 
attempt to satisfice the stated softgoals. 

Importantly, the diagram in figure 6 shows a number of claims, which 
derive from the knowledge of the organizational context, and which are used 
to argue for, or against, the types of softgoal criticalities and 
interdependencies, and consequently in softgoal evaluation and selection 
among architectural alternatives. For example, using the Shared Data 
architectural style is expected to have a very good contribution towards 
space performance. The architect uses the organizational context diagram 
(figure 5) to find some argument in support (or denial) of that particular 
contribution. In the current scenario, for example, the architect argues for the 
validity of the contribution by pointing to the e-shopping software vendor 
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who wants the system to have the ability to handle a rapidly growing number 
of catalog items. The "S I" arrow in figure 6 denotes this claim. 

Despite the significant savings by the Shared Data architecture in data 
storage, however, the Implicit Invocation architecture seems to be the most 
promising for achieving extensibility of function, which is as critical as 
space performance. Furthermore, Implicit Invocation helps modifiability of 
the algorithm, in contrast to Shared Data, although there is a tie between the 
two concerning interactivity. Although not well met by Implicit Invocation, 
time performance is of lower criticality. Taking all these into account, the 
KWIC component architect chooses the Implicit Invocation as the target 
architectural design. 

E-Catalog KWIC Component 
Modifiability 
[KWIC) 

Shared Data 

Interactivlty 
[KWIC) 

Time 

Abstract Data Types Implicit Invocation Pipe & Filter 

Figure 6. A softgoal interdependency graph for thee-catalog KWIC component 

3.2 Scenario 2 

A system administrator wants to offer the user a help facility, which can 
retrieve all the documents that have some keyword in their description, as 
indicated by the user. The administrator asks a help system architect to build 
such a facility. The help system architect, in tum, asks a KWIC component 
architect for an indexing software system, after realizing that the facility is 
essentially a KWIC system such as used in the Unix "man -k" command. 
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Similar to figure 5 for scenario 1, we may now describe the three types of 
stakeholders using the i* framework, together with the functional and quality 
requirements that the stakeholders delegate among themselves, together with 
the various criticalities of each of the requirements. And analogous, to figure 
6 for scenario 1, the architect iteratively builds an NFR softgoal 
interdependency graph in which she further refines the various quality 
requirements and argues for or against certain claims. These analogous 
figures for scenario 2 are not shown for lack of space, but some fragments of 
the functional and quality requirements as well as the (soft) goal 
interdependencies related to this scenario appear in figure 7 and 8. 

Taking all contributions of each architectural style into account, together 
with the various criticalities of the softgoals to be achieved, the architect 
might want to choose the Pipe and Filter architectural style as the most 
promising one. 

3.3 Scenario 3 

A reuse manager is appointed by product line management to oversee the 
development of various systems in the organization. As it happens, the 
KWIC component architect, the e-catalog application architect and the help 
system architect all work in the same organization. The reuse manager asks 
the architects to consider reuse as a critical priority and to maximize reuse of 
all components developed in that organization. 

This scenario is especially interesting as it introduces a stakeholder (the 
reuse manager) whose quality concern (having reusable components) 
prompts the KWIC component architect to find a solution that represents the 
union of quality concerns of all other architects, as well as taking into 
account each of their intended customer (thee-shopping software vendor and 
the man administrator). 

Essentially, figure 7 shows a merge of all stakeholders' quality softgoals 
discussed in the previous scenarios. In addition it show that reuse manager 
depends on the KWIC system architect to build a system that delivers and 
maximizes the use of reusable components for all development activities in 
that organization. Not shown are product line management stakeholders, 
who depend on the reuse manager for reduced development costs. 

For each of the two previous scenarios a different architectural solution 
style was chosen according to the specific kind of organizational context and 
its derived set of requirements. To find a reusable component solution the 
KWIC component architect will need to re-negotiate the delegated 
requirements with each of the involved stakeholders to overcome the 
stakeholders conflicting requirements. Perhaps the KWIC component 
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architect will also need to renegotiate the degree of reusability with the reuse 
manager. 

Figure 7. Organizational context for the reuse requirement 

Now that the KWIC component architect has an organizational 
understanding (of which quality requirements and criticalities originated 
from which stakeholders, and what network of relationships exists among 
them), she proceeds to use the NFR framework to evaluate, and further argue 
for or against the various architectural styles. During the evaluation, the 
architect renegotiates conflicting quality requirements and criticalities with 
the affected stakeholders and finds an architectural solution that makes 
acceptable tradeoffs. Figure 8 shows the result of the architectural design 
process. (The "broken" lines are not part of the NFR Framework graphical 
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notation, but are used in this paper to avoid cluttering the diagram with links 
not directly related to the architectural styles shown to be evaluated. The "e" 
subscript stands for the e-catalog application architect's point of view, the 
"h" subscript stands for help system architect's point of view, while the "r" 
subscript stands for the reuse mangers point of view). 

Reuse KWIC Component Pelformance 
(KWiq 

wmpn,...,. 
(KWic,h] 

!!h X 

++ 

Shared Data Abstract Data Types Implicit Invocation Pipe & Fllter 

Figure 8. A softgoal interdependency graph for the reusable KWIC component 

The figure shows the KWIC component architect evaluating the Implicit 
Invocation style for meeting the quality requirements originating from the e
catalog application architect, the help system architect and the reuse 
managers. While evaluating the Implicit Invocation style the architect may 
renegotiate with the help system architect her demand for "Unix 
compliance" which, for her, would be better dealt with when using the Pipe 
& Filter style. The organizational context (such as the "approval" 
dependency that the architects have on the reuse manager), will make the 
negohatmg parties more forthcoming when concessions to their 
requirements and/or criticalities are needed. 

4. DISCUSSION AND RELATED WORK 

As pointed out by Garlan and Perry (Garlan, 1994), architectural design 
has traditionally been largely informal and ad hoc. Our proposal is aimed at 
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rectifying some of the manifested symptoms by taking a more disciplined 
approach to architectural design. In particular, our proposal is aimed at 
improving our ability to understand the rationales behind architectural 
choices, hence making the system more easily traceable and evolvable. We 
have illustrated how to carry out a finer-grained analysis, and the 
comparison of architectural designs by considering quality-related concerns 
of multiple stakeholders and their interdependencies. 

Our proposal draws on concepts that have been identified as essential to 
portray architectural infrastructure, such as elements, components, and 
connectors as suggested by Perry and Wolf (Perry, 1992), Garlan and Shaw 
(Garlan, 1993), Abowd, Allen, and Garlan (Abowd, 1993), and Robbins, 
Medvidovic, Redrniles and Rosenblum (Robbins, 1998). In our view, our 
emphasis on quality concerns and stakeholder interdependencies are 
complementary to efforts directed towards identification and formalization 
of concepts for functional architectural design. 

Concerning the role of quality requirements, design rationale, and 
assessment of alternatives, the proposal by Perry and Wolf (Perry, 1992) is 
of close relevance to our work. Perry and Wolf propose to use architectural 
style for constraining the architecture and coordinating cooperating software 
architects. They also propose that rationale, together with elements and 
form, constitute the model of software architecture. In our approach, 
weighted properties of the architectural form are justified with respect to 
their positive and negative contributions to the stated NFRs, and weighted 
relationships of the architectural form are abstracted into contribution types 
and labels, which can be interactively and semi-automatically determined. 

Boehm (Boehm, 1992), and Kazman, Bass, Abowd, and Webb (Kazman, 
1994) have argued convincingly for the importance of addressing quality 
concerns in software architectures. Kazman, Bass, Abowd, and Webb 
(Kazman, 1994) propose a basis (called SAAM) for understanding and 
evaluating software architectures, and gives an illustration using 
modifiability. This proposal is similar to ours, in spirit, as both take a 
qualitative approach, instead of a metrics approach, but differs from ours 
since SAAM is product-oriented, i.e., they use quality requirements to 
understand and/or evaluate architectural products. 

In comparing architectural alternatives, it is intuitively appealing to use a 
tabular format. For example, in (Garlan & Shaw, 1993), a table is used to 
present the quality evaluations of four architectural alternatives. Such a table 
can be interpreted as depicting contributions from the architectural 
alternatives to the quality attributes treated as goals. In our study, we 
illustrated the importance of context and the need to trace design decisions to 
stakeholder requirements. Our approach suggests that the tabular 
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representation of design alternatives and quality attributes is not sufficiently 
expressive. 

We might consider extending the tabular representation by distinguishing 
quality requirements that come from different stakeholders, and by adding 
more explanatory notes such as the claims in the softgoal interdependency 
graphs. 

Our approach emphasizes explicitly representing and using the quality 
concerns of multiple interacting stakeholders during the design of software 
architectures. Our approach is thus similar to the on-going work by Boehm 
and In (Boehm, 1996), who explore a knowledge-based tool for identifying 
potential conflicts among quality concerns early in the software/system life 
cycle, and using quality requirements in examining tradeoffs involved in 
software architectural design. Stakeholders such as user, maintainer, 
developer, customer, etc., are mapped to quality attributes in a graph. Our 
approach goes further by indicating that stakeholder requirements can be 
traced through a network of dependency relationships in an organizational 
model. 

5. CONCLUSIONS AND FUTURE WORK 

Achieving architectural quality requirements is a key objective in 
architecture-based approaches to software engineering. Quality requirements 
vary according to context and need to be negotiated among stakeholders. We 
have outlined a systematic approach for representing and addressing quality 
requirements during architectural design. The design reasoning is related to 
context through an organization model of stakeholder dependencies. 

Using an extended version of the familiar KWIC example, we have 
illustrated how architectural decisions might vary depending on context, and 
how the design process can be guided and assisted using appropriate 
notational and reasoning support. The historical records of design decisions 
and rationales will facilitate understanding and evolution. 

We have been working on tools to support the approach. These include 
facilities for generating and maintaining the graphs, for propagating labels, 
and for design revision. Knowledge for addressing specific quality 
requirements are codified in knowledge bases to assist in the refinement of 
goals. Known interactions among quality requirements are codified as 
correlation rules for detecting conflicts and synergies. 

This paper represents a first step in an attempt to provide a systematic 
architectural design support framework that takes organizational and 
stakeholder relationships into account. We have drawn on the NFR 
framework for dealing with software quality requirements, and the i* 
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framework for modeling and reasoning about strategic actor relationships. In 
future work, we intend to further elaborate on issues specific to architectural 
design, and to better integrate architectural design reasoning and 
organizational relationships reasoning. 
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APPENDIX 

The KWIC problem statement (Parnas, 1972): "The KWIC [Key Word in 
Context] index system accepts an ordered set of lines; each line is an ordered 
set of words, and each word is an ordered set of characters. Any line may be 
"circularly shifted" by repeatedly removing the first word and appending it 
at the end of the line. The KWIC index system outputs a list of all circular 
shifts of all lines in alphabetical order." 
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Abstract: Much has been written recently about software architecture, how to represent 
it, and where design fits in the software development process. In this article I 
will focus on the people who drive this effort: the architect or a team of 
architects-the software architecture team. Who are they, what special skills 
do they have, how do they organise themselves, and where do they fit in the 
project or the organisation? 

1. AN ARCHITECT OR AN ARCHITECTURE 
TEAM 

In his wonderful book The Mythical Man-Month, Fred Brooks wrote that 
a challenging project must have one architect and only one. But more 
recently, he agreed that "Conceptual integrity is the vital property of a 
software product. It can be achieved by a single builder, or a pair. But that is 
too slow for big products, which are built by teams."' Others concur: "The 
greatest architectures are the product of a single mind or, at least, of a very 
small, carefully structured team."2 More precisely: "Every project should 
have exactly one identifiable architect, although for larger projects, the 
principal architect should be backed up by an architecture team of modest 
size."3 

1 Keynote address, ICSE-17, Seattle, April1995 
2 Rechtin 1991 , p. 22 
3 Booch 1996, p. 196 
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We speak about a software architecture team, and assume that the lone 
architect is just a simpler case. We speak of a team, not just a working group 
or a committee; a team in the sense defined by Katzen bach and Smith in The 
Wisdom of Teams: "a small number of people with complementary skills 
who are committed to a common purpose, performance goals, and approach 
for which they hold themselves mutually accountable."4 

2. SKILLS OF THE ARCHITECTS 

Software architects must collectively have a certain number of skills: 
experience (both in software development and in the application domain), 
good communication skills, sense of leadership, they are proactive, and goal
oriented. 

2.1 A broad range of experience 

Software architects must have accumulated significant experience in 
software development, especially if they are to tackle ambitious projects, but 
at the same time, they must be (or should become) knowledgeable in the 
problem domain. The two kinds of expertise must be well balanced. 
Ambitious software architecture projects will not succeed without both. 

If the architects have a good understanding of the problem domain, such 
as telephony, air-traffic control, or computer-aided manufacturing, but only 
limited experience with software development and software architecture, 
they will not be able to rapidly develop an architecture that can be 
communicated to the various development groups. Even if they do not 
develop the code themselves, they must master the software design method 
(e.g., OOD), the programming language(s), understand the development 
environment, the development process, because they will have to interact 
daily with the software designers, programmers, and database engineers. 
They have to understand them and be understood. Their design decisions 
must be acceptable by software engineers. They must make some decisions 
very quickly, based on experience and "gut feelings" rather than pure, 
thorough analysis. 

In one case the resentment against an architecture team was growing. 
When we were called to help, we discovered that they were excellent 
people with a lot of experience in their field, doing a very good job of 
analysis, building a very solid, object-oriented model of their domain, but 
carefully avoiding making any software design decisions. All questions 

4 Katzenbach 1994, p. 45 
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about the "how" were brushed aside as "mere implementation details" 
that should not pollute their architectural description. Further 
investigation showed that they were in fact afraid of making any 
technical choices because of their lack of experience with similar 
systems. They were also under psychological pressure from technical 
leaders of the various development teams who they thought were much 
more qualified to speak about the software itself. Therefore they had 
shifted their focus toward analysis, even though the rest of the software 
development organisation was still holding them accountable for the 
major architectural decisions. 

When architects have a good grasp of the software development aspect 
but a poor knowledge of the domain, they will develop nice solutions for the 
wrong problems, reduce the real problems to problems they know how to 
solve, or impose solutions that suit software engineers but are for a user 
community that works, behaves and thinks completely differently. For 
example, air-traffic controllers are not software developers; they have 
another view of the usefulness of menus and windows rather than the views 
shared by most software engineers. Imposing Macintosh-like desktop 
metaphors because it proved to be good for software types may prove to be a 
mistake in this specific case. 

If you agree that software architecture, like building architecture, is 
concerned with more than the nuts and bolts of the software, such as how the 
software is used in its context-sociological and economical i.e., looking 
outwards, and not merely inwards-then it becomes clearer why a software 
architecture team must be versed in both software development and the 
application domain. Architects need to anticipate changes, changes in the 
environment in which the system under development will be deployed, 
which will in tum trigger requests for change or evolution. You can only do 
this if you are looking at that context, that domain, not just looking at the 
software itself. Architects need to develop a long-term vision for the project: 
where do we want to be with this software in two years, five years, and ten 
years from now? 

Software architects are curious, they keep their ears and eyes open, read 
technical publications, and try to constantly sharpen their skills, extending 
and broadening the scope of their knowledge. They develop their creative 
skills by looking at other fields, other domains, other disciplines, from which 
they can derive more analogies. 

Achieving this balance of expertise in a software architecture team is 
hard. It is not enough to bring together a few people that are very good at 
software development and a few people that are good at the problem 
domain; they must have enough knowledge, language, and vision in 
common so they can communicate and produce something. 
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In another case, when we were creating a team to develop an architecture 
for an air-traffic control (ATC) system, we identified some talented 
software designers, and some talented ATC specialists. This was just the 
beginning. All the software people were sent for hands-on training on air
traffic control, going to ATC classes, then spending days sitting next to 
controllers in a live Area Control Centre, trying to understand the essence 
of their activity. Similarly, the ATC specialists were sent to courses such 
as Object-Oriented Design, Programming in Ada, to reach the point 
where there was enough common vocabulary for them to efficiently work 
together and leverage each other's skills. 

This approach does not always work without resistance: "Why should I 
learn about programming, since I will never program?", "Why should I 
waste my time going through air-traffic controller training? I am a 
software designer ... " 

The real difficulty is when there is only one architect: that one person 
must therefore be knowledgeable in both software development and the 
domain. Finding such people on the market is not very easy. The few we 
know of who are like that developed their unique combination of skills in a 
given organisation or company. 

lnsufficjant domain expertise 

Balanced expertise, but no 
common language 

Insufficient software expertise 

Balanced expertise and 
sufficient common language 

Figure I. Looking for the balanced team 
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When the scope of the project is large, the problem of finding people 
with balanced expertise and a common language gets worse. Within the 
software development domain, you may need to gather enough expertise 
from various "specialities" such as data engineering, operating systems, 
networking and security expertise. Within the application domain, there may 
be also specialisation: in telecommunications, for example, there is voice 
communication, call handling, voice messaging, versus data communication 
and packet switching. It is not possible to find people that are experts in all 
specialities, but collectively, the architecture team must be reasonably aware 
of these specialities so they can bring in and interact with experts whenever 
necessary. 

The issue of a common language is important. By language, we mean as 
well as a common spoken language, they must have a common way of 
representing the architecture, and a common programming language. The 
choice of a language is a choice of a model, complete with its opportunities 
for creativity, its internal assumptions, and its constraints. Languages, among 
people who speak them, provide a rapid transfer of knowledge, imply 
consent with the underlying connectives, and agreement on stated 
conclusions. 5 

The wider the experience the better. People who have been working with 
the same kind of architecture for 20 years have 20 years of experience but 
are likely to reproduce that same architecture for a new project. A person 
with only 12 years of experience with three or four different kinds of 
architecture brings more experience to the table. Consider getting help from 
external consultants: the very nature of their job ensures a wealth of 
experience, perhaps including work with your direct competitors. 

In all cases, software architects must understand software sufficiently 
well to be reasonable programmers. An architect unable to express or sketch 
a concept in a programming language is as suspicious as a building architect 
who does not know how to use aT-square, a French curve, or a lettering pen; 
he is putting the project at risk by having a wider gap to bridge with other 
developers. Often I write code simply to understand what I design. 

2.2 Communication skills 

Communication issues grow exponentially with the size of the 
development organisation. Successful architects or architecture teams 
rapidly become a centre of technical communication in a project, and they 
spend a significant amount of their time interacting with one or more 
stakeholders: explaining the architecture to other software developers, to 

5 Rechtin 1991 , p. 80 
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system engineers, to customers, users, prospects, marketing people, and 
managers. They must have therefore good written and verbal communication 
skills. Therefore, they must persuade, understand, dig out the real issues, 
convince the sceptical, and sell the architecture. As Jonathan Losk says: 
"Don't ever stop talking about the system."6 

On two different, large command and control systems, we noticed that 
the lead software architect was dedicating more than half of his time just 
communicating what architecture was and why it was important. 

Software architects must also listen, listen to the project worries, to 
recurring difficulties with certain tools, procedures, and design choices, 
while they are constantly adjusting, correcting or merely explaining software 
architecture, again and again. In many cases, they have to negotiate, finding 
compromises that can be accepted by several stakeholders. 

Unfortunately, there isn't a strong correlation between good technical 
skills and good communication skills. 

2.3 Leadership 

Architects must have some leadership skills-technical leadership, that 
is. This technical leadership must be based on their knowledge and their 
achievement, not simply on some administrative decision. We do not mean 
that they are the project leaders or managers, but they will lead the software 
development in many ways: by establishing the structure in which all the 
software development will be hosted, by establishing the main design rules, 
by ensuring that the design principles are followed, by injecting new ideas, 
new solutions, and new techniques into the project to improve its 
productivity or the quality of the product, by coaching and mentoring 
newcomers or more junior people. 

2.4 Proactive, goal-oriented and committed 

A software architecture team is not a committee, meeting every so often 
to share ideas or discuss issues. It is not a review board, nor a think tank for 
top management composed of selected staff technologists. It consists of a 
small number of people fully committed to a very specific goal: designing an 
architecture. A committee which meets two hours a week cannot design an 
architecture. Software architects work at this full time. Only in some rare 
cases can a member of the team split his or her time between more than one 
activity. In particular, we think that the function of a software architect is 

6 Jonathan Losk, cited in Rechtin 1991, p. 292 



www.manaraa.com

The Software Architect 571 

rarely compatible with that of project manager, except for very small 
projects (eight people or less). We will address this point in another article. 

Architects must be able to sustain a high degree of uncertainty and 
ambiguity. Their work often consists of a long succession of suboptimal 
choices, made in relative obscurity, i.e., without the luxury of examining all 
alternatives and all ramifications of the choices. Many people with scientific 
training- and this is aggravated by inexperience-cannot tolerate it for very 
long and will tend to defer the decision-making to others. 

3. THE ROLE AND PURPOSE OF THE 
ARCHITECTURE TEAM 

The architecture team share a common goal, or small set of goals . For the 
team to remain focused and efficient, the goals must be clearly defined, both 
to the architecture team and to their environment. This imposes the need to 
define (for a given project) what software architecture is, what are its 
boundaries, and in particular, what are the responsibilities and extent of 
authority of the architecture team, how decisions are being delegated, how to 
avoid "turf conflicts," and who is accountable. 

One of the best ways to establish this, especially in environments where 
the concept of software architecture is new, is to create and publish a charter 
for the architecture team. Section 3.1 is a template we have successfully used 
on several projects, with small variations.7 

3.1 The charter of a software architecture team 

The software architecture team is responsible for evolving and 
maintaining the vision of the "name your project" software architecture. 

The main activities of the software architecture team are: 
- Defining the architecture of the software 

Maintaining the architectural integrity of the software 
Assessing technical risks related to the software design 
Proposing the order and contents of the successive iterations and assisting 
in their planning 
Consulting services to various design, implementation, and integration 
teams 

- Assisting marketing in future product definition 

7 This text was pinned on the wall near my office at Hughes Aircraft of Canada during most 
of my time as the lead software architect for the Canadian Automated Air Traffic System. 
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The main deliverables from the software architecture team are documents: 
a software architecture document, some elements of software design 
documents, design and programming guidelines, iteration contents, meeting 
and review minutes and design audits of the running system. 

3.1.1 Defining the architecture 

The architecture of the software is the general framework in which all 
software design is performed. The architecture defines the major design 
elements, the way they are organised, structured, the way they interact, and 
the way they are to be used. 

To ensure that the architecture will meet the needs of the various parts of 
the software and the external requirements, the architecture team works in 
close relationship with the various "domain" development teams, and the 
system architecture team. The architects' view is one of breadth, whereas the 
domain designers' is that of depth. 

3.1.2 Maintaining architectural integrity 

The architecture team is responsible for the development and maintenance 
of design and programming guidelines. The architecture team is involved in 
the organisation of design and code reviews to ensure that those guidelines 
are being followed, or to make them evolve as necessary. It plays a major 
role in the organisation of end-of-iteration "post-mortem" reviews. 

All changes to major interfaces and all explicit violations of a design or 
programming rule must be approved by the architecture team. The 
architecture team is the final arbiter in matters of software aesthetics. 

Finally, the software architecture team is involved in "change control 
board" decisions to resolve problems that have an impact on the software 
architecture or some critical interface. 

3.1.3 Assessing technical risks 

The architecture teams maintain a list of perceived technical software
related risks. The team may propose exploratory studies or prototypes to 
investigate the feasibility of a technical solution before inserting it in the 
architecture. 

3.1.4 Proposing contents of iterations 

The architecture team proposes the technical contents and the order of 
successive iterations by selecting a certain number of scenarios and a certain 
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number of common mechanisms (services) to be studied and implemented. 
This technical proposal is completed and refined by the various development 
teams based on available personnel or customer requirements in terms of 
deliverables, availability of tools and COTS products, or needs of other 
projects. The architecture team then helps the various development teams 
with the transition from the architectural-level design to the more detailed 
design. 

3.1.5 Consulting services 

Because of their thorough understanding of the entire system, members of 
the software architecture team can provide assistance to various development 
teams as a floating resource for a given study, or, when needed, to help keep 
the project on schedule, or as "coaches" because of their specific skills or 
knowledge. 

3.1.6 Product definition 

In the context of a line-of-business of Widgets, the software 
architecture team provides some assistance in the definition of future 
products. It can help the marketing team with the prospective customer's 
requirement analysis, and during the study of the impact of a new product, 
shelter the development teams from too much disruption. Although it is not 
their main objective, the software architects play a major role in the project 
as facilitator or arbiter between the various product teams because of their 
various functions. 

The software architecture team is accountable to the project manager. Its 
work is reviewed by the project technical staff, and a selection of senior 
software designers from the other product design teams. Project management 
can also evaluate the architects' contributions to the product by auditing their 
input in the final running system. 

4. A TEAM AMONG OTHER TEAMS 

Where do you hook an architecture team in your "organisation chart"? A 
software architecture team is a team of software designers and developers 
which should be organised no differently than any other software 
development team. It just happens that they are focused on different levels of 
abstraction or granularity, and may, on the average, be more experienced 
than others. But it would be a mistake to separate them, either in terms of the 
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reporting structure or geographically, from the other software development 
groups they are supposed to interact with on a daily basis. 

Being on the software architecture team is not a honorific position, nor a 
sinecure, it is not a staff position, nor a research job. Its schedule is tied to 
that of the other teams, which are its main customers. It reports to the same 
project manager. 

One way to picture this is to consider the software architecture team as 
playing a symmetrical role to that of an integration and test team-the 
architecture team precedes the development teams, scouting the terrain, 
drafting the design, while the integration team follows, collecting debris and 
the wounded. In some circumstances we have called this the "engine, box 
cars, and caboose" model. The software architecture team is the engine 
pulling the train, the box-cars are the 'softcrafters' who are very good in one 
specific domain; and the integration team is the caboose, getting the pieces 
of software and making sure they can be integrated in a continuous manner. 
Note again that software architecture is not project management. 

Engine 

Software 

Integration 
Team 

a boose 

Software Development Management 

Software Team D 

Figure 2. The engine and caboose model 

This does not preclude a large company or organisation from having 
some R&D activity related to software architecture, nor some staff-level 
working group that overlooks the overall practice of software architecture 
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across projects, but we are describing the software architecture team of a 
given project. 

Some large organisations have set up two levels of software architecture 
activity: 
- one group at the corporate level, whose purpose is to capture and diffuse 

the best practice in that area, or to oversee large-scale architectural reuse, 
and 

- architecture teams closely associated to actual projects, 
with some circulation of individuals from one group to another (cf. Fig. 3) 

Leverage your skill at the corporate 
level; broaden your views; review 
other architectures. 

Leverage your vast and dual 
experience in an architecture 
team 

Corporate Architecture 
Group 

Project X architecture 
team 

Project V Development 
group 

Figure 3. Recycling software architects 

4.1 Size of the team 

Become a software 
architect again on a 
real project 

Go and learn new 
skills in a 
development group 

There is no simple absolute answer to this question. However, we will 
share a rule of thumb we have used which seems to correspond to the few 
data points we know from successful architecture teams that have been in 
place for years. 

For a new, large, unprecedented project, one software developer out of 10 
is on the architecture team during the inception and elaboration phase when 
architectural design is the preponderant activity. Then this can be reduced to 
one out of 12 or 15 as the project moves into the construction phase or 
during evolution cycles. 

What happens to the disappearing architects? It is likely that the overall 
software development organisation will grow during the construction phase, 
hence the ratio is reduced. Also some of the software architects of the initial 
team can become technical leads for the various development groups. This 
evolution is beneficial from several aspects: since they have been part of the 
initial architecture team, they play a positive role in communicating the 
architecture and its principles to various parts of the project, or conversely, 
they bring new issues and difficulties to the attention of their former team-
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mates, with whom they had developed "high bandwidth communication 
links." In a large project, they play the role of "remote sensors" for the core 
architecture team, thereby contributing to maintaining the system's integrity. 
As a result, the evolution of the architecture through the latter phases of 
development can be smoother, based less on adversarial or conflicting 
relations between an architecture team and relatively foreign development 
teams. 

Continuity is a key aspect. Eb Rechtin pleads for the architect to remain 
in charge until the project is delivered to the customer, whereas management 
may be tempted to "recycle" an architecture team to work on a new project 
as soon as the architecture of the current project is deemed "complete", i.e., 
at or soon after the end of the elaboration phase. The right balance is 
probably half way: keep enough architects on the project to guarantee the 
architectural integrity and to make any changes and improvements to drive it 
to a successful conclusion. This is where a team of architects offers more 
flexibility than a single architect. 

4.2 System architecture and software architecture 

In organisations that develop and integrate systems (composed of 
hardware and software, sometimes with all kinds of other devices), usually 
there is a strong system architecture function. Is software architecture just 
part of it? We have found that software issues are sufficiently distinct from 
system issues, and that the skill set of a software architect is significantly 
different from the other specialities present in the system architecture group 
to warrant the creation of a well-defined separate group to deal with software 
within the system architecture group. 

However, software is more often the central issue, as hardware becomes 
more and more of a commodity, and the system architecture and software 
architecture functions tend to merge into a single entity. 

5. TRAPS AND PITFALLS 

Even when all of the pre-conditions are met, software architecture teams 
still fail. Over a large range of projects, Rational consultants have seen and 
analysed some of the reasons for these failures. We addressed some of them 
indirectly already such as 
- Inexperience. 
- Lack of domain experience 
- Lack of software development experience 
- Architecture team acts as a committee 
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Other reasons why the architecture fails to meet the needs of the software 
developers are: 
- Undefined authority, undefined responsibilities 
- Architecture team works in an "ivory tower" 
- Not focused on design 
- Imbalance in the team composition 
- Procrastination 
Let us examine some of these traps and how to avoid them. 

5.1 Lack of authority 

Another story to illustrate the importance of authority. 

A complex telecommunication system started without much of a software 
architecture. After some time, an architecture team of talented people was 
created. But the group leaders of the development organisation-the 
"barons" as the architects called them-took this innovation as a serious 
challenge to their position and authority. Therefore they ignored 
whatever was corning out of the software architecture effort, protected 
what had been their "turf' for a couple of years now and blocked most of 
the communication between developers. Things did not progress well, the 
architects became tired and disillusioned and management-unfamiliar 
with the concept of a software architecture team-did not provide much 
support. The architects then left the company one after another. The 
"barons" had won, but the project was now two years late, and still 
without much of an architecture. 

Defining the exact extent of the architects' authority is even more important 
when a consultant or an external organisation is fulfilling this role. 

5.2 Ivory tower 

We met the software architecture team of the large multinational 
company in various public events, and liked their views on software 
architecture. A few months later, we were called to help one of their 
divisions and we referred to the company's architecture group. The division 
management had never heard of the group. 

There are other simpler ways of developing the ivory tower syndrome: 
- Put the team in another building 
- Present software architecture as some kind of sinecure for ageing, or 

weary designers 
The best way to avoid this is to communicate, communicate, 

communicate. The architecture team, especially when recently created, must 
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make its actlVlty visible by publishing a partial draft of a software 
architecture document, designing notes, and inviting other people to 
contribute or review. Every week they should be interacting with the rest of 
the development organisation. 

5.3 Imbalance 

An unbalanced software architecture team may have difficulties 
producing a complete and balanced architecture. A lack of understanding of 
the domain may lead to an architecture that solves computer science 
problems only; the same is true if the speciality or main field of interest or 
experience of the architecture team dominates. 

On a project that had no clearly defined software architecture team, we 
were trying to find out what the architecture of the system was in order to 
assess it. Interviewing various groups, we got four totally different 
'architectures', each group claiming that it was in its charter to define the 
architecture (cf. Fig. 4). 

OSI OSI 

u 

Figure 4. Four specialities, four architectures 

1. The telecommunications specialists told us that the main characteristic of 
the system was its distribution over a vast wide-area network, and that 
the telecommunication aspect was driving everything. They described 
OSI protocol stacks, and mentioned some 'code' to be developed as 
application services elements, hooked at OSI layer six and above. 

2. The data engineering leader described the system as one huge database 
(with impressive E-R diagrams to support this) described the commercial 
database at the core of the system, and how everything could be managed 
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by the database, networking, computer-human interface, with only a few 
algorithms that would have to be programmed in some other language 
than SQL. 

3. The Computer-Human Interface group had done some in-depth study of 
ergonomic issues, and claimed that the single biggest differentiator 
between the system under development and its predecessor was in the 
Graphical User Interface. They spoke about X servers and clients, 
revolutionary widgets and gadgets, as well as new peripherals. 

4. Finally, the systems engineers had a view entirely centred on the 
computers and the networks. Software was only a strange ingredient you 
sprinkle on top of the boxes, once you have defined them. 

It was hard to believe that they spoke about the same system. Moreover, they 
were not very concerned about the lack of architecture. Each group had 
enough to satisfy its concerns in terms of architecture as they defined it. 

Morale: find people who have broad experience. Learn about the fields 
that are under-represented. Eventually bring in specialists to consult with the 
architecture team. 

5.4 Confusing a tool and the architecture 

This story also illustrates another danger, which is to acquire a tool or a 
component that plays a major role in the architecture, and then being led to 
believe that the architectural design is done-that the tool has defined the 
architecture. 

Vendors of certain major products, especially databases or GUI, would 
like you to believe that they provide a complete architecture so that once you 
have bought their product your architectural design is done, that everything 
will gravitate around their product. 

5.5 Procrastination 

Attendre d'en savoir assez pour agir en toute lurniere, c'est se condamner 
a !'inaction. Waiting to know enough to act in full light is to condemn 
oneself to permanent inaction. Jean Rostand, French biologist 

Procrastination is the worse trap of all; it is insidious, and the best teams 
can easily fall in it. We have already written that the practice of software 
architecture is a long and rapid succession of suboptimal tactical decisions, 
mostly made in partial light. There is a great tendency (especially with 
people who have scientific training) to want to analyse more, find more 
options, go further down the paths in order to make the "right" choice, the 
optimal choice. This slowly kills the project. When decisions are not made, 
other teams cannot make any progress, or their progress is in jeopardy. They 
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will sit on their hands, waiting for the architects to decide or lose confidence 
in the architects and make their own decisions. 

A project was selecting a tool set to build one of its major components
its graphical user interface (GUI). Several candidate tools were studied: 
each had its advantages and disadvantages, none was a perfect match. 
The team delayed the choice, hoping for a better product to appear or for 
one of the three products to make some significant progress. Meanwhile, 
the development organisation in charge of the Computer-Human 
Interface could not make any progress as too much of its work was held 
back by the lack of tools. Then some hardware choices were not made, 
because of the lack of understanding of the consequences on the 
software. It came to a point where the whole project started to suffer 
significantly because a choice was not being made. The differences 
between the various GUI products were minimal. Drawing the winner out 
of a hat would have been better than waiting. But this was not rational. 
More requests for proposal were issued, more evaluation copies bought, 
more studies commissioned to establish more criteria for the choice and 
so on. The sad conclusion of this story is that the final choice was made 
outside of this team, on a purely political basis, with no consideration 
whatsoever for any of the technical arguments. 

We have found that, in many respects, it is better to make a decision now, in 
the dark, explaining clearly that it was made with little knowledge of the 
consequences, rather than suspend a whole project for weeks. Then it is up to 
the architects watch in the following weeks and months to see if the decision 
brings more trouble or solutions. If it really becomes a problem, then do not 
hesitate for one minute: change it. Do not compromise or tergiversate, be 
very decisive. But do not leave a known evil for another that you do not 
know, yet. You have put the development back on track. Explore your 
alternatives, including the cost of changing tracks. 

Le courage consiste a savoir choisir le moindre mal, si affreux qu'il soit 
encore. Courage is knowing how to choose the lesser evil, as awful as it 
still is. Stendhal 

Do not become too focused on the technical optimality of the solution; 
there is rarely an optimum when taking into account all factors, cost and 
schedule included. The relative advantages of this or that solution are often 
minor, and are not enough to justify important delays. 

This ability to rapidly make tactical decisions and live with the associated 
anxiety is one of the elements that distinguishes the software architect from 
other software developers. It takes a while to get used to it. Some people 
never do it, and will always hide behind an architect that has more courage 
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than themselves. The life of a software architect is a long and sometimes 
painful succession of suboptimal decisions taken partly in the dark. 

Finally, it is very hard to eradicate the idea that software development is 
not a linear process: it proceeds by trying out ideas to validate them. 
Therefore, it is OK to start coding things before extensively studying every 
detail on paper. It is also better to make a choice now (even though it may be 
the wrong one) and discover early in the project that it is wrong, than to wait 
forever for the ideal, complete, perfect answer to fall from the sky. 

Architects can act as the "conscience" of the products. When 
management appears to be procrastinating on key issues affecting the 
product, the architects need to prod them to get the decisions made early. 
Architects also need to tell management the bad news, including negative 
results and failed prototypes, early enough so that adjustments can be made. 

6. THE PERSONALITY OF THE ARCHITECT 

Is there a certain psychological profile that suits the role of the software 
architect? Maybe. Based on original ideas of the Swiss psychologist Carl 
Jung, American psychologists Isabel Myers and David Kersey developed, in 
the 50's and the 60's, a classification of personalities which has had some 
success in corporations throughout North America, most notably under the 
label "Myers-Briggs Type Indicator." They developed psychological tests to 
classify individuals according to four major traits: 
1. Extroversion (E) versus Introversion (D 
2. Sensation (S) versus Intuition (N) 
3. Thinking (T) versus Feeling (F) 
4. Perceiving (P) versus Judging (J). 

Although these four characteristics are not binary, but rather a scale--one 
can be extroverted to some degree-one may classify individuals in 16 
"bins" of irregular size, labelling each bin with the letters indicated above: 
ESTP, ISFJ, etc. The type ESTP would therefore describe a person whose 
personality leans towards Extroversion, preferring Sensation over Intuition, 
relying on Thinking more than on Feeling and using Perceiving rather than 
Judging. Over three decades psychologists studied common characteristics 
of each of the 16 groups of individuals, notably how they fit in their working 
environment. They refined the model to introduce "mixed types," taking into 
account the traits where the test does not clearly lean towards a letter or 
another, marking this with the letter X, such as EXTP for someone who 
would be in between ESTP and ENTP. 

All this preamble is to tell you that it seems that good software architects 
are found among the INTJ or INTP types. Not much surprise about the 'I': 



www.manaraa.com

582 Philippe Kruchten 

most people in scientific or technological fields are introverted. The NT part 
is the Promethean temperament: the 12% of the population who loves 
intelligence, power over nature, competence, skills, and their work. NT types 
like to be liked for their ideas. When in a leadership position, they are 
visionary leaders. They do not like routine. They are the vectors of change. 

David Keirsey nicknames the INTP the "Architect", the "Abstractionist". 
Abstract design is their forte and coherence is the primary issue. They are 
curious, rational, and theoretical. The world exists to be understood. They 
are the logicians, the philosophers of systems. They exhibit a great precision 
in thought and language. They easily detect contradictions and flaws . But 
they can also become obsessed with analysis or the gathering of more data. 

Keirsey nicknames the INTJ the "Scientist." INTJs are the most self
confident of all 16 types, with a great awareness of their own power. 
Authority or slogans have little impact on them, unless it makes sense. They 
can easily make decisions, bringing issues to closure. Unlike the INTPs, they 
need only to have a vague, intuitive impression of the unexpressed logic of a 
system to continue surely on their way. They rapidly discard theories that 
cannot be made to work. They are better at generalising, classifying and 
demonstrating than INTPs. They are less likely to procrastinate. 

Although we do have some very limited evidence that successful 
architecture teams are primarily composed of INTJ and INTP, other types 
are useful to achieve a good balance as the team grows: for example an 
ISTJ-the highly dependable "trustee"-would keep track of things in a 
large project. While some extroverted types could improve communication. 
Thus, we would satisfy one of Katzenbach and Smith's axioms for a team: a 
blend of technical and functional skills, problem-solving and decision 
making skills, and interpersonal skills. The bad news is that INTJs and 
INTPs represent only 2% of the general population. After selecting people 
based on their expertise, you may not have much latitude left, unless you are 
in a big company with deep pockets. 

7. SUMMARY 

- Designate a software architect, or assemble a small team of software 
architects who share a common goal or vision of the product. 

- The software architecture team must be experienced in both the problem 
domain and software development. 

- Software architects should be fully dedicated to their task; in particular, 
the role of software architect is usually not compatible with that of 
project manager. 

- The architect(s) and the project manager are joined at the hip. 
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The Software Architect 

Establish a charter of the software architecture team which clearly 
defines its role and responsibilities, and establishes its authority. 
Do not isolate the software architecture team-it is a software 
development group among other software development groups. 
Common pitfalls for a software architecture team include: lack of 
experience, undefined authority or isolation, an unbalanced mix of 
technical skills, lack of focus on the design, and procrastination. 
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Abstract: Aspects are a way to supplement object-oriented modelling with function
oriented modelling. The Building Block Method (BBM) identifies 3 
dimensions of independent design. Besides an object dimension and a process 
dimension also an aspect dimension is present. Object design, process design 
and function design are done independently. Building Blocks (BB), which are 
software components, cluster functionality according to criteria such as 
configurability in a product family and incremental system integration. The 
BBM is used to design families of telecommunication infrastructure, digital 
broadcasting and medical imaging systems. The paper introduces the concept 
of aspects and shows how they are identified and used in the BBM. 

1. INTRODUCTION 

Today's electronic systems implement more and more of their 
functionality in software. The flexibility of software and the price erosion of 
standard computing hardware further this trend. Despite all kinds of 
modularity in hardware and software, the integrating system characteristics 
of the larger systems are always implemented in software. These 
architectural software structures are much harder to change than more local 
hardware and software parts. The continuous evolutionary development 
requires that software and hardware needs to be changed and extended in a 
piecemeal way. To enable this the basic architectural structures must be 
designed to do this with moderate effort. 
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The use of object-oriented modelling has advanced the conceptual level 
of implementations as consisting of a network of objects. For small and 
medium size systems this may be enough. Large systems, however, easily 
become monolithic, i.e., an unmanageable web of objects. They therefore 
need more modularity and more locality of changes in an evolutionary 
development situation. Object-oriented concepts should be complemented by 
other concepts from other modelling techniques, for example functional 
modelling. The goal is to create systems that are modelled naturally for their 
application domain [10]. BB aspect design is a means to cope with this 
problem. 

The next section gives an introduction to the BBM. Section 3 defines 
software aspects and shows by means of examples how software aspects are 
derived from a system level perspective. Software aspects are an important 
means to relate software functionality to the overall system functionality. 
Section 4 and 5 look at the consequences for components and component
based development. Section 6 compares the aspects in the BBM with other 
approaches. 

2. OVERVIEW OF THE BBM 

The BBM is a component based [18] design method for the development 
of the software for central controllers of embedded systems. These central 
controllers integrate, control, and manage the overall system. They are points 
of great complexity. 

Many of the concepts that we will present can (or better, should) be used 
for all of the software of an embedded system; in fact they are useful in the 
structuring of any large software system. However, we focus on the specific 
problem of central controllers to be able to reason very specifically, which 
would be more difficult if we dealt with software systems in general [9]. 
Furthermore, the basic ingredients of the method presented have been tried 
out successfully in the design of these central controllers. 

Experiences with the method stem from the development of systems in 
the telecommunications, video broadcasting and medical imaging domain. 
The most complete overview of the BBM can be found in [12] . Some 
quantitative figures are given in [16]. 

The method presented is designed to support the creation of product 
family architectures [4] . Composing a product from pre-manufactured 
components is how software reuse in a product family architecture is 
achieved [13]. The product management requirements of short lead time, 
low development effort, and high quality products have been translated into 
the architectural requirements of conceptual integrity, managed complexity, 
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delta development, extensibility, reusability, configurability, and testability 
[12]. These requirements have been taken as the main ones to be achieved in 
a system architecture constructed via our method. 

However, it is clear that architecture can only lay a good foundation on 
which the system is built. A good product needs more than just a good 
architecture. Errors can be made at all levels of system development: 
requirements, architecture, detailed design, implementation, deployment, 
documentation, to name the most important ones. In the next section we take 
a look at the architectural meta-model (AM-M) of the BBM. 

2.1 The AM-M of the building block method 

Traditionally the description of an architecture and its models have been 
very much dependent on the persons presenting them. Depending on the 
major problems to be solved by the architecture, or the personal preferences 
of the persons involved, structures like hardware boundaries, modules, 
processes or state machines have been presented as the architecture. 

However, experiences from different projects show that besides the 
specific nature of a product the architecture had to address a number of 
common problems. These problems are, for example, the units in which a 
software system is broken down, composed and evolved; or the way in 
which processing resources are to be used by the application. The solutions 
to those problems are part of an architecture. 

Different methods define different things to be part of an architecture. 
We call those parts of an architecture that are required by a method the 
architectural meta-model of a method. 

The architectural meta-model of the BBM consists of 
- a logical model, 
- the building block design dimensions (BBDD), and 
- components, the so-called building blocks (BB). 

We explain the AM-M of the BBM in the rest of this section. 

2.1.1 Logical model 

The logical model is the model of the functionality of the systems to be 
built. It describes the externally observable (and the made-known internal) 
functionality . The language used is the one of the customer (or user) and of 
the product managers. The intention of the model is to precisely describe 
- the "what" of the system. 
- the environment of the system, e.g., to which interfaces it has to comply. 
- other conditions for the system. 

The "how" of the implementation is left to design. 



www.manaraa.com

588 Jiirgen K. Muller 

2.1.1.1 Modelling language and domain modelling 
A lot of different modelling languages have been proposed. Examples 

include data flow diagrams, entity-relationship diagrams, state machines, 
object-oriented modelling. However, no standard has yet evolved, and it is 
questionable if that will ever happen. 

If you look at a very mature domain, say cars, a lot of domain-specific 
objects are used to describe and compare cars. Also new cars are described 
in terms of the attributes of domain objects, e.g., the number of cylinders of 
the motor and its horse power, the type of gearbox, the interior design, its 
maximum speed, etc. In a new domain a description of a product uses many 
more functions of that product than attributes of domain objects. The objects 
are still a matter of design. 

However, in many domains object-oriented modelling will be the 
modelling language of choice. The most prominent one is the Unified 
Modelling Language UML [6]. There are many methods to develop such an 
00 model. 

As a domain matures and companies want to cover a complete 
application domain with their products the focus of the logical model 
changes. Being initially the model of the functionality of a product, the 
logical model is used to describe a complete application domain (together 
with a selection list for each specific product). 

The BBM does not use a specific modelling language nor a specific 
method to develop such a logical model. It assumes that one exists and takes 
it as basis for the further architectural design. 

2.1.2 Design dimensions 

The idea of dimensional structuring is introduced to support intellectual 
control of system functionality. If common concepts or structures that apply 
to the same item can be separated such that there are no mutual restrictions, 
the concepts or structures are orthogonal; we can talk about design 
dimensions. Thus, design can be carried out independently for every 
dimension. Each item in the design space can be reduced (projected) to one 
specific dimension. The BBM identifies 3 design dimensions that will be 
motivated below. Of course functionality of the 3 dimensions has to be 
related. Design guidelines for each dimension and for relating the 3 are 
given. However, the BBM views every such relation as a design decision. 

The first point is to separate object structuring from the use of execution 
units. Objects stem from the modelling of domain functionality. Execution 
units determine the use of processing resources for independent, co
operating and/or sequential actions. The designer should be free to do the 
process design without consequences for the object design. They build two 
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orthogonal dimensions, i.e., a method of an object may be driven by one or 
more processes and a process may drive methods from different objects. 

The second point is to introduce functional structuring in addition to 
object-based structuring. Those global functions that deal with potentially all 
objects (i.e., they cross-cut objects) are handled as aspects. Thus each object 
method in the system is part of an object and part of an aspect. 

The BBM combines these two points, which leads to three design 
dimensions: the object dimension, the aspect dimension, and the process 
dimension (figure 1). 

Aspect 

Figure 1. Design dimensions 

In the BBM, an object method is defined to be the minimal block of 
functionality. This corresponds to a point in the design space. The first 
dimension is the object dimension, which covers the decomposition of the 
system into data units with their access procedures. The second dimension is 
according to aspects. Each aspect deals with a specific view of the 
functionality of the systems, such as recovery, configuration management, 
fault handling, etc. The whole system functionality is partitioned by the set 
of aspects. The third dimension is the process dimension, viz. the whole 
system is driven by a set of processes. The guidelines to identify and define 
objects and processes are not the subject of this paper. 

The consequence is that design for each dimension can be made 
independent of the other two, which gives the freedom to make a design that 
is best suited for the application. The structuring in the design dimensions is 
a structuring at the meta-level of the system. 

2.1.2.1 System evolution and design dimensions 
With respect to system evolution, the aspect dimension is not handled in 

the same way as the object dimension. We assume that a system is primarily 
modelled using objects. For most application areas this gives the most stable 
modelling. The most common extensions of the system are via extended 
objects and new objects (i.e., there exists a locality of change). 

The two design dimensions, object and aspect, are a specific union of 
object-oriented and functional modelling. Aspects are seen as a secondary 
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form of modelling. They are functions that cross-cut all or most objects. To 
achieve stable software structures aspects should be standardised for a 
complete product family. Adding a new aspect affects all related objects. 

Process design starts by looking for independence of objects. But for 
most systems we assume that a situation is aimed for where the structure of 
independent execution units is standardised, either in specific classes or in 
some rules that guide the creation of classes and instances (see Gomaa [7]). 
Without such rules the understanding of a large evolving system is very 
difficult. 

Because of the above-described situation, that aspects and processes 
should be stable, we say that the evolution of the system is mainly in the 
object dimension. 

2.1.3 Components 

Components are deployment units that are identified in the architectural 
phase [18]. This means that they are present during all of the development 
phases. They are called Building Blocks (BB). They are the main focus of 
the BBM. An architecture identifies the BBs. A specific product is built out 
of BBs. This means that a BB has a specific representation in all the phases. 

There are two important points for BBs: what is the content of a BB and 
what are the relations between BBs? Through the design dimensions the 
functionality of a complete system is designed. A BB usually consists a 
collection of objects. It does usually not contain complete processes or 
aspects. The set of BBs covers the complete functionality in a non
overlapping way. There are certain criteria for identifying BBs; the main one 
is configurability. These criteria may also influence the design along the 3 
design dimensions. A design process evolves typically in several steps until 
stability is reached. 

A system architecture has to define inter- and intra-BB structures. 
Aspects are used for intra-BB structuring (see below). lnter-BB structures 
are defined via the concepts of layers, subsystems, classification of BBs, and 
a skeleton. 

The include relations of all BBs form a partial order. Each BB resides in 
a layer [3] and can only use BBs in strictly lower layers. During the 
initialisation phase a BB in a higher layer binds itself to a BB in a lower 
layer (post-load linking). Through this binding BBs in a higher layer 
establish call-back procedures at lower-layer BBs. This guarantees that on 
the syntactic level no mutual relation exists. Design rules exist that avoid 
that on the semantic level. 

BBs are classified into generic and specific BBs. Generic BBs implement 
the generic part of some functionality. Specific BBs implement the delta part 
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of that functionality. The classification in generic and specific functionality 
is a relative one. A BB is generic or specific with respect to a specific 
functionality. A BB can be generic and specific with respect to several 
functionalities. Examples of infrastructure functionality are a device driver 
abstraction vs. specific device drivers, a BB implementing a fault handling 
concept vs. those implementing specific faults, etc. One generic BB has 
usually several specific BBs. A generic BB is always located in a lower layer 
than a specific BB, i.e., a specific BBs uses functionality of the generic BB. 

Several layers of BBs can be grouped into subsystems [5]. Subsystems 
follow the rules for layers: subsystems are stacked above each other. To 
allow configurability even in lower subsystems some of the BBs have only 
"requires" interfaces, i.e., their functionality is only accessed via call-back 
interfaces. They can be added and removed without syntactical 
consequences for BBs in higher subsystems. Subsystem access generics 
connect functionality from higher subsystems with those configurable BBs. 

3. SOFTWARE ASPECTS 

Software aspects are global functions that cross-cut domain objects. To 
identify aspects we have to look at a functional structuring of the application 
domain. Relating these functional structures to the identified objects can lead 
to 3 cases: 
1. a function has relations to, and/or defines functionality of, a few objects 

only, 
2. a function is to be used by almost all objects, 
3. a function defines the functionality of almost all objects. 

In the first case the function will be handled as (part of) some functional 
object of the object dimension. In the second case the function will also be 
handled as a functional object of the object dimension but will be part of the 
system infrastructure. In the third case the function will be an aspect. Such a 
function cross-cuts objects. Aspects are a non-hierarchical, potentially 
complete, functional decomposition of software functionality. The list of 
aspects should be anchored in the application domain and be defined for a 
complete product family. 

The decision to model such a function as aspect or not depends on the 
required functionality. Let us take the function of access control as an 
example. If access control is to be done whenever a user wants to enter a 
system and, if access is granted, the user is free to use all functionality, 
access control can be localised as an "access control object" that implements 
all required functionality. On the other hand, if access control should be 
more sophisticated depending on users and user groups that have certain 
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rights at certain times, the functionality may logically belong to the 
application objects. A design may use access control lists and a state model 
for each object to decide if access is granted. Access control could be 
defined as an aspect of all objects. An implementation could be split into a 
generic access control object that implements all common functionality, 
while any other object has to implement its specific access control 
functionality. The generic component would be part of the system 
infrastructure. This example shows how the second and third case of 
function object relations can sometimes be related. A file system is a simple 
case of such a system where access rights are located with the files while the 
processing of the access rights is handled in the "file handling object." 

To identify aspects we have to look at the functionality from a system 
perspective. We give several examples of ways to look at system 
functionality . Some are general, while others stem from specific domains. 
From these views we derive system aspects. In a further step, ways to derive 
software aspects from system aspects are described. The identification of 
aspects has to be done for a specific domain, as it is with objects. 

views upon systems 

system aspects 

software aspects 

Figure 2. Deriving software aspects 

3.1 Aspects of system design 

System design is a multi-stakeholder and multi-disciplinary task. Besides 
the functional requirements of the system, non-functional requirements of 
the customer and the developing organisation have to be met. These different 
views of a system' s functionality constitute the concerns of system design. 
An architect has to take all these concerns into consideration. 

In the following, four different sets of views of a system are presented. 
They are from different contexts and we do not discuss their pros and cons; 
they are used as a starting point for the definition of software aspects. In a 
first step, however, we classify these views according to whether they are 
directly relevant for system implementation or whether they only shape the 
context of system implementation. We call views that directly influence 
system implementation system aspects (figure 2). 
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3.1.1 Functional and non-functional requirements 

Requirements are often classified into functional and non-functional 
requirements. The intention of this classification is to emphasise the fact that 
besides functional characteristics many more qualities are expected from a 
well-designed system. Depending on the system and also the customers, 
system attributes such as performance, safety, technology choices, 
testability, reuse, portability, use of standards, etc., are part of the customer 
requirements or not. A customer can specify these requirements either not at 
all, partially, or fully. Implicit system attributes that are expected to be 
present in all systems of a certain class in a specific market segment have to 
be added. A development organisation will add requirements because of 
internal benefits or consistency. Therefore the classification into functional 
and non-functional requirements is, in general, somewhat vague. It cannot 
directly be used to guide a design. System aspects cover functional and non
functional behaviour. 

3.1.2 System quality attributes 

Quality attributes are another view upon the system. Bass et al. [1] 
classify system qualities in 4 classes: 
1. business qualities, such as time to market, cost, projected lifetime of the 

system, targeted market, roll-out schedule, extensive use of legacy 
systems 

2. quality attributes discernible at run time, such as performance, security, 
availability, functionality, usability 

3. quality attributes not discernible at runtime, such as modifiability, 
portability, reusability, integrability, testability 

4. intrinsic architecture qualities, such as conceptual integrity, correctness 
and completeness, buildability 
These qualities are intended to guide the process of architecting a system. 

Business qualities determine the context of system implementation. Quality 
attributes discernible at runtime and those not discernible at runtime are 
system aspects. Intrinsic architecture qualities guide the process of making 
an architecture but do not directly influence system implementation. 

3.1.3 Architectural concerns 

G. Muller made a list of architectural concerns [14] for the design of 
medical imaging systems. He made the point that the system architect has to 
take all these concerns into consideration (i.e., know the specific 
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requirements, communicate with the respective stakeholders, judge on the 
relative importance, etc.). The architectural concerns are: 
- application requirements *, 
- functional behaviour *, 
- typical load *, 

resource usage (CPU, memory, disk, network, etc.)*, 
installation, configuration, customisation, etc. *, 
factory and field testability *, 
configuration management (technical and commercial) *, 
safety, hazard analysis*, 

- security *, 
- image quality *, 
- functional chain specifications (print, store, etc.)*, 
- interoperability, other systems, selected partners, other vendors *, 
- interfacing to other applications *, 

technology choices (software, hardware, computer, dedicated digital, 
make/buy), 
selection and use of mechanisms, 
module design, process design, function allocation (method, file, 
component, package)*, 
information model: world standardisation, PMS standardisation, PMG 
standardisation, application specific *, 
test strategy, harnesses, suites, regression, 
verification *, 

- performance, throughput, response *, 
- re-use consequences, provisions; development process impact; 

organisational impact; business impact, 
assessment of strong and weak aspects, road map for all views, 

- system engineering (cables, cabinets, environment, etc.), 
- cost structure (material, production, initial, maintenance, installation), 
- logistics, purchasing (long lead items, vulnerability, second sourcing). 

These architectural concerns are broad. They look at the system (to be 
built), its development and use environments. A more restricted view is to 
look only at system aspects. Architectural concerns that are system aspects 
are denoted with an asterisk. 

3.1.4 Operator oriented system aspects 

In the area of telecommunication infrastructure, systems tasks and 
procedures of operators have been classified. A system has to provide 
interfaces and functionality to support an operator in his or her tasks. A 
traditional classification distinguishes operation, maintenance, and 
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administration tasks; it is often abbreviated OMA. FCAPS is the 
classification of the OSI system management functional areas (SMFAs) [8] . 
The functions are divided into fault management, configuration 
management, accounting management, performance management, and 
security management. These operator oriented function classifications are 
system aspects. 

3.2 Mapping of system aspects to software 

Software aspects are derived from system aspects. To do this we first 
classify system aspects in those that directly specify functionality and those 
that put constraints on how functionality is implemented. Operator oriented 
system aspects specify functionality, while system aspects from the system 
qualities constrain the implementation of functionality . System aspects from 
the architectural concerns list fall in both classes. Some of them specify 
functionality that is realised in software. The relation between system 
aspects and software aspects can be described by the following mappings: 
- not relevant for software (e.g., handled in hardware) 
- mapped to functional unit (e.g., domain object, BB, subsystem) 
- mapped to own software aspect 
- mapped to shared software aspect 
- distributed over several other software aspects and/or functional blocks 

In the following, three examples are given to describe this process. As a 
first example the aspect list of the tss system where the BBM has been 
applied first is given. The second example describes the rationale of 
mapping a system aspect. The third example gives a list of software aspects 
derived from the architectural concerns list. 

3.2.1 Example: tss software aspects 

As an example we give the list of software aspects in the tss system [2]. 
- system management 

The aspect system management deals with the external control of the 
system. This may be a man-machine interface, including formatted 
input and output, or a message-based coded interface. 

- recovery 
The aspect recovery deals with the proper initialisation of the system 
during recovery time. 

- configuration control 
The aspect configuration control deals with the impact of changes in 
the physical (hardware) and/or logical configuration; changes may have 
been induced by failures or reconfigurations via system management. 
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- data replication 
The aspect data replication deals with the replication of data across 
processor boundaries. Configuration data of the controller are 
replicated whenever a peripheral device requires a local copy of part of 
the configuration data. 

- test handling 
The aspect test handling comprises built-in functions running 
periodically, or being invoked on specific events, in order to detect and 
identify internal or external hardware faults or corrupted data. Test 
functions have no resulting event except to indicate a failure . 

- error handling 
The aspect error handling is entered when a failure occurs. The related 
functions take the appropriate actions on a failure. This especially 
includes damage confinement and fault localisation. 

- diagnostics 
Functions of the aspect diagnostics are invoked by 
- test handling in order to detect faults in the sense of preventive 

maintenance, 
- error handling in order to localise hardware faults, 
- configuration control in order to verify the repair or re-configuration 

of physical or logical objects. 
- performance observation 

The aspect performance observation deals with the collection and 
processing of data for statistical and quality measurement purposes. 

- debugging 
The aspect debugging covers the functions required to debug the on
line software in test-floor operation as well as filed operation. 

- overload control 
The aspect overload control implements the functionality to prevent the 
system from being overloaded. During the overload situation the 
system is still within the margins of the specified quality of service. 

- operational 
The aspect operational has a specific character. It represents the core 
functional behaviour of the system, i.e., handling of calls. 

3.2.2 Example mapping of system aspect reliability in tss 

To illustrate a mapping of a more complex system aspect the 
implementation of the system aspect reliability in the tss switching system is 
given. 

Reliability is realised in the following ways: 
- not in software: 
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- the central processor is in a 1: 1 redundant configuration that operates 
in cold stand-by mode 

- for the 3 classes of peripheral cards the following holds: 
- specific service cards are configured in load sharing or hot stand-

by for dynamically allocated resources 
- the network of switching systems implements hot stand by of trunk 

cards 
- subscriber cards are not redundant 

- software aspect man-machine interface: changes to the card 
configuration, states of card and logical objects and parameters thereof 
made by the operator have transaction semantics 

- software aspect configuration: persistence of the configuration is realised 
in a database 

- software aspect error handling: fault management concepts are 
implemented for card faults to hold the system in a consistent state 

3.2.3 Example of a hypothetical system 

As another example we present a possible definition of software aspects 
for a hypothetical medical imaging system. The definition is based on the list 
of system aspects given by G. Muller (see above). A system could have the 
following list of aspects: 
- operational (functionality to process medical images) 
- initialisation and recovery 
- pixel data communication 
- control communication 
- imaging information model 
- configuration management 
- safety and consistency checking 
- user interfacing 
- testing 

These aspects represent functionality that is orthogonal to object 
modelling. Another concern such as logistics may lead to the use of an 
identification number for BBs. Comparable cases can be derived from other 
concerns as well. 

4. ASPECTS AND BUILDING BLOCKS 

Most of the systems designed with the BBM have their features in the 
object dimension. That means that most of the BBs contain one or more 
objects completely. Therefore for each BB a standard substructuring has 
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been defined: all aspects are present in each BB, even if some of the aspects 
are empty for a BB (figure 3). Note that some of the aspects such as 
debugging may require functionality to be present everywhere. This could 
mean that a BB automatically has to implement that functionality. 
Functionality for another aspect such as error handling is only present in 
parts of the system where errors can occur (virtual fault absence on higher 
layers). 

IEJ --_EJ -J:J I BB 
................ ................. .... ....... >,........ :-:=.<.::... ,..., .... ""' .,. ................ 

' ,, ,,..., ,,., ,' ,, , , 

EJ @] EJ-- EJ BB 
,, ........... .... ........ ' ...... 

,," ,............ .... ... x....... ................... ... .......... 

I EJ-_:-EiTr Ei EJ> EJ EJ I BB 

Figure 3. Aspect structuring of building blocks 

That means that systems designed with the BBM have BBs as their 
primary decomposition, with secondary structuring provided by the aspects 
within the BBs. Introducing new aspects for a system is not forbidden, but it 
is a worst-case situation where the change effort is almost maximal. 

5. ARCHITECTURAL DESIGN WITH ASPECTS 

The list of aspects is a tool for the architects to check the functional 
completeness of their identified components. Questions such as: which 
initialisation actions are required by a component, which faults can a 
component have, how can it be influenced by other faults in the system, how 
can the component be configured, what is the required reliability, which 
resources may it use, etc., help to specify its required functionality. 

5.1 Aspect-completeness of configurable components 

Application features are modelled ideally if they can be added to an 
installed system. Even more advanced is if the complete system consists of 
pluggable components. To be able to implement systems from components 
only, these components have to be functionally complete. Functional 
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completeness is relative to a given functional infrastructure. Aspects together 
with a well-designed infrastructure are a means to achieve this functional 
completeness. A (set of) BB(s) is aspect-complete if it allocates all its 
required resources itself and implements all aspect functionality [15]. 

5.2 Aspects and documentation 

In the BB method the notion of a BB is pervasive from architectural 
design to implementation. In the architectural design BBs are identified, the 
specification phase completes the specification of a BB's functionality, in 
the design and implementation phases it is designed and implemented, 
respectively. The list of aspects is used for completeness checking in review 
sessions. Each BB has its own documents: here, again, aspects are used as 
the main chapters of the document. 

5.3 Aspects and implementation 

In the implementation each function is a triple <object, process, aspect> 
in the design space, i.e., each function is part of an object, is driven by a 
process, and is part of an aspect. Making aspects a standard substructuring of 
a BB, provides a secondary modularity. Naming conventions, files, or 
programming language modules are possible ways of implementing this 
modularity. Some of the aspects of a BB may be empty. 

6. COMPARABLE APPROACHES 

The architectural models of Kruchten [ 11] and Soni et al. [ 17] also make 
the distinction between object and process dimensions for their 
implementation structuring. Kruchten uses the terms development view and 
process view, while Soni et al. use module interconnection architecture and 
execution architecture. The examples given by Soni et al. indicate that the 
conceptual architecture provides a functional decomposition that is 
hierarchical to the development and the execution architecture. Kruchten's 
logical view provides no constraints for further structuring in the 
development and process views. 

Kruchten's model is object-oriented and recognises the independence of 
the modelling of processing resources. It leaves out the aspect dimension, 
i.e., functions are subordinate to objects. Soni et al. work with a functional 
structuring and on the next level distinguish between development units and 
processes. The functional structuring is dominant; object-oriented structuring 
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may be used on a micro-level. Perhaps this is the case because their model is 
more a reverse-architecting model than a forward-architecting model. 

The logical model of the BBM is close to the one developed by Kruchten 
[11], however we can also imagine more function-oriented logical models. 
The original project where the tss system was developed and from which the 
BBM originates took only a list of features as the logical model. This may be 
too limited for domains where most of the domain knowledge is not 
implicitly present. On the other hand the logical model of Kruchten does not 
support nor hinder feature-list-like descriptions. 

Independent of architectural discussions, limitations of the object
oriented design have been recognised. Kiczales et al. [10] describe examples 
where object-oriented modelling is too limited and leads to very complex 
code. He is looking for an alternative structuring that leads to a natural 
design structure also for more complex examples. Kiczales calls his 
approach aspect-oriented programming (AOP). He defines an aspect to be 
functionality that cross-cuts objects. Since his concern is programming and 
development of next generation programming languages, it could be said 
that he does bottom-up what the BBM method does top-down, from the 
system point of view. Furthermore, the need to define (sub-)languages in 
AOP for each kind of problem creates very specific solutions only. 
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