
www.manaraa.com

www.manaraa.com

SOFTWARE ARCHITECTURE

www.manaraa.com

IFIP • The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information
processing within its member countries and to encourage technology transfer to developing
nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP' s
events range from an international congress to local seminars, but the most important are:

• The IFIP World Computer Congress, held every second year;
• open conferences;
• working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring
a less committed involvement may apply for associate or corresponding membership.
Associate members enjoy the same benefits as full members, but without voting rights.
Corresponding members are not represented in IFIP bodies. Affiliated membership is open
to non-national societies, and individual and honorary membership schemes are also
offered.

www.manaraa.com

SOFTWARE ARCHITECTURE

TC2 First Working IFIP Conference on
Software Architecture (WICSAl)

22-24 February 1999, San Antonio, Texas, USA

Edited by

Patrick Donohoe
Carnegie Mellon University

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

by IFIP International Federation for Information Processing

www.manaraa.com

The original version of the book frontmatter was revised:
The copyright line was incorrect. The Erratum
to the book frontmatter is available at
DOI: 10.1007/978-0-387-35563-4_35

http://dx.doi.org/10.1007/978-0-387-35563-4_35

www.manaraa.com

xiii

xv

xi

www.manaraa.com

Contents

Developing Dependable Systems Using Software Architecture 83
TITOS SARIDAKIS AND VALERIE ISSARNY

Architectural Models and Descriptions 105

Specification and Refinement of Dynamic Software Architectures 107
CALOS CANAL, ERNESTO PIMENTEL, AND JOSE M . TROY A

Modeling Software Architectures and Styles with Graph Grammars and
Constraint Solving 127
DAN HIRSCH, PAOLA INVERARDI, AND UGO MONTANARI

Describing Software Architecture with UML 145
C. HOFMEISTER, R. L. NORD, AND D. SONI

Assessing the Suitability of a Standard Design Method
for Modeling Software Architectures 161
NENAD MEDVIDOVIC AND DAVIDS. ROSENBLUt.;I

Software Architecture and Java Beans 183
SYLVIA STUURMAN

Architectural Patterns and Styles 201

Architectural Styles as Adaptors 203
DON BATORY, Y ANNIS SMARAGDAKIS, AND LOU COGLIANESE

Attribute-Based Architecture Styles 225
MARK H. KLEIN, RICK KAzMAN, LEN BASS,

JEROMY CARRIERE, MARIO BARBACCI, AND HOWARD LIPSON

A Framework for Describing Software Architectures for Reuse 245
EZRA KAAHWA MUGISA AND TOM S. E. MAIBAUM

Modeling Software Architecture Using Domain-Specific Patterns 273
J. P . RIEGEL, C . KAESLING, AND M. SCHOTZE

ImageBuilder Software 293
DWAYNE TOWELL

Event-Based Execution\Architectures for Dynamic Software Systems 303
JAMES VERA, AND DAVID C. LUCKHAM

www.manaraa.com

Contents

Domain-Specific Architectures and Product Families 319

Evolution and Composition of Reusable Assets in Product-Line
Architectures: A Case Study 321
JAN BOSCH

Flexibility of the ComB AD Architecture 341
N.H. LASSING, D.B.B. RlJSENBRIJ, AND J.C. VAN VLIET

Medical Product Line Architectures 357
B.J. PRONK

Kaleidoscope: A Reference Architecture for Monitoring and Control
Systems 369
ANDREA SA VIGNI AND FRANCESCO TIS ATO

Segregating the Layers of Business Information Systems 389
JOHANNES SIEDERSLEBEN, GERHARD ALBERS, PETER FUCHS,
AND JOHANNES WEIGEND

Interoperability, Integration, and Evolution of Software 405

Security Issues with the Global Command and Control System
(GCCS) 407
SHAWN A. BUTLER

Architecture for Software Construction by Unrelated Developers 423
W.M. GENTLEMAN

Integration of Heterogenous Software Architectures -
An Experience Report 437
VOLKER GRUHN AND URSULA WELLEN

Structural Analysis of the Software Architecture - A Maintenance
Assessment Case Study 455
CATHERINE BLAKE J AKTMAN, JOHN LEANEY, AND MING LIU

Architectural Evolution 471
JUHA KUUSELA

Building Systems from Parts in the Real World 479
ROYR. WElL

www.manaraa.com

www.manaraa.com

Organizing Committee

General conference chair
Paul Clements, Software Engineering Institute, Carnegie Mellon University,

USA

Program co-chairs
Dewayne E. Perry, Bell Laboratories, USA
Alexander Ran, Nokia Research Center, USA

IFIP TC-2 chair
Reino Kurki-Suonio, Tampere University of Technology, Finland

www.manaraa.com

Program Committee

Bruce Anderson, IBM, UK
Bob Balzer, USC-IS/, USA
Don Batory, University of Texas at Austin, USA
Judy Bishop, University of Pretoria, South Africa
Maarten Boasson, Hollandse Signaalapparaten BV, The Netherlands
Manfred Broy, Technical University of Munich, Germany
Jose L. Fiadeiro, University of Lisbon, Portugal
David Garlan, Carnegie Mellon University, USA
Morven Gentleman, Institute for Information Technology, National Research

Council, Canada
Carlo Ghezzi, Politecnico di Milano, Italy
K. Gopinath, Indian Institute of Science, India
Volker Gruhn, University of Dortmund, Germany
Christine Hofmeister, Siemens Corporate Research, USA
Ric Holt, University of Waterloo, Canada
Paola Inverardi, Universita dell'Aquila, Italy
Mehdi Jazayeri, University of Vienna, Austria
Takuya Katayama, Japan Advanced Institute of Science and Technology,

Japan
Rick Kazman, Software Engineering Institute, Carnegie Mellon University,

USA
Tomoji Kishi, NEC Corporation, Japan
Jeff Kramer, Imperial College, UK
Philippe Kruchten, Rational Software, Canada
Juha Kuusela, Nokia Research Center, Finland
Ora Lassila, Nokia Research Center, USA

www.manaraa.com

Daniel Le Metayer, INRIAIIRISA, Campus de Beaulieu, Rennes, France
Jeff Magee, Imperial College, UK
Naftaly Minsky, Rutgers University, USA
Jiirgen Muller, Philips Research Laboratories, The Netherlands
Henk Obbink, Philips Research Laboratories, The Netherlands
Frances Paulisch, Siemens AG, Germany
Franklin Reynolds, Nokia, USA
David Rosenblum, University of California at Irvine, USA
Mary Shaw, Carnegie Mellon University, USA
Sylvia Stuurman, Delft University of Technology, The Netherlands
Will Tracz, Lockheed Martin, USA
Hong Zhu, Software Institute, Nanjing University, PRC

www.manaraa.com

Preface

Software architecture is a primary factor in the creation and evolution of
virtually all products involving software. It is a topic of major interest in the
research community where pronusmg formalisms, processes, and
technologies are under development. Architecture is also of major interest in
industry because it is recognized as a significant leverage point for
manipulating such basic development factors as cost, quality, and interval.
Its importance is attested to by the fact that there are several international
workshop series as well as major conference sessions devoted to it.

The First Working IFIP Conference on Software Architecture (WICSAl)
provided a focused and dedicated forum for the international software
architecture community to unify and coordinate its effort to advance the state
of practice and research. WICSA 1 was organized to facilitate information
exchange between practising software architects and software architecture
researchers. The conference was held in San Antonio, Texas, USA, from
February 22nd to February 24th, 1999; it was the initiating event for the new
IFIP TC-2 Working Group on Software Architecture.

This proceedings document contains the papers accepted for the
conference. The papers in this volume comprise both experience reports and
technical papers. The proceedings reflect the structure of the conference and
are divided into six sections corresponding to the working groups established
for the conference.

Patrick Donohoe
Software Engineering Institute

Carnegie Mellon University

www.manaraa.com

ANALYSIS AND ASSESSMENT OF SOFTWARE
ARCHITECTURE

www.manaraa.com

Architecture Design Recovery of a Family of
Embedded Software Systems
An Experience Report

Lars Bratthall and Per Runeson
Dept. of Communication Systems, Lund University, Sweden.
P.O. Box 118, S-221 00 Lund, Sweden.
Phone: +46-462229668., Fax +46-46145823. Email {lars.bratthalllper.runeson}@tts.lth.se.

Key words: Architectural design recovery, experience report, qualitative evaluation

Abstract: Understandability of the current system is a key issue in most reengineering
processes. An architecture description of the system may increase its
understandability. This paper presents experiences from architectural design
recovery in a product family of large distributed, embedded systems.
Automated recovery tools were hard to apply due to the nature of the source
code. A qualitative evaluation procedure was applied on the performance of
the recovery process. The results suggest that producing the necessary
architectural documentation during the recovery project costs eight to twelve
times as much as producing the same set of documentation during the original
development project. By applying a common architectural style for all
members of the product family , the component reuse made possible decreased
source code volume by 65%.

1. INTRODUCTION

A part of any reengineering project is to create an understanding of the
architecture of the current system. This understanding can help determine
which pieces are reusable, and to what extent. Also, the current architecture
can pose requirements on later developed systems (Abowd et a!., 1997).
Documentation of the software architecture may also decrease the large
proportion of time maintainers spent on developing an understanding of the
entity to modify (Holtzblatt et al., 1997). In this paper we present
experiences from a project where architectural level design recovery was

www.manaraa.com

4 Lars Bratthall and Per Runeson

performed on a product family of five distributed, embedded, software
systems.

Design recovery is a phase in reverse engineering where source code and
external knowledge are used to create abstractions beyond those obtained
directly by examining the system itself (Chikofsky and Cross II, 1990).
Biggerstaff (1989) argues that "Design recovery must reproduce all of the
information required for a person to fully understand what a program does,
how it does it, why it does it, and so forth." In the project studied, the
available source models (Murphy and Notkin, 1995) were the source code
for a product family and a few pages of documentation. The access to orig
inal system experts was very limited. It was not known what quality
attributes the architecture of the software possessed, except that it executed
well. It was not known whether the members of the product family shared
any common software architecture. The hardware was however well
described and identical for all members of the product family. The source
code was spread over 90 to 150 files for each member of the product family.

An incremental approach to recovering information from the source code
was adopted. To simplify future maintenance the architectural style "Layers"
(Shaw and Garlan, 1996) was imposed, due to its known quality properties
(maintainability aspects). Imposing an architecture was believed to be
feasible as a recovered architecture can be considered an interpretation of a
less abstract entity. Different tools for architectural design recovery were
investigated, but due to performance constraints only tools that operated on
static code could be used. Automated analysis has been discussed by several
authors e.g., Chase et a!. (1998), Harris et al. (1996) and Holtzblatt et a!.
(1997). Due to certain constructs frequently used in the source code
examined, the value of these methods was considered limited.

The software architecture was recovered largely by hand using simple
tools like grep and emacs. SDL (ITU-T, 1996a) was used as architecture
description language. Once the architecture of one member of the product
family had been recovered, this . architecture was reused when attempting
architectural recovery on other members of the product family. With some
restructuring and minimal reengineering (Chikofsky and Cross II, 1990),
both component reuse and architecture reuse (Karlsson, 1995) were used,
resulting in a common architecture for all members of the product family as
well as a reduction of the total code volume by 65%.

2. CONTEXT

The studied system was contracted to Ericsson Microwave Systems AB
who develops complex systems. One of their product areas is

www.manaraa.com

Architecture Design Recovery of Embedded Software Systems 5

telecommunications. The studied project aimed at designing a family of
switches. The switches shared the same set of hardware components, except
for different special-purpose printed circuits. One family of subsystems
within the switches was studied.

For various reasons the software was not documented according to
existing quality standards; the only existing source models available to
maintainers were 300 000 lines of C source code, some assembler, and a
few pages of documentation, the latter giving little clue regarding the
architecture. This rendered any kind of maintenance difficult, as long time
had to be allocated just to understand code. Future architectural erosion
(Perry and Wolf, 1992) was feared, as there was no known rationale for the
architectural design decisions taken.

In order to solve these problems, an architectural design recovery project
was launched.

3. OVERVIEW OF THE ARCHITECTURAL
DESIGN RECOVERY PROJECT

Biggerstaff (1989) describes a general design recovery process with
maintenance and the population of a reuse library as objectives. In this
paper, the focus is on practical experiences gained in applying this process.

Biggerstaff's process has three steps:
1. Supporting program understanding,
2. Supporting population of reuse and recovery libraries, and
3. Applying the outcomes of design recovery for refining the recovery.

These steps are applied iteratively.

3.1 Step 1 - Program understanding for maintenance

An architecture recovery team needs some initial knowledge. It includes:
- Details of the available source models
- Available design recovery tools
- Knowledge of what code to allocate to different components.

These issues were addressed initially.

3.1.1 Details of the available source models

Examining the make files showed that some of the files were never used.
Examining the filenames showed similarity in the filenames between
different members of the product family, and usually the contents of files
with the same filename were similar to some extent. Closer examination

www.manaraa.com

6 Lars Bratthall and Per Runeson

indicated that what had originated as identical files had eroded to slightly
different files. The analysis also showed that identical C functions
sometimes were allocated to different files, without any obvious rationale.

3.1.2 Investigation of design recovery tools

A number of tools believed to be beneficial in design recovery were
investigated. Results indicated that a semi-manual approach was needed.

Making a call graph did not help very much, since the subsystems were
based on concurrent software processes, communicating mainly using the
real-time operating system built-in signals. The call graph showed intra
process communication fairly well, but inter-process communication was not
described well.

Identification of a signal being sent could be automated; simple grep
commands can look for operating system keywords used to create and send
signals. Identification of the receiving software process for signals was
difficult; we could not rely on pure lexical analysis, since the receiver of a
signal usually was determined at run time. Dynamic analysis by executing
the system on the target-system could possibly have provided input to event
trace analysis (Jerding and Rugaber, 1997), but we were unable to
automatically create event traces due to certain constructs frequently used:
- Other mechanisms than signals were sometimes used, especially direct

read/write to memory. This communication could not be traced without
impeding the function of the system due to performance violations.

- Communication to other subsystems was handled using signals wrapped
into special-purpose packets. The operating system debugger could not
symbolically show the contents of these packets.
Further tool support was not investigated. Dynamic analysis conflicted

with performance requirements, while automatic static recovery tools would
have trouble handling the distributed nature, the special-purpose packets, the
usage of direct memory read/ write, and the dynamic determination of
receiving software processes. Thus, we in many cases had to identify the
receiver of signals by manually walking through scenarios (well defined
dynamic sequences).

3.1.3 Code to allocate to components

Some source files belonged to only one software process, while some
files needed restructuring as parts of the code in one file belonged to more
than one software process. There were also two COTS (Commercial Off
The-Shelf) products involved (the operating system and a TCPIIP stack),
each spread across a set of files.

www.manaraa.com

Architecture Design Recovery of Embedded Software Systems 7

The design artefacts to recover were a static architectural description,
interwork descriptions, and different dynamic models.

3.2 Step 2 - Populating reuse and recovery libraries

Based on the input from step 1, a set of hypotheses was decided on.
- Manual work during step 2 and step 3 would be necessary, since a

recovered software architecture is an interpretation, not entirely visible in
code (Holtzblatt et al., 1997).

- Software processes would be the initial abstraction level of the software
components. Thus we used a variant of Harris et al.' s (1996) approach,
that equated components with software processes. After looking at code,
it was found that trying to divide software processes into smaller
components, e.g., concurrent state machines, would be difficult as we
could not distinguish the individual state machines in the software
processes. Therefore we choose software processes as the initial
abstraction level.

- Component connectors were to be represented by inter-process
signalling. The contents of inter-subsystem communication packets were
to be tracked rather than the special-purpose packet itself. Function calls
inside a software process would not be described, since we estimated that
recovering this information would be too much work related to the use a
maintainer would have.

- Describing the architecture of a member of the product family by
showing all software processes and their data/control connectors would
show too much detail in some situations. Aggregated as well as non
aggregated components should be provided. The smallest component
would consist of code related to a single software process.

- Simple tools like grep and emacs would be the main tools for analysis.
SDL would be used to represent the static architecture description.
Message Sequence Charts (ITU-T, 1996b) would be used to represent the
control and data flow between components.

- For project reasons, an incremental approach allowing the premature
termination and later continuation of the architectural recovery was
needed.

This led to the workflow described in table 1. On the horizontal axis,
activities performed are shown. On the vertical axis, levels of increased
value of the recovered artefacts are shown. Components are created at
increasing abstraction levels, named C2 and C3. Level Cn components are
aggregated from level C0 • 1 components.

www.manaraa.com

8

Table 1. Goals versus performed activities

Baseline A
established
Source code
allocated to level
cl components
COTS
components
handled
Level c2
components
defined
Level c3
components
defined
Architecture
graphically
described

B c

D

Lars Bratthall and Per Runeson

"' 5
=
E =
0 " () §
- c.. u E

- 0
()

" "' -u
i;-- " "' >
:::> " oc;
ui .s

E F G

H

3.2.1 Creation of first order components (level C1) - activities A-D

All source files belonging to a software process were assigned to one C1

component. All assembler files were allocated to one C1 component. Each
set of COTS files was allocated to one C1 component each.

Some files could not be associated with a single software process despite
restructuring. These functions were assigned to a library component. The
types of level C1 components created were Single Software Process
components, Library components, Assembler components and COTS
components.

Level C1 components were fairly easy to identify; simple tools allowed
partly automated analysis. As the source code was not very interleaved
(Rugaber et al. , 1995) only little restructuring was needed.

www.manaraa.com

Architecture Design Recovery of Embedded Software Systems 9

3.2.2 Creation of second order components (level C2) - activities E-G

In order to raise the component abstraction level from each component
containing only one software process, to components containing several such
components an iterative approach was used. A graphical representation of
inter-C1 control and data communication was drawn using SDL. The inter
process communication constructs prior identified in the source were
represented by SDL signals or SDL remote procedure calls. By analysing the
communication routes, the type and amount of communication, level C2

components were decided on. If a set of level C1 components solved one
easily delimited task, they were to be clustered into a level C2 component.

Identifying level C2 components was more difficult than identifying level
C1 components. Exact rules for clustering could never be devised, since
some level C1 components participated in solving more than one task.

3.2.3 Creation of third order components (level C3) - activities H-J

The source code indicated that there were similarities between the
members of the product family. We attempted to impose a layered
architectural style (Shaw and Garlan, 1996), by clarifying service
provider/requester relationships between components. Some restructuring of
the original C2 components was required.

Grouping of level C2 components into C3 layer components was done by
looking at 'distance from hardware' . All hardware-close level C2

components were assigned to a level C3 layer component 'Hardware
Abstraction Layer'. Other level C3 layer components, with decreasing
knowledge of hardware specifics, were 'Subsystem Controller', 'Main
Controller' and 'Supervision and Test'.

There were several reasons for attempting the layered architectural style:
- The layered architectural style is well known for its good maintainability

properties.
- By dividing hardware-close functionality from control, we expected

greater chances of component reuse in other members of the product
family .
We expected to be able to decrease the difference between different

members of the product family by using a common architectural style for all
of them.

This multiple-level component architecture was represented in SDL. SDL
was chosen, as it allows the direct representation of architectural features
(Harris et a!. , 1996) such as software processes, components consisting of
one or more processes, aggregated components, components without any
software process, inter-process signalling and remote procedure calls. Thus,

www.manaraa.com

10 Lars Bratthall and Per Runeson

many issues related to the representation problem (Rugaber and Clayton
1993) were avoided. However, there was some semantic distance between C
and SDL that had to be mapped: Direct memory reads/writes, interrupts, and
the special-purpose packet used to convey signals between different
subsystems. These constructs were mapped to SDL signals and SDL remote
procedure calls. We used naming conventions to distinguish these constructs
from the direct mapping between C source signals and these other
communication constructs.

3.3 Step 3 - Applying the outcomes of the design
recovery

The above steps were applied for one member of the product family . In
doing design recovery for the other members of the product family, the
already defined components and the architectural style were reused. By
restructuring components by merging files if possible, the number of new
components was held down.

Design recovery for the other products in the family was much quicker
than for the first member. A large part of the improvement came from
having to document few new components. Also, knowing the expected
architectural style, less work had to be done in choosing how to restructure
the software to fit the architecture.

The degree of reusability of components was proportional to the distance
from hardware. The closer to hardware, the more easily could components
be reused. By having several component abstraction levels (C3, C2, C1), we
could reuse parts or whole of components:
- Most level C1 hardware-close components could be reused at least once.
- Some members of the product family could share level C2 components.
- Some members of the product family could share level C3 components.

A few new level C3 components had to be created, usually by replacing
only a few level C1 components inside a level C3 component.
The layered architectural style could be reused for all members of the

product family.

4. RESULTS AND EXPERIENCES GAINED

The project resulted in a common architectural style for all members of
the product family . This enabled component reuse, that decreased the total
code volume (lines of source code) by 65%. The volume of architectural
descriptions and component descriptions were reduced by approximately
30%, relatively what would have been needed if no reuse had been applied.

www.manaraa.com

Architecture Design Recovery of Embedded Software Systems 11

A number of faults were discovered in the process of comparing components
from different members of the product family.

The set of hypothesis described in section 3.2 remained unmodified
through-out the project. However, they would probably have changed if the
first step in Biggerstaffs process had not been. This first step helped in
deciding on the set of work hypotheses.

It is a daunting task to do architectural recovery when tools can provide
only limited aid. Subjective estimation indicates that the effort of our
recovery/reuse project amounted to eight to twelve times the effort to
accomplish the same results (architectural description, common architectural
style, component-based architecture) during the original development
project. The estimation is based on accurate figures for the
recovery/restructure project and subjective estimations regarding how to
handle the problem during original development. Future maintenance is
expected to be much simpler and faster than would be possible without the
architectural descriptions and component design. Without the design
recovery project any maintenance would be extremely difficult.

Experiences have been collected by conducting interviews with the
designers involved in the architecture recovery project, as well as future
maintainers and some involved managers. Experiences reported are related
to tools, people and the recovery process used.

4.1 Tool support

Tools have been used for recovery as well as representation of the
recovered architecture. During recovery, UNIX grep and the colour marking
functions of emacs were helpful, especially combined into small scripts.
Grep allowed the searching of common features across several members of
the product family . Emacs helped in performing manual slicing, as well as it
helped in comparing several versions of files automatically.

SDL has shown to be suitable for describing the component architecture
down to the software process level. It was possible to unambiguously
describe the constructs believed usable for our purposes. Some semantic
distance demanded mapping rules between C and SDL. We believe SDL to
be a possible architecture description language for systems, where
components are mainly based on software processes and connectors are
mainly inter-process communication.

A future challenge to solve is that there is no automatic correspondence
between the source code and the architectural abstractions. For example,
lack of intense communication between two components is not necessarily a
sign of that the two components should not be aggregated into a larger

www.manaraa.com

12 Lars Bratthall and Per Runeson

component. In the system studied, this was apparent when we decided to
group hardware-close components into an aggregated component.

4.2 People

Experiences related to people concern previous knowledge and other
intellectual instruments for design recovery. As the rationale for architectural
decisions is not seen in C, having even limited access to original designers
have been extremely beneficial. They have been able to provide information
that has not been available in other source models.

Having knowledge of architectural styles helped in choosing to use a
layered architecture, as well as trying to establish the service
provider/requester divisions, which is a client/server architectural style
(Shaw and Garlan, 1996). It is believed that any recovery team can benefit
from having access to original design knowledge, domain architecture
knowledge and knowledge of architectural styles. Manual design recovery is
error prone. This emphasises the need for automated design recovery, or
better yet, do it right during the original development.

4.3 The recovery process

Dynamic analysis was difficult due to performance issues. For the
purpose of maintenance, dynamic models are considered necessary. Better
original descriptions would have been preferred, or, an elaborate debugging
component should have been available. For example, being able to run the
software on the target platform with relaxed timing requirements would have
aided in analysing the software dynamically.

The interleaving problem was rarely encountered, as we never split
software processes into more than one component. Content coupling, in
terms of several processes sharing a library of functions, was handled by
either restructuring those files (by splitting them and allocating them to
separate components) or allocating the library functions to a separate library
component. By dividing the recovery process into discrete steps,
management gained visibility into the project and could decide on project
alterations and resource allocation. The incremental approach was thus
perceived as beneficial.

5. CONCLUSIONS AND THE FUTURE

From the studied architecture recovery project, we conclude that the
design recovery process described by Biggerstaff (1989) works, but

www.manaraa.com

Architecture Design Recovery of Embedded Software Systems 13

undertaking a design recovery project with limited access to system experts
and other source models than the source code, is a daunting task. Especially,
understanding hardware-close software is difficult, as it requires detailed
hardware understanding. Knowledge of architectural styles and their
properties help in choosing a suitable architecture to represent the code, as
one knows what quality attributes a particular architecture possesses. An
incremental approach to recovering the software architecture is beneficial
since it increases visibility into the recovery process.

The recovery project would have benefited from a larger set of well
defined component connectors. Full semantics for the mapping between
source code and an architecture description language would allow the
automatic creation and simultaneous maintenance of code and architectural
views.

Tool support for architectural recovery is important. In industrial projects
like this, where the product is supposed to have a life-span of at least 15
years, any description of the architecture should be represented using
commercially available tools. We agree with researchers, e.g., Kazman and
Carriere (1998), claiming that several methods are necessary in a design
recovery project, thus concluding that a workbench with open interfaces is a
suitable architecture for design recovery tools.

ACKNOWLEDGEMENTS

This work was partly funded by The Swedish National Board for
Industrial and Technical Development (NUTEK), grant lKlP-97-09690.
The project was conducted while employed at the Q-Labs Group. Employees
at Ericsson Microwave Systems AB and members of the Software
Engineering Research Group at the Department of Communication Systems,
Lund University, have provided insightful input.

REFERENCES

Abowd, G. , Goel, A. , Jerding, D.F., McCracken, M., Moore, M., Murdock, J.W., Potts, C.,
Rugaber, S., Wills, L. (1997) MORALE. Mission ORiented Architectural Legacy
Evolution, in Proceedings International Conference on Software Maintenance, IEEE
Computer Society, Los Alamitos, USA, 150-9.

Biggerstaff, T.J. (1989) Design Recovery for Maintenance and Reuse. IEEE Computer, 22(7),
36-49.

Chase, M.P., Christey, S.M., Harris, D.R., Yeh, A. S. (1998) Recovering Software
Architecture from Multiple Source Code Analyses, in Proceedings of the ACM S/GPI.AN
Workshop on Program Analysis for Software Tools and Engineering.

www.manaraa.com

14 Lars Bratthall and Per Runeson

Chikofsky, E.J., Cross II, J.H. (1990) Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 7(1), 13-7.

Harris, D.R., Yeh, A.S., Reubenstein, H.B. (1996) Extracting Architectural Features from
Source Code. Auto11Ulted Software Engineering, 3(112), 109-38.

Holtzblatt , L.J., Piazza, R.L., Reubenstein, H.B., Roberts, S.N., Harris, D.R. (1997) Design
Recovery for Distributed Systems. IEEE Transactions on Software Engineering, 23(7),
461-72.

ITU-T (1996a) Recommendation Z.JOO. Specification and Description Language, SDL,
International Telecommunication Union.

ITU-T (1996b) Recommendation Z.120. Message Sequence Charts, International Tele
communication Union.

Jerding, D., Rugaber, S. (1997) Using Visualization for Architectural Localization and
Extraction, in Proceedings of the Fourth Working Conference on Reverse Engineering,
IEEE Computer Society, Los Alamitos, USA, 56-65.

Karlsson, E.A. (1995) Software Reuse- A Holistic Approach. John Wiley, Chichester, Great
Britain.

Kazman, R. , Carriere, S.J. (1998) View Extraction and View Fusion in Architectural
Understanding, in Proceedings of the Fifth International Conference on Software Reuse,
IEEE Computer Society, Los Alamitos, USA, 290-9.

Murphy, G.C., Notkin, D. (1995) Lightweight Source Model Extraction. SIGSOFT Software
Engineering Notes, 20(4), 116-27.

Perry, D.E., Wolf, A.L. (1992) Foundations for the Study of Software Architecture. ACM
S!GSOFT Software Engineering Notes, 17(4), 40-52.

Rugaber, S., Clayton, R. (1993) The Representation Problem in Reverse Engineering, in
Proceedings of Working Conference on Reverse Engineering, IEEE Computer Society,
Los Alamitos, USA, 8-16.

Rugaber, S. , Stirewalt, K., Wills, L.M. (1995) The Interleaving Problem in Program
Understanding, in Proceedings of the Second Working Conference on Reverse
Engineering, IEEE Computer Society, Los Alamitos, USA, 166-75.

Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, Upper Saddle River, New Jersey, USA.

www.manaraa.com

A Software Architecture Reconstruction Method

George Yanbing Guo1, Joanne M. Atlee1 & Rick Kazman2

1 Department of Computer Science, University of Waterloo, Waterloo, ON, Canada
2Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, U.S.A
yguo@ se.math.uwaterloo.ca, jmatlee@dragon. uwaterloo.ca, rkazman@ sei.cmu. edu

Key words: Design recovery, reverse engineering, software architecture analysis, design
patterns, pattern recognition

Abstract: Changes to a software system during implementation and maintenance can
cause the architecture of a system to deviate from its documented architecture.
If design documents are to be useful , maintenance programmers must be able
to easily evaluate how closely the documents conform to the code they are
meant to describe. Software architecture recovery, which deals with the
extraction and analysis of a system's architecture, has gained more tool
support in the past few years. However, there is little research on developing
effective and efficient architectural conformance methods. In particular, given
the increasing emphasis on patterns and styles in the software engineering
community, a method needs to explicitly aid a user in identifying architectural
patterns.
This paper presents a semi-automatic method, called ARM (Architecture
Reconstruction Method), that guides a user in the reconstruction of software
architectures based on the recognition of patterns. Once the system's actual
architecture has been reconstructed, we can analyze conformance of the
software to the documented design patterns.

1. INTRODUCTION

A software architecture is a high-level description of a software system's
design, often a model of the software's components (e.g., objects, processes,
data repositories, etc.), the externally visible properties of those components,
and the relationships among them (Bass, et al., 1998). The concept of
software architectures has received considerable attention lately, and

www.manaraa.com

16 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

developers are starting to document software architectures. However, the
living architecture of a software system may drift from the documented
architecture if architecture changes are made during software
implementation or maintenance and no similar effort is made to maintain the
architecture documents. Although architectural integrity could, in theory, be
enforced by a rigorous review process, in practice this is seldom done.

Architecture conformance analysis can be used to evaluate how well the
architecture of a software system corresponds to its documentation; it can
also assist in keeping the architecture documents up to date. Some progress
on this problem has been made at the source file and module levels, where
the software's call-graph is extracted from source code and compared with
the expected call-graph (Murphy, et al., 1995), (Woods & Yang, 1995). In
addition, a number of reverse engineering tools have been developed to
automatically extract, manipulate, and query source model information (e.g.,
REFINE (Reasoning, -). Imagix (lmagix, -), Rigi (Wong, et al., 1994),
(Storey, et al., 1996), LSME (Murphy & Notkin, 1996), IAPR (Kazman &
Burth, 1998), RMTool (Murphy, et al., 1995)).

Design patterns are an attempt to codify solutions to recurring problems,
to make routine design easier. In an architecture, design patterns prescribe
specific abstractions of data, function, and interconnections. Automated
conformance analysis of newer software architectures is actually
complicated by the use of design patterns and architectural styles in
architecture documents. While this statement seems at first to be
contradictory to the thesis of this paper, the complication stems from the fact
that extraction tools extract code-level information, not architectural
information. Hence, the analyst needs some way to map from the low-level
extracted information up to architectural concepts. To properly analyze the
architectures of systems developed using design patterns, we need tools and
techniques for recognizing instances of pattern-level abstractions.

This paper shows how code-level extraction can feed into pattern-based
architecture conformance analysis. We present a semi-automatic analysis
method, called ARM (Architecture Reconstruction Method), that codifies
heuristics for applying existing reverse-engineering tools (for reasoning
about code-level artifacts) to the problem of recognizing more abstract
patterns in the implementation. Once the system's actual architecture has
been reconstructed, we can analyze conformance of the software to the
documented design patterns.

Following this introduction, section 2 provides a review of software
architecture recovery. Section 3 describes ARM in detail. Evaluation of the
method with case studies is presented in section 4. Finally, section 5
summarizes this work and proposes future research.

www.manaraa.com

A Software Architecture Reconstruction Method

2. SOFTWARE ARCHITECTURE RECOVERY

Software architecture recovery can be divided into two phases:
1. identification and extraction of source code artifacts, including the

architectural elements; and
2. analysis of the extracted source artifacts to derive a view of the

implemented architecture.

17

The extracted source artifacts form a source model, which comprises a
collection of elements (e.g., functions, files, variables, objects, etc.), a set of
relations between the elements (e.g. , "function calls function", "object A has
an instance") and a set of attributes of these elements and relations (e.g.,
"function calls function N times"), to represent the system (Kazman &
Carriere, 1998).

2.1 Architecture recovery frameworks

There exist many source model extraction tools, such as LSME (Murphy
& Notkin, 1996), SNiFF+ (SniFF, -), ManSART (Yeh, et al., 1997) and
Imagix (Imagix, -), that parse code fragments and extract source model
elements, relations and attributes . Tools that use relational algebra to infer
new facts from existing facts, such as SQL and Grok (Holt, 1998), can be
used to manipulate and analyze source model artifacts. Tools for extracting
and analyzing software architectures, such as Rigi (Wong, et al., 1994), CIA
(Chen, et al., 1990) and SAAMTool (Kazman, 1996), provide not only
visualization but also manipulation mechanisms to help the user simplify and
navigate through the visual system representation. However, each individual
tool or system has its limitations and restrictions in terms of the architecture
recovery phases it covers, its support for applications developed in different
programming languages and its flexibility in supporting customized analysis.

A software architecture framework integrates and leverages multiple
tools in an organized structure to facilitate architecture recovery.

Kontogiannis et al. have developed a toolset, called RevEngE (Reverse
Engineering Environment), to integrate heterogeneous tools, such as Ariadne
(Kontogiannis, et al., 1994), ART (Johnson, 1993) and Rigi (Wong, et al. ,
1994) for extracting, manipulating and analyzing system facts, through a
common repository specifically designed to support architecture recovery.

The architecture recovery framework of the Software Bookshelf project
(Finnigan, et al., 1997) provides access to a variety of extractors, such as C
Fact Extractor (CFX) and CIA, for source model extraction. Manipulation
and analysis of the source model stored in the repository is possible via tools
like grep, sort, or Grok, to emit architectures of the subsystems and of the
system. The architecture that Bookshelf produces is a hierarchical structural

www.manaraa.com

18 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

decomposition of system in terms of subsystems, files, and functions. The
architectures can be visualized using tools such as the Landscape Viewer.

The Dali architecture workbench (Kazman & Carriere, 1999), is an
infrastructure for the integration of a wide variety of extraction,
manipulation, analysis, and presentation tools. The architecture recovery
work presented in this paper was performed using Dali.

2.2 The Dali workbench

Dali's architecture is shown in Figure 1, where the rectangles represent
distinct tools and lines represent data flow among them.

Source model extraction can be performed by a variety of lexical-based,
parser-based or profiling-based tools that produce static or dynamic views of
the system under examination. A view is a source model extracted by a
single extraction tool or technique. A static view contains static source
artifacts extracted from source code. A dynamic view contains dynamic
elements including dynamic typing information, process spawning and
instances of interprocess communication (IPC). These extracted views are
stored in a repository, currently a relational database. The various extracted
views can be fused together into fused views (Kazman & Carriere, 1998).

View Extraction

.___Le_xt_·c_a_l _ _.ll Parsing II Profiling 1.

Repository

View Fusion

Figure 1: The Dali workbench

Visualization tools can be deployed in Dali to present the source model
and the result of architecture analysis. For example, Rigi is used to present
systems as a graph with nodes denoting the artifacts and arcs representing
the relations between them. Dali supports various external manipulation and

www.manaraa.com

A Software Architecture Reconstruction Method 19

analysis tools, such as Grok, IAPR (Kazman & Burth, 1998), and RMTool
(Murphy, et al., 1995). The system view can be exported to these tools and
the analysis results can be added back to the repository. Using Rigi's
command language, new tools can be added in Dali and a software analyst
can choose among tools when performing an analysis task. Dali does not rely
on having an Abstract Syntax Tree (AST). This allows it to cope with
architecture analysis on systems that can not be parsed.

2.3 Architecture recovery methods

Automated tools and frameworks can be used to extract and reason about
code-level facts. However, human input is needed to extract and infer facts
about higher-level abstractions (e.g., design patterns). An architecture
recovery method defines a series of steps, and the pre/post conditions for
each step, to guide an analyst in systematically applying existing reverse
engineering tools to recover a system's architecture.

Most current architecture recovery methods are based on a system
decomposition hierarchy to reason about software architecture by looking at
the relations (calls and uses relations in most cases) between the subsystems,
between the files and between the functions (Portable Bookshelf, -).
However, it is difficult to use these methods to recover architectures that are
designed and implemented with design patterns. As design patterns are
described as well-defined structures with constraint rules, a pattern-oriented
architecture recovery method must incorporate the design pattern rules as
well as structural information such as the system decomposition hierarchy.

Shull et al. developed the BACKDOOR analysis method to recognize
design patterns in object-oriented systems (Schull, et al., 1996). This method
uses a general abstract pattern description, rather than an application-specific
pattern instantiation, to guide pattern recognition, and hence could be
ineffective in producing accurate results. The pattern definition, detection
and evaluation in this method are performed manually, which makes the
method primarily applicable to small systems.

3. ARCHITECTURE RECONSTRUCTION METHOD

To assist software architecture recovery of systems designed and
developed with patterns, we developed the Architecture Reconstruction
Method (ARM)-a semi-automatic analysis method for reconstructing
architectures based on the recognition of architectural patterns.

ARM is depicted in Figure 2. As indicated by the dashed boxes in this
figure, ARM consists of four major phases:

www.manaraa.com

20 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

1. Developing a concrete pattern recognition plan.
2. Extracting a source model.
3. Detecting and evaluating pattern instances.
4. Reconstructing and Analyzing the architecture.

r-------------------------------------

- _et-..1_ ---

[=:J i'pJ 10 /JW.

[=:J i'pJ 10/JW.

Q Atcess req.img
7\ h.nm irp.J

r--------------

Figure 2: Pattern recognition process flow chart

3.1 Developing a concrete pattern recognition plan

Constructing a pattern recognition plan consists of three steps. The first is
to develop an instantiated pattern description. By instantiation, we mean a
concrete pattern description, with all the pattern elements and their relations
described in terms of the constructs available from the chosen
implementation language. Starting with a design document, one can
manually determine the patterns used in the design and can extract the
abstract pattern rules-the design rules that define a pattern's structural and

www.manaraa.com

A Software Architecture Reconstruction Method 21

behavioral properties. Pattern descriptions found in the design pattern
literature, e.g., (Buschmann, et al., 1996), or obtained from humans who are
familiar with the system design can be used to supplement these rules. Using
these abstract pattern rules as a guide, one can then examine the source code
of several potential pattern instances to derive the corresponding concrete
pattern rules-the implementation rules that realize abstract pattern rules
using data structures, coding conventions, coding methods and algorithms.
Such concrete pattern rules can be recognized via syntactic cues, such as
naming conventions and programming language keywords, or an analysis of
data access and control flow.

An instantiated pattern description is a specification of the concrete
pattern rules written in Rigi Standard Format (RSF) (Wong, et al., 1994). A
clause in RSF is a tuple (relation, entityl, entity2), which represents the
relationship entity] relates to entity2. For example in the Mediator design
pattern (see Figure 3), a Mediator component serves as the communication
hub for all the Colleague components. An abstract pattern rule for this
pattern is

"The Mediator component mediates communications between colleague
components."

Medator ColleagJe

Figure 3: Mediator design pattern

In one of our case studies, the Mediator pattern is implemented in a C++
class where mediator and colleague components are member functions. 1

1 This use of the mediator design pattern is an adaptation of what is found in (Gamma, et a!. ,
1994).

www.manaraa.com

22 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

Based on call sequence information (control flow), the following concrete
pattern rule is identified to realize the above abstract rule where function B is
a Mediator and function A and C are Colleagues.

"Within a class, function A calls function B and function B calls function
C, where functions A, B, and C are distinctive."

Using RSF, this rule can be formally specified as:

((calls, Classl:Funcl, Class2:Func2) AND
(calls, Class2 : Func2, Class3:Func3) AND
(not_equal , Classl : Funcl , Class2:Func2) AND
(not_equal, Classl : Funcl, Class3:Func3) AND
(equal, Classl, Class2) AND
(equal, Classl, Class3))

If an abstract pattern rule can not be mapped to a concrete pattern rule
(e.g., the pattern is defined by complex dynamic attributes), one needs to
assess whether it is a necessary rule for the pattern recognition task in hand.
A necessary abstract pattern rule specifies a distinct characteristic of the
target pattern. A potential pattern instance that is missing such a
characteristic would be disqualified from being an actual pattern instance.
Based on the assessment, one may decide to proceed to the next step of
ARM if the missing abstract pattern rules are not necessary, or to terminate
the recognition task if any necessary abstract pattern rule is missing in the
concrete pattern rules .

The second step is to translate the instantiated pattern description into
pattern queries, written for one of the query and/or analysis tools supported
by Dali . If the concrete pattern rules describe specific types of components
and connectors, then tools based on a relational algebra such as SQL are
suitable because they provide efficient and accurate matching on specific
components and relations (connectors). If, on the other hand, the concrete
pattern rules do not specify types of components or connectors, but rather
allow for a wide range of possible realizations for a pattern, then tools that
support more generalized searching criteria, such as the SAAMTooUIAPR
toolset, should be used. A user can use the SAAMTool to specify a pattern
as a graph and use attributed subgraph isomorphism provided by IAPR to
match patterns. For example, the Mediator pattern description can be
translated into an SQL query as follows:

SELECT DISTINCT cl.tcaller,
cl.tcallee as mediator , c2 . tcallee

INTO TABLE med
FROM calls cl, calls c2
WHERE cl.tcallee = c2.tcaller AND

www.manaraa.com

A Software Architecture Reconstruction Method

cl.tcaller <> cl.tcallee AND
cl.tcaller <> c2.tcallee AND
classname(cl . tcaller)=classname(cl.tcallee)
AND
classname(cl . tcaller)=classname(c2.tcallee);

23

Finally, a concrete pattern recognition plan must be developed to specify
the "key" component of the pattern that should be recognized first and the
order in which the subsequent components should be detected. The queries
for a "key" component should not depend on detection of other pattern
components. The mediator component in the Mediator pattern, for example,
serves as the communication hub between colleague components and thus is
the key to recognizing this pattern. If part of the target pattern is designed
and implemented using other lower-level patterns, it is necessary to develop
concrete pattern recognition plans for each pattern component and the
compound pattern.

3.2 Extracting a source model

The second phase of ARM is to extract a source model that represents a
system's source elements and the relations between them. The output of this
phase is a source model that contains the information that is used for
detecting necessary pattern rules . For example, Table 1 shows some of the
relations that Dali currently extracts from C++ programs (Kazman &
Carriere, 1999). The relations needed for detecting the necessary pattern
rules of the Presentation-Abstraction-Control (PAC) pattern2 (Buschmann, et
al., 1996) in our case studies are denoted by *.

Table 1: Typical set of source relations extracted by Dali.

Relation From To
calls * function function
contains file function
defines file class
has_subclass * class class
has_friend class class
defines_fn * class function
has_member * class variable
defines_ var * function variable
has_instance * class variable
defines_global * file variable
var access* function variable

2 The PAC pattern is described in detail in section 4.1.

www.manaraa.com

24 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

A complication is that patterns are revealed at different levels of
abstraction (e.g., the function vs . the class level), thus different parts of the
recognition plan may need to be applied to a source model at different levels
of abstraction. Using abstraction techniques, such as the aggregation
technique provided by Dali (Kazman & Carriere, 1999), lower level source
model elements can be grouped into a higher level element without loss of
information. Thus one can use it to bring the source model to appropriate
levels of abstraction for pattern detection and architecture analysis .

3.3 Detecting and evaluating pattern instances

Detecting pattern instances using Dali is an automatic process in which
one uses query tools to execute a recognition plan with respect to a source
model. After running the recognition plan on the source model using the
query tools, the detection output consists of all the pattern instance
candidates. Human evaluation of these candidates is required to compare
them with the designed pattern instances and determine which candidates are
intended, which are false positives and false negatives. A false positive is a
candidate which is not designed as a pattern instance, but is "detected"
falsely as an instance. A false negative is a candidate which is designed as
an instance, but is not detected as one.

One can try to improve the results (i.e., remove false positives and
negatives) by modifying either the recognition plan or the source model and
reiterating through ARM method. To improve the pattern recognition plan,
one may choose another component of the pattern as the anchor and reorder
the queries to form a new plan, or refine the query constraints for some of
the pattern elements. If the source model extraction caused the deficiencies,
an analyst needs to try to improve the extraction process by refining the
existing extraction tools to catch the defects and/or incorporating other
extraction tools to enhance the accuracy of source model, as described in
(Kazman & Carriere, 1998).

However, if the source code is incomplete or if the pattern is defined by
complex dynamic attributes, it may be impossible for the recognition
technique to precisely detect all pattern instances. The evaluation process
ends when Dali can detect the maximal set of true pattern instances, and the
human analyst can explain the presence of false positive and the absence of
false negative instances. The output is the set of validated pattern instances.

3.4 Reconstructing and analyzing the architecture

In the final step, the analyst uses a visualization tool, such as Rigi, to
align the recognized architectural pattern instances with the designed pattern

www.manaraa.com

A Software Architecture Reconstruction Method 25

instances, organizing the other elements in the source model around the
detected instances. The resultant architecture can be analyzed for deviations
from the designed architecture.

4. CASE STUDIES

In an attempt to evaluate the applicability and generality of ARM, we
applied it to two case studies where the systems were designed and
developed with specific architectural patterns in mind. We obtained both
source code and design documents for the applications from Informatique et
Mathematiques Appliquees de Grenoble (IMAG) Institute in France.

4.1 SupraAnalyse system

The first application is a 25 KLOC system written in C++, called
SupraAnalyse, that analyzes experimental data about human subjects'
behavior when performing tasks using an interactive system (Lischetti &
Coutaz, 1994). SupraAnalyse uses the Presentation-Abstraction-Control
(PAC) pattern in its architectural design and implementation. The PAC
pattern (Figure 4) defines a structure for interactive software systems in the
form of a hierarchy of co-operating agents. Every agent is responsible for a
specific aspect of the application ' s functionality and consists of three
components: presentation, abstraction, and control. The Presentation
component provides the visible interface; the Abstraction component
maintains and accesses the data model; and the Control component manages
intra-agent communications between the Presentation and Abstraction
components and inter-agent communications with other PAC agents.

Based on the instantiation of PAC patterns in SupraAnalyse, we first
developed a recognition plan which consists of a sequence of SQL queries.
Because the internal structure of a PAC agent is designed using the Mediator
pattern, we iterated the recognition plan development phase to fully specify a
sub-plan for recognizing the Mediator pattern. Several extraction tools,
including LSME (Murphy & Notkin, 1996), Imagix (lmagix, -)and SNiFF+
(SNiFF+,-), were used to extract a source model that was stored in an SQL
database.

Before applying the recognition plan, the source model was simplified to
function level and class level abstractions using the aggregation technique.
That is, class information such as methods and member variables, was
aggregated with class definition; and function information, such as local
variable usage, was aggregated with function definitions. PAC pattern

www.manaraa.com

26 George Yanbing Guo, Joanne M. Arlee, and Rick Kazman

components were then detected at function level abstraction, and PAC agents
were recognized at the class level.

P - Presertation Corrponent
c -Cortrd Corrponent
A- Jlbstr<:dion Corrponenl

PAC Pattern Herarchy PAC Agent Internal Slructm!

Figure 4: PAC patterns

Evaluation of the detection results was performed to identify false
positives and false negatives. For example, the designed PAC agent
"Ciment'' is identified as a false negative because it can not be aligned to any
detected pattern instance candidates. Subsequent iterations of ARM were
taken to improve the source model extraction and recognition plan. We
ended the iteration process when all false positives and false negatives were
removed or explained by valid causes (such as incompleteness of the source
code for the case where some class implementations were missing). For the
false positive "Ciment" agent, further study of the source code shows that
this designed agent is not implemented.

Finally, we re-constructed the as-implemented architecture (Figure 5) by
aligning detected PAC agents with the intended PAC agents in the designed
architecture, and grouping the unmatched detected agents together (at the
bottom of Figure 5). Architecture conformance was analyzed to identify
deviations of the as-implemented architecture from the documented
architecture.

www.manaraa.com

A Software Architecture Reconstruction Method 27

[j] Selection - 5 CAboutBo><ICApp/CArrayPaneAnnotation/CArr@

0
CPicturelV

CArrayPaneGanttCol2

D 0 0
CAboltBox Cpreference CDoubleScroiiBar

D
CArrayPaneHierarchic

Figure 5: As-implemented architecture of SupraAnalyse using PAC patterns

The as-implemented architecture shows that there are relations that
bridge layers of objects and thus violate the design principles of the PAC
pattern. For example, agents "CSujet" and "CDetaillee" communicate
directly with the top agent "CApp" and thus bridge over the
"CDocumentAnalyst" agent. A further investigation of the layer bridging in
the SupraAnalyse system was performed via searching for the Layer
Bridging pattern in the PAC agent hierarchy. ARM was applied again for
this task. Because a layer may contain any type of component and because
layer bridging can happen in several types of relations, an SQL pattern
recognition plan was deemed inappropriate, since it would have involved
listing all possible combinations of component and relation types. Instead
we used SAAMTool to construct the Layer-Bridging pattern query as a
graph. Nodes in the graph represent any type of component and edges
represent any type of connector. The IAPR tool was then used to process the
graphical query on a source model graph-the query posed as a subgraph

www.manaraa.com

28 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

isomorphism problem (Kazman & Burth, 1998). Three instances of Layer
Bridging pattern were detected. These instances represent problematic areas
where the implementation of SupraAnalyse has drifted from the design,
when we asked the authors of the system about the layer bridging, they said
they were unaware of the presence of the design violations.

4.2 MATIS system

The second case study was conducted on a larger system (77 KLOC)
called Multimodal Airline Travel Information System (MATIS): an
interactive system which allows the end-user to obtain information about
flight schedules using speech, mouse, keyboard, or a combination of these
interfaces (Nigay & Coutaz, 1991), (Nigay & Coutaz, 1993). It was
implemented in Objective C using the NeXTSTEP Application Development
Kit.

Dialog.e cartrdler

(1\
; •

\ntertace Preslrtaticn
Fli1Ciia1al Cere Cctrpa1ert

FLU!ima\ Core \..oN Level lnteradim
Cctrpa1ert

Figure 6: PAC-Amodeus pattern

The primary architectural pattern, the PAC-Amodeus model (see Figure
6) consists of 5 components organized symmetrically around a key
component: the Dialogue Controller (DC) , which itself is designed using
the PAC pattern. The Functional Core (FC) maintains domain data and

www.manaraa.com

A Software Architecture Reconstruction Method 29

performs domain-related functions. The Interface with the Functional Core
(IFC) defines a set of interface objects to the Dialogue Controller and maps
these interface objects into the formalism of the Functional Core.

The Low Level Interaction Component (LL/C) contains the toolkits that
implement the physical interface between the user and the application. The
Presentation Techniques Component (PTC) is a mediator between the
Dialogue Controller and the Low Level Interaction Component, and controls
the perceivable behavior of the application via input and output commands.
The key component Dialogue Controller is responsible for task level
sequencing, by creating a thread for each request received from PTC and
linking the appropriate IFC objects to perform the request. The IFC and
PTC components are abstraction layers to enhance portability.

Realizing that the DC component is the easiest to recognize as a PAC
pattern instance, we formed our recognition plan as follows: first detect the
PAC pattern instances and use these to identify the DC; second detect other
components and hence the entire PAC-Amodeus pattern using the DC as the
"anchor" of the pattern. The PAC pattern queries developed for
SupraAnalyse were reused because they were applied to the elements and
relations stored in the source model repository and therefore were not
dependent on the particular language of implementation. Since the source
code contains Objective C files and C++ files, language-specific extractors
were developed and used to extract information from the system. A source
model was created by combining the extraction results.

Running the PAC pattern queries, we detected 8 PAC agents. Evaluating
these PAC agents against the design document shows that the DC is
composed of 4 PAC agents; another 4 recognized PAC agents belong to
other PAC-Amodeus components. The detected PAC agent information was
then added to the repository to enrich the source model. Using the DC as the
starting point, other PAC-Amodeus components were subsequently detected
by executing the rest of the recognition plan.

After evaluating the detection results, we reconstructed the implemented
architecture of MATIS, shown in Figure 7, using the recognized PAC
Amodeus instance. The PAC-Amodeus structure is evident, but there are
several anomalies that need to be investigated. For example, the
implemented architecture shows that the FC component, which was designed
as an SQL database to process requests sent from the IFC, is missing.
Investigation of the source code confirms that these requests are handled by
a function in IFC that simulates the database processing by returning pre
defined values to certain requests.

As another example, Figure 7 shows that the LLIC calls the DC directly,
bridging over the PTC. This clearly violates the design of the PTC
component as a layer between the DC and LLIC.

www.manaraa.com

30 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

D
D D D D

do _parse .c+ do frame .c-tdbsy mbols .c+MA Tl S main. m - -

Figure 7: Recognized PAC-Amodeus pattern in MATIS. Solid lines represent calls
relations and shaded lines represent variable access relations

5. LESSONS LEARNED

These case studies both used patterns as the primary technique for
reconstructing software architectures. They demonstrate the usefulness of
ARM in assessing, planning and executing pattern recognition tasks. A
recognition plan can be laid out to recognize a pattern by a) recognizing
nested lower-level patterns first; b) recognizing the pattern's key element;
and c) recognizing other elements of the pattern and hence the entire pattern.
The pattern matching process is facilitated by using automated query and

www.manaraa.com

A Software Architecture Reconstruction Method 31

analysis tools. If an iteration of ARM can not be completed because the exit
conditions for a step can not be met, proper assessment of the task should be
conducted to identify the causes of detection deficiencies and to provide
guidelines for future efforts to improve the pattern detection.

This process is efficient both in terms of the analyst's time and in terms
of the amount of processing required to do pattern recognition. Consider, for
example, the tools presented here: SQL queries to match patterns are quite
efficient (as long as appropriate database indices have been built in advance
on the tables of interest), and IAPR pattern-matching, while in principle NP
hard, can be rendered tractable by the judicious use of features that limit the
search space, as reported in (Kazman & Burth, 1998).

The time spent in learning and using ARM can be amortized over several
architecture reconstruction tasks performed on similar systems (written in
the same language and/or using the same design patterns). Queries
developed from previous applications of ARM may be reused in executing
one or more pattern recognition tasks, as we showed by reusing the PAC
pattern queries.

The case studies also provide evidence that static analysis of source code
is not always sufficient for pattern recognition. Patterns that are implemented
using only static mechanisms can be recognized from a source model
containing static source artifacts. Patterns whose implementation involves
dynamic mechanisms will require extraction of dynamic information, such
as process spawning, instances of interprocess communication (IPC), and
run-time procedure invocation. In the MATIS implementation, for example,
object variables are dynamically typed. That is, an object variable is declared
to be a generic type, and assigned specific class types at run time. The best
way to solve this problem is to extract the object-type information at run
time. However, due to the lack of access to the NeXT Application
Development Kit environment (including its class libraries), we could not
execute the system or use dynamic analysis tools to extract the missing
object-type information. Fortunately, the object variables were never
assigned to more than one type in MATIS. Therefore, we were able to use
the static object creation and assignment information to resolve the type of
each object. This suggests that extracting dynamic information of a system at
run time will sometimes be necessary even in reconstructing a static
architecture.

6. CONCLUSIONS

Using design patterns in software design has become a widely used
technique for achieving a high quality architecture. Reconstructing

www.manaraa.com

32 George Yanbing Guo, Joanne M. Atlee, and Rick Kazman

architectures of systems that were designed and developed with design
patterns has traditionally been approached through manual source code
inspections (Schull, et al., 1996). In this paper, we presented ARM-a semi
automatic analysis method-to reconstruct architectures based on recognized
instances of design patterns. ARM is an iterative and interpretive process; a
human is an integral part of the loop, to evaluate the results and determine
what patterns to apply in the subsequent iteration. Two aspects differentiate
ARM from other approaches for pattern recognition. One, ARM clearly
distinguishes abstract pattern description from concrete pattern instantiation
and uses the latter to guide pattern detection. Two, using automated tools to
perform pattern matching makes the pattern recognition process less error
prone, compared to manual inspections. Upon the reconstruction of the
system's architecture, we can analyze conformance of the software to the
documented design patterns.

To further validate the usefulness and applicability of ARM, more case
studies need to be conducted on systems in various application domains.
Another area of future work is to incorporate approximate pattern matching
techniques into ARM. The associated metrics to measure the dissimilarity
between the pattern query and the actual pattern instance need to be further
studied and established.

Finally, to make ARM still more cost-effective, a pattern knowledge base
could be built to provide recognition plans tailored for common
instantiations of a given pattern.

REFERENCES

Bass, L., Clements, P., Kazman, R. (1998), Software Architecture in Practice, Addison
Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. (1996), Pattern-Oriented
Software Architecture, Wiley.

Chen, Y., Nishimoto, M., Rarnamoorthy, C. (1990), The C Information Abstraction System,
IEEE Transactions on Software Engineering, 3, 325-334.

Finnigan, P. , Holt, R. C., eta/. (1997), The Software Bookshelf, IBM Systems Journal, 36(4),
564-593.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994), Design Patterns, Addison Wesley.
Imagix Corporation, http://www.imagix.com
Portable Bookshelf, http://turing.toronto.edu/-holt/pbs
Johnson, J. (1993), Identifying Redundancy in Source Code Using Fingerprints, Proceedings

ofCASCON '93, 171-183.
Kazman, R., Abowd, G., Bass, L., Webb, M. (1994), SAAM: A Method for Analyzing the

Properties of Software Architectures, Proceedings of the 16th International Conference on
Software Engineering, 81-90, IEEE Computer Society Press.

Kazman, R. (1996), Tool Support for Architecture Analysis and Design, Joint Proceedings of
the SJGSOFJ '96 Workshops (JSAW-2), 94-97, ACM.

www.manaraa.com

A Software Architecture Reconstruction Method

Kazman, R., Burth, M. (1998), Assessing Architectural Complexity, Proceedings of 2nd
Euromicro Working Conference on Software Maintenance And Reengineering (CSMR),
I 04-112, IEEE Computer Society Press.

Kazman, R., Carriere, S. J. (1998), View Extraction and View Fusion in Architectural
Understanding, Fifth International Conference on Software Reuse, 290-299.

33

Kazman, R., Carriere, S. J. (1999), Playing Detective: Reconstructing Software Architecture
from Available Evidence, Automated Software Engineering, 6:2, April 1999, to appear.

Kontogiannis, K., DeMori, R., Bernstein, M., Merlo, E. (I 994), Localization of Design
Concepts in Legacy Systems, Proceedings of International Conference on Software
maintenance '94, 414-423.

Lischetti, N., Coutaz, J. (1994), Supraanalyse de supratel. Technical report, Informatique et
Mathematiques Appliquees de Grenoble (IMAG).

Murphy, G., Notkin, D. (1996), Lightweight Lexical Source Model Extraction, ACM
Transactions on Software Engineering and Methodology, 5(3), 262-292.

Murphy, G., Notkin, D., Sullivan, K. (1995), Software Reflexion Models: Bridging the Gap
Between Source and High-Level Models. Proceedings of the Third ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 18-28, ACM Press.

Nigay, L., Coutaz, J. (1993), A Design Space for Multimodal Systems: Concurrent Processing
and Data Fusion, Proceedings of lnterCHI '93, ACM Press.

Nigay, L., Coutaz, J. (1993), Building User Interfaces: Organizing Software Agents,
Proceedings of ESPRIT '91, 707-719.

Reasoning Inc., http://www.reasoning.com
SNiFF+, http://www.seed.arch.adelaide.edu.au/docs/sniff_online
Schull, F., Melo, W., Basili, V. (I 996), An Inductive Method for Discovering Design Patterns
from Object-Oriented Software Systems, UMIACS-TR-96-1 0, University of Maryland.
Storey, M., Muller, H., Wong, K. (1996) Manipulating and Documenting Software Structures,

Software Visualization, World Scientific.
UIMS Tool Developers Workshop (1992), A Metamodel for the Runtime Architecture of an

Interactive System, SIGCHI Bulletin, 24(1), 32-37.
Wong, K., Tilley, S., Muller, H., Storey, M. {1994), Programmable Reverse Engineering,

International Journal of Software Engineering and Knowledge Engineering, 4(4), 501-
520.

Woods, S. G., Yang, Q. (1995), Program Understanding as Constraint Satisfaction,
Proceedings of the IEEE Seventh International Workshop on Computer-Aided Software
Engineering (CASE-95), IEEE Computer Society Press.

Yeh, A. , Harris, D., Chase, M. (1997), Manipulating Recovered Software Architecture Views,
Proceedings ofiCSE 19, 184-194, ACM Press.

www.manaraa.com

Behaviour Analysis of Software Architectures

Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou
Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queensgate, London, SW7 2BZ, U.K.
{jnm,dgl,jkj@doc.ic.ac.uk

Key words: Software architecture, behaviour analysis

Abstract: The overall structure of a system described by a set of components and their
interconnections is termed its software architecture. In this paper, we associate
behavioural specifications with components and use these specifications to
analyze the overall system architecture . The approach is based on the use of
Labelled Transition Systems to specify behaviour and Compositional
Reachability Analysis to check composite system models. The architecture
description of a system is used directly in the construction of the model used
for analysis. Analysis allows a designer to check whether an architecture
satisfies the properties required of it. The paper uses examples to illustrate the
approach and discusses some open questions arising from the work.

1. INTRODUCTION

Software architecture has been identified as a promising approach to
bridging the gap between requirements and implementations in the design of
complex systems. Software architecture describes the gross organisation of a
system in terms of its components and their interactions. The initial
emphasis in Software architecture specification has thus been in capturing
system structure [5,8,13]. The authors have previously published papers on
the use of the architecture description language Darwin for specifying the
structure of distributed systems and subsequently directing the construction
of those systems [8,9, 10]. Darwin can also be used to organise CORBA
based distributed systems [11]. Darwin describes a system in terms of
components, which manage the implementation of services. Interconnection

www.manaraa.com

36 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

structure is specified by bindings between the services required and provided
by component instances. Darwin has both a graphical and a textual form
with appropriate tool support [9,12] .

Structural View

Behavioural View ervice View

Analysis Construction!
implementation

Figure 1. Common structural view with service and behavioural views

In this paper, we describe the use of Darwin structural descriptions as a
framework for behaviour analysis rather than system construction. Darwin
has been designed to be sufficiently abstract to support multiple views (cf.
[7]), two of which are the behavioural view (for behaviour analysis) and the
service view (for construction) (Figure 1). Each view is an elaboration of the
basic structural view: the skeleton upon which we hang the flesh of
behaviour specification or service implementation [14].

In previous papers, we have discussed the use of Darwin to produce the
service view, with components providing and requiring services at their
interfaces and with implementation definitions for the primitive components.
For example, when used to structure CORBA systems [11], the
computational behaviour of Darwin primitive components is determined by
CORBA object implementations and these object implementations interact
via interfaces specified in IDL using the ORB in the usual way. Primitive
components encapsulate objects and specify their instantiation, their required
interfaces and provided interfaces. As depicted in figure 2, a primitive
component may embed one or more objects.

In this paper we concentrate on the behavioural view using Labelled
Transition Systems (LTS) for behaviour specification and analysis . The
analysis approach is Compositional Reachability Analysis CRA [4] . We have
developed techniques for analysing system models in the CRA setting with
respect to both safety [2] and liveness [3] properties. The techniques are
supported by software tools, which provide for automatic composition,
analysis, minimisation, animation and graphical display. We first describe
the relationship between components and their behavioural specifications.

www.manaraa.com

Behaviour Analysis of Software Architectures 37

Darwin

D- component • - provided service 0 -required service

CORBA

<:=:> -object 1- -interface --+ - interface reference

Figure 2. Embedding objects in components

2. PRIMITIVE COMPONENTS

A primitive component is one with no substructure of components. In the
service view of architecture, a primitive component has an implementation
defined by an object or objects programmed in a programming language such
as C++. In the behavioural view, a primitive component is defined as a finite
state LTS. The example of figure 3 depicts the Darwin graphical and textual
description of a primitive component with two interfaces.

In the behavioural view, we do not distinguish between provided and
required services, service access points are simply declared as portals.
Consequently, implementation details such as invocation direction can be
deferred, although, in many cases, it is obvious from the behavioural model
as to which component is providing a service and which is using it.

A major objective of our work in architectural analysis is to provide tools
that are both accessible and usable by practising engineers. To this end, we
originally conceived that the behaviour of primitive components should be
specified graphically as state transition diagrams since these should be
familiar in one form or another to software engineers. However, it quickly
became apparent that this is an extremely cumbersome method for other than
trivial behaviour specifications. With our focus on actions rather than states
in specifying behaviour, it was natural to use process algebra as a concise
notation for describing behaviour. However, it is unlikely that most software
engineers have a working knowledge of process algebra. To mitigate this
problem, we have included the facility to depict textual specifications as
labelled transition diagrams. These diagrams may be animated, by an

www.manaraa.com

38 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

interactive behaviour simulation, to check that the specification corresponds
to the engineer's intuition.

interface BUTTON (red; blue;}
DRINKS

()press pour¢ interface BEVERAGE(coffee; tea;}

component DRINKS (
portal press:BUTTON;
portal pour :BEVERAGE;

Figure 3. Darwin description of DRINKS component

The behaviour of the drinks component is modelled in Figure 4 both
graphically as a Labelled Transition System and textually in our process
algebra notation FSP (Einite Erocesses).

DRINKS

press.blue

pour. lea

(press . red -> pour.coffee -> DRINKS

lpress.blue -> pour . tea -> DRINKS
) @ {press, pour}.

Figure 4. Behavioural description of DRINKS component

Primitive components are defined as finite state processes in FSP using
action prefix "->" and choice "I". If x is an action and P a process then
(x->P) describes a process that initially engages in the action x and then
behaves exactly as described by P. If x and y are actions then
(x->P I y->Q) describes a process which initially engages in either of the
actions x or y. After the first action has occurred, the subsequent behaviour

www.manaraa.com

Behaviour Analysis of Software Architectures 39

is described by P if the first action was x and Q if the first action was y.

Thus the DRINKS component offers a choice of the actions press. red
and press. blue. As a result of engaging in one of these actions the
appropriate drink is poured. The behavioural view does not distinguish
between input and output actions although, as in the example, input actions
generally form part of a choice offered by a component while output actions
do not. The @{press, pour} states that all actions labelled or prefixed by
press or pour can be shared with other components. The next example is
a component that has internal actions that cannot be shared with other
components. Figure 5 gives the Darwin graphical description for the
primitive component LOSSYCHAN together with its behaviour modelled in
FSP and the corresponding LTS diagram.

LOSSYCHAN

range T = 0 .. 1
LOSSYCHAN =

{in[x:T)->out[x)->LOSSYCHAN
lin[x:T)->fail ->LOSSYCHAN
)@{in,out}.

Figure 5. LOSSY CHAN component

1n.1

tau

The component LOSSYCHAN models a channel which inputs values in
the range 0 .. 1 and then either outputs the value or fails. In other words,
the component models a transmission channel that can lose messages.
Failure is modelled by non-deterministic choice on the input, which leads to
the internal action fail, if failure is chosen. Since fail does not appear
at the interface of the component, it becomes the silent action tau in the
LTS diagram for the component. In many Architectural Description
Languages, LOSSYCHAN would be represented as a connector rather than a
component [1,13] . However, Darwin does not have a separate connector
construct. Connectors can be distinguished as a particular class of
components. It is clear from the above that connectors are modelled in
exactly the same way as components.

The modelling notation FSP-finite state processes-includes guarded
choice, local processes and conditional processes. However, these are

www.manaraa.com

40 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

syntactic conveniences to allow concise model definition. Definitions using
these constructs can all be expressed using action prefix, choice and
recursion as described in this section.

3. COMPOSITE COMPONENTS

A composite component is constructed from interconnecting instances of
more primitive components. A composite component defines a structure and
no additional behaviour. Its behaviour can therefore be computed based on
this structure and the behaviour of its components.

customer[1]:
CUSTOMER

SERVICE

• •
customer[N]:
CUSTOMER

SERVICE

const int N = 3; 1 1 #customers

interface SERVICE {
prepay(int); gas(int);

component CUSTOMER
portal

SERVICE;

component STATION
portal

customer[l . . N] :SERVICE;

GASSTATION

STATION

customer[1 .. N]

component GASSTATION
inst

STATION;
forall i = 1 to N {

inst
customer[i] :CUSTOMER;

bind
customer[i] .SERVICE

--STATION.customer[i];

Figure 6. GASSTATION composite component

To illustrate composition, we will use the gas station problem, originally
stated in [16] and more recently addressed in [2, 17]. The gas station problem
concerns a set of N customers who obtain gas by prepaying a cashier who

www.manaraa.com

Behaviour Analysis of Software Architectures 41

activates one of M pumps to serve the customer. The overall GASSTATION
component is depicted in figure 6.

In an implementation such as CORBA discussed in the introduction,
Darwin bindings (drawn as arcs between portals) are generally references to
objects. In the behavioural view, a binding denotes an action shared between
two components. Each customer in figure 6 shares the actions prepay and
gas, which constitute the SERVICE interface, with the STATION
component. Component instances in the behavioural view are finite state
processes as described in the previous section. The composite behaviour is
the parallel composition of these processes. Consequently, the behaviour of
GASSTATION is the parallel composition of its constituent components:

II GASSTATION = (customer [1. . Nl :CUSTOMER II STATION) .

Note that to create multiple copies of CUSTOMER we use process
labelling. Each action label of the customer process (namely prepay and
gas) is prefixed with the process label. Thus customer I has the action
labels customer [1] .prepay and customer [1] . gas. The STATION
is itself a composite component consisting of the cashier and one or more
pumps as depicted in figure 7. A DELIVER component is also required to
associate pump actions with customer actions. The need for this component
is discussed later in the paper.

A binding in Darwin always denotes a shared action in the behavioural
view. Shared actions are the means by which processes synchronise and
interact in FSP. It is sometimes necessary to relabel actions to ensure that the
shared action has the same name in all the processes that share that action.
Re-labelling is required in the FSP description of the STATION component
based on the particular bindings:

//STATION= (CASHIER II pump[l. .M] :PUMP I/ DELIVER)

/{pump[i:l .. M] .start/start[i],
pump[i:l. .M] .gas/gas[i]}

@{customer}.

The general form of the relabeling function is:
I { newlabel_lloldlabel_l , ... newlabel_nloldlabel_n}.

This section has outlined how the FSP composition expressions for the
behavioural model can be generated directly from the Darwin composite
component structure. In the next section, we discuss analysis using the
behavioural model.

www.manaraa.com

42 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

custom er[1 .. N].prepay CASHIER
s ta rt[1..M)

custom er(1 .. N].gas DELIVER
gas (1..M)

STATION

const M = 2 ; I I #pumps

component STATION {
portal customer[1 .. N] :SERVICE;
inst CASHIER;
inst DELIVER;
forall i = 1 to N bind

customer[i] .prepay
customer[i] .gas

forall i = 1 to M {
inst pump[i] : PUMP;
bind

pump[i] .start
pump[i] .gas

CASHIER . customer[i] . prepay ;
DELIVER.customer[i] . gas;

CASHIER . start[i) ;
DELIVER .gas[i];

Figure 7. STATION composite component

4. ANALYSIS

The complete behavioural model for the gas station is listed in figure 8. It
includes behaviour definitions for the primitive components, CUSTOMER,
CASHIER, PUMP and DELIVER. A CUSTOMER makes a prepayment of
some amount (a) chosen from the range (A) and then inputs some amount of
gas (x). The process definition includes a test to check that the amount of
gas actually delivered is the same as the amount paid for. In this simplified
model of the gas station, the cashier does not give change and pumps are
expected to deliver the amount of gas that has been paid for. The CASHIER
starts any pump that is ready and passes to it the identity of the customer (c)
and the amount of gas required (x). The PUMP outputs the correct amount of
gas, which is delivered to the CUSTOMER by the DELIVER component. The

www.manaraa.com

Behaviour Analysis of Software Architectures 43

composition expressions for the composite components STATION and
GASSTATION are as described in the previous section.

const N 3 //number of customers
const M 2 //number of pumps
range c 1. .N //customer range
range p 1. .M I /pump range
range A 1.. 2 //amount of money or Gas

CUSTOMER= (prepay[a:A]->gas[x:A)->
if (x==a) then CUSTOMER else ERROR) .

CASHIER =
(customer[c:C] .prepay[x:A]->start[P] [c] [x]->CASHIER).

PUMP =
(start[c:C] [x:A] -> gas[c] [x] -> PUMP).

DELIVER=
(gas[P] [c:C) [x :A) -> customer[C] .gas[x] -> DELIVER) .

II STATION = (CASHIER II pump [1. . M] :PUMP II DELIVER)
I {pump [i: 1. . M] . start/ start [i] ,

pump[i:l . . M) .gas/gas[i)} @{customer} .

IIGASSTATION (customer[!. .N] :CUSTOMER II STATION).

Figure 8. Gas station behavioural model

Animation
Our analysis tool LTSA (labelled transition system analyser) allows a user

to explore different execution scenarios using the behavioural model.

EJ
customer.3.prepay.1
pump.1.start.3.1
pump.1.gas.3.1
customer.3.gas.1

CU$lomer. l .prepay.1

cuuomer. l .prepay.2

cuuomer.2..prepay.1

customer.2..prepay.2

customer.3.prepay.2

Figure 9. Animating the gas station

www.manaraa.com

44 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

To do this, the user must specify the set of actions that he/she wants to
control. The controlled set is defined by a menu, which for figure 9 is:

menu RUN= {customer[C) . prepay[A)}

Figure 9 depicts the trace of actions that result from instigating a prepay
action from customer 3. The cashier allocates pump 1, which delivers the
requisite gas to the customer via the DELIVER process.

Reachability Analysis
Animation allows a user to explore different execution scenarios,

however, it does not allow general properties concerning the model to be
checked. For example, does a customer always receive the correct amount of
gas? Reachability analysis performs an exhaustive search of the state space
to detect ERROR and deadlock states (no outgoing transitions). In fact the
behaviour model of figure 7 has a bug that permits incorrect behaviour. The
output of the analyser is shown below:

property customer.3:CUSTOMER violation.
property customer.2 : CUSTOMER violation.
property customer.l : CUSTOMER violation
States Composed: 3409 Transitions: 11862 in 1468ms
Trace to violation in customer.2:CUSTOMER:
customer.l . prepay.l
pump.l.start.l.l
customer.2 . prepay.2
pump.l.gas.l.l
customer.2.gas.l

The output shows that a property violation in each of the customer
components is detected. In addition, an example trace, which causes one of
the violations, is produced. Remembering that the CUSTOMER model
requires that the amount of gas delivered to the customer should be the
amount paid for, the trace is an execution in which customer 2 gets the gas
paid for by customer 1. This error is essentially the same as the race
condition discussed in [17] . The error in the model is that the DELIVER

process delivers gas to any ready customer C rather than to the customer
identity c passed to it by the cashier. The corrected DELIVER process is:

DELIVER
=(gas[P) [c : C) [x:A) -> customer[c) .gas[x) -> DELIVER) .

Safety properties
We can specify safety properties that a composition of components must

satisfy using property automata [2]. These specify the set of all traces that

www.manaraa.com

Behaviour Analysis of Software Architectures 45

satisfy the property for a particular action alphabet. If the model can produce
traces, which are not accepted by the property automata, then a violation is
detected during reachability analysis. For example, the following automaton
specifies that for, two customers, if one customer makes a payment then he
or she should get gas before the next customer makes a payment. In other
words, service should be FIFO.

range T = 1.. 2
property

(customer[i:T] .prepay[A] -> PAID[i)), FIFO
PAID[i : T] -> FIFO

PAID[i] [j]
(customer[i] .gas[A]
lcustomer[j : T) .prepay[A] ->

) '
PAID[i:T] [j :T] = (c ustomer[i].gas[A) -> PAID[j]) .

A gas station with a single pump satisfies this property, however, a
station with two pumps does not and leads to the following violation:

Composing
property FIFO violation.

States Composed: 617 Transitions: 1398 in 94ms
Trace to property violation in FIFO:
customer.1.prepay . 1
pump . 1.start . 1.1
customer.2.prepay.1
pump.2.start.2.1
pump . 2.gas.2.1
customer.2.gas.1

The trace describes the scenario in which customer 1 pays first and gets
pump 1 followed by customer 2 paying and getting pump 2. Clearly in a two
pump system, pump 2 can finish first, thereby violating the FIFO property.

Liveness properties
The LTSA analysis tool allows behavioural models to be checked against

specific liveness properties specified in Linear Temporal Logic. However,
we have found a check for a general liveness property which we term
progress to provide sufficient information on liveness in many examples.
Progress asserts that in an infinite execution of the system being modelled,
all actions can occur infinitely often. In the gas station example, it would
assert that customers will always eventually be served. In performing the
progress check, we assume fair choice which means that if an action is
eligible infinitely often, then it is executed infinitely often. With this
assumption, the progress check finds no problem with the gas station.
However, we can examine the behaviour of the system under different

www.manaraa.com

46 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

scheduling constraints by applying action priority. For example, the system
below states that the actions of customer 1 have lower priority than other
actions:

I I GAS STATION (customer [1 .. N] : CUSTOMER II STATION)
>>(customer[l]}.

Unsurprisingly, this causes a progress check violation since it is now
possible for the cashier to ignore customer 1 in favour of other customers.
Customer 1 may never be served. The tool gives the following output.

Progress violation for actions:

{customer.l . prepay.l, customer.l.gas.l , customer.l.gas.2,

customer.l.prepay.2, pump.1.start.1.1, pump.2.start.1 . 1,

pump.1.start.1.2, pump.2.start.1.2, pump.1.gas.1.1,

pump. 1. gas. 1. 2 }

Trace to terminal set of states :

Actions in terminal set:
{customer . 2 . prepay . 1, customer . 2.gas.1, customer.2.gas.2,

customer . 2 . prepay . 2, customer.3 .prepay . 1, customer . 3 . gas.1 ,

customer . 3.gas.2, customer.3 . prepay . 2, pump.1.start.2 . 1,

pump.2.start.2.1 }

This includes the set of actions that do not occur infinitely often in the
system and the set of action that can occur infinitely often. It is clear that
actions for customer 1 occur in the former set and the actions for customer 2
in the latter. The tool gives a trace that leads to the execution in which the
violation occurs. In the example, this trace is empty, as customer 1 never
gets an opportunity to get gas.

5. DISCUSSION & CONCLUSIONS

We have presented an approach that associates behaviour descriptions
with architectural components and supports behaviour analysis of the
composition of these components according to the software architecture.
Although relatively small, the example exhibits non-trivial behaviour. It
demonstrates that we can produce concise and flexible behavioural models
in which it is easy to add additional components and interactions. In the gas
station, it is trivial to modify the numbers of customers and pumps. In fact,
the gas station as presented is an instantiation of a common distributed
software architecture style known as a multi-server or multithreaded server.

www.manaraa.com

Behaviour Analysis of Software Architectures 47

In a multi-server system, a separate server thread allocated by an
administrator thread handles each client request.

In the introduction we stated that we could use the same structural
description for system construction as for behaviour modelling. This is not
always the case. For example, the gas station behavioural view includes the
DELIVER component which routes pump actions to customers. This
component would not appear in the service view since this routing would be
implicit in the service invocation mechanism. DELIVER is modelling an
aspect of architectural connection and it is specific to the behavioural view.
In other words, we recognise that there is a need to augment the structural
description with connector components for the behavioural view of
architecture. In contrast to Wright [1] we have resisted requiring that a
connector component is always interposed between application components
since this seems to lead to large numbers of auxiliary actions.

An issue that always arises when considering exhaustive state space
search methods is scalability. We have used the current toolset, which has
not yet been optimised for performance, to analyse an Active Badge
System[21] in which the final model has 566,820 reachable states and
2,428,488 possible transitions. This took 400 seconds to construct and check
on a 200MHz Pentium Pro and required 170Mb of store. Although not
addressed in this paper, our tools support compositional reachability analysis
in which intermediate composite components can be minimised with respect
to their interface actions using observational equivalence. Previous work
[15] has addressed the problem of intermediate state explosion.

We believe that analysis and design are closely inter-linked activities
which should proceed hand in hand. The FSP notation and its associated
analysis tool LTSA have been carefully engineered to facilitate an
incremental and interactive approach to the development of component
based systems. Analysis and animation can be carried out at any level of the
architecture. Consequently, component models can be designed and
debugged before composing them into larger systems. The analysis results
are easily related to the architectural model of interconnected components.
The LTSA analysis tool described in this paper is written in Java™ and can
be run as an application or applet. 1\ is availabl¢ at http://www
dse.doc.ic.ac.uk/-jnm. The approach we have described in this paper to
analysing component-based systems is a general one that is not restricted to
a particular tool-set. For example, CSP/FDR [6,19] has been used with the
architectural description language Wright[!] and both LOTOS/CADP [18]
and Promela/SPIN [20] have been used in the context of analysing software
architectures. The objective, whatever the tool, is to use behaviour analysis
during design to discover architectural problems early in the development
cycle.

www.manaraa.com

48 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

REFERENCES

[1] Allen R. and GarlanD., A Formal Basis for Architectural Connection, ACM
Transactions on Software Engineering Methodology TOSEM, 6 (3), July 1997,213-249.

[2] Cheung S.C. and Kramer J., Checking Subsystem Safety Properties in Compositional
Reachability Analysis, 18th IEEE Int. Conf on Software Engineering (ICSE-18), Berlin,
1996), 144-154.

[3] Cheung S.C., Giannakopou1ou D., and Kramer J., Verification ofLiveness Properties
using Compositional Reachability Analysis, 6th European Software Engineering
Conference/5th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 97), Zurich, Sept. 1997), LNCS 1301, (Springer-Verlag), 1997,227-243.

[4] Giannakopoulou D., Kramer J. and Cheung S.C., Analysing the Behaviour of Distributed
Systems using Tracta, Journal of Automated Software Engineering, special issue on
Automated Analysis of Software (to appear), vol. 6(1). R. Cleaveland and D. Jackson,
Eds.

[5] GarlanD. and Perry D.E., Introduction to the Special Issue on Software Architecture,
IEEE Transactions on Software Engineering, 21 (4), April1995, 269-274.

[6] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs,
N.J., 1985.

[7] Kruchten P.B., The 4+1 Model of Architecture, IEEE Software , 12 (6), Nov. 1995, 42-
50.

[8] Magee J., Dulay N., Eisenbach S., Kramer J., Specifying Distributed Software
Architectures, 5th European Software Engineering Conference (ESEC '95), Sitges,
September 1995), LNCS 989, (Springer-Verlag), 1995, 137-153.

[9] Magee J., Dulay N. and Kramer J., Regis: A Constructive Development Environment for
Distributed Programs, Distributed Systems Engineering Journal, 1 (5), Special Issue on
Configurable Distributed Systems, (1994), 304-312.

[10] Magee J. and Kramer J., Dynamic Structure in Software Architectures, 4th ACM
S/GSOFT Symposium on the Foundations of Software Engineering (FSE 4), San
Francisco, October 1996), SEN, Vo1.21, No.6, November 1996,3-14.

[11] Magee J., Tseng A., Kramer J., Composing Distributed Objects in CORBA, Third
International Symposium on Autonomous Decentralized Systems (ISADS 97), Berlin,
Germany, April9- 11, 1997.

[12] Ng K., Kramer J. and Magee J., Automated Support for the Design of Distributed
Software Architectures, Journal of Automated Software Engineering (lASE) , 3 (3/4),
Special Issue on CASE-95, (1996), 261-284.

[13] Shaw M., et al., Abstractions for Software Architecture and Tools to Support Them,
IEEE Transactions on Software Engineering, 21 (4), April 1995, pp 314-335.

[14] Kramer J. and Magee J., Exposing the Skeleton in the Coordination Closet, 2nd IEEE
International Conference on Coordination Models and Languages, Coord '97, Berlin,
September 1997), LNCS 1282, (Springer-Verlag), Sept 1997, pp. 18-31.

[15] Cheung S.C. and Kramer J., Context Constraints for Compositional Reachability
Analysis, ACM Transactions on Software Engineering Methodology TOSEM, 5 (4),
(1996), 334-377.

[16] Hembold, D. and Luckham, D.C., Debugging Ada Tasking Programs, IEEE Software,
2(2), March 1985,47-57.

[17] Naumovich, G., Avrunin G.S., Clarke L.A. and Osterweil L.J. Applying Static Analysis
to Software Architectures, 6th European Software Engineering Conference I 5th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 97),
Zurich, Sept. 1997), LNCS 1301, (Springer-Verlag), 1997,77-93.

www.manaraa.com

Behaviour Analysis of Software Architectures

[18] Jean-Pierre Krirnm and Laurent Mounier. Compositional state space generation from
LOTOS programs. In Ed Brinksma, editor, Proceedings ofTACAS'97 (Tools and
Algorithms for the Construction and Analysis of Systems), Enschede, The Netherlands,
April 1997. Springer Verlag.

[19) Formal Systems, Failues Divergence Refinement: FDR 2.0 User Manual, ed. Formal
Systems (Europe) , Oxford, U.K, August 1996.

49

[20) Holtzman G.J., The Model Checker SPIN, IEEE Transactions on Software Engineering,
23(5) May 1997,279-295.

[21] Magee J., Kramer J. and Giannakopoulou D., Analysing the Behaviour of Distributed
Software Architectures: a Case Study, 5th IEEE Workshop on Future Trends in
Distributed Computing Systems, FTDCS'97, Tunsia, October 1997.

www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case
Study

Wolfgang Pree1 & Kai Koskirnies2

1University of Constance, Gennany & 2Nokia Research Center, Helsinki, Finland
pree@acm.org, kai.koskimies@ research.nokia.com

Key words: Creation and evolution of architectures, product line architectures, framelets,
automated configuration, dynamic architectures

Abstract: Legacy systems, no matter which architectural style they rely on, contain
numerous pieces of source code with very similar functionality. We see these
system aspects as a good starting point for rearchitecting legacy systems. The
goal is the evolution of the legacy system architecture towards a product line
architecture which incorporates the originally replicated system aspects as
reusable, ideally self-configuring components. This paper presents the
concepts which we regard as necessary and/or useful for such an evolution:
Framelets form small architectural building blocks that can be easily
understood, modified and combined. Reflection together with a high-level
definition of semantic aspects allow the construction of partially self
configuring components. A case study corroborates that this constitutes a
viable approach for rearchitecting legacy systems in practice.

1. PRODUCT LINE ARCHITECTURES FOR
REPLICATED COMPONENTS

The source code of legacy systems comprises numerous replications of
similar chunks of code. This means that from an architectural perspective
many components of the overall architecture provide similar if not identical
functionality. In other words, source code was written again and again from
scratch for implementing these components. The idea for Rearchitecting
legacy systems suffering from this problem is to develop a product line
architecture for each such replicated component. The particular components
are slight variations of the product line, that is, they belong to the family of

www.manaraa.com

52 Wolfgang Pree and Kai Koskimies

the product line. Depending on the size of the replicated components, this
kind of Rearchitecting activity will lead to a set of small product lines.

Let us take a look at a specific legacy system which we rearchitectured
recently1. The three-tier client/server (CS) system of the bank is
representative of legacy software systems relying on the CS architectural
style. The clients (Windows PCs) access a central data repository via a
remote procedure library, which is available as set of C functions. The data
repository resides on a server machine (currently a Unix workstation;
migration to Windows NT is under way) and/or a mainframe. The remote
procedure library represents a quite stable part of the system architecture
which has not changed at all over the past ten years . For implementing the
client side the bank used a fourth-generation tool (SQL Windows/Gupta).
The problem associated with this approach is that the tool produces a
monolithic architecture: all dialog windows form one executable which has
to be loaded to each client no matter how small the percentage of required
dialogs actually is. From a development point of view it is hardly possible to
package dialogs or parts of dialogs into reusable components.

From an architectural point of view the module structure of the client
system is quite natural to envision. One dialog forms one module. In some
cases a small group of dialogs might be packaged into one unit. Despite the
shortcomings of typical fourth-generation tools regarding modularization,
several other choices, such as state-of-the-art Java development
environments allow the straightforward implementation of such a module
structure.

A closer look at the module structure of dialogs reveals that almost every
such module contains one or more components for handling remote
procedure calls and one or more components for managing items in a list. Of
course, the components differ in various contexts. For example, before a
remote procedure is invoked, the input parameters of the procedure have to
be read out of specific GUI elements. The number of parameters and the
GUI elements differ between remote procedure calls (RPCs). RPCs return
their results in C-arrays that have to be interpreted properly. The results are
then displayed again in GUI elements. This infrastructure surrounding an

I The project is part of a cooperation between RACON Software GmbH, a software
house of the Austrian Raiffeisen bank, and the Software Engineering Group at the
University of Constance. The principal question at the outset was, whether a
Rearchitecting effort based on framework technology and Java can lead to a
significantly better modularization of the overall system that allows the reuse of
components. Both aspects were defined as goals that could be achieved. The
paper presents the concepts and ideas which we regard as generally useful for
Rearchitecting legacy systems.

www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study 53

RPC is an example of source code that has to be implemented again and
again for each RPC, but which offers similar functionality.

As most dialogs in real world CS systems have one or more GUI
elements that display items in lists (by means of a GUI component called
multi-column grid control), interactions associated with lists are also
replicated in most dialogs . For example, a button for removing an item from
the list has to be enabled only if an item in the list is selected, otherwise the
button is disabled. Pressing a button to add an item opens a dialog window
for entering the data. Pressing a button to modify an item also opens a dialog
window and transfers the data representing the item to the corresponding
GUI elements for the purpose of editing them. The aspects that differ in the
various list-handling components are the types of the listed items, the dialog
window to display an item, and some details such as button labels and the
location of buttons for manipulating the list (for example, under the grid
control or beside it).

RP-Handling

Server I Host

Figure 1: Module structure of the CS system with replicated RPC components

Figure 1 illustrates schematically the problem of replicated components
in the architecture of the CS system at hand. Though the size of these
components is small (about 200 to 300 source lines of code), they are

www.manaraa.com

54 Wolfgang Pree and Kai Koskimies

replicated several hundred or even thousand times. Note that Figure 1 shows
several replicated RPC components, but only one ListHandling component,
as just one of the two sample dialogs contains a list. (Figures 1 and 2 apply
the notation introduced by Bass et al. (1998). Solid arrows express control
flow, dotted arrows depict data flow .)

Figure 2 shows an architectural solution which is based on a small
product line for each such component. This solution is better as the number
of components is significantly reduced.

RP·Handllng

Server I Host

Figure 2: Module structure of the CS system with a product line architecture

The following sections present the concepts underlying reflection-based
framelets. Such framelets were used to develop the product line architecture
sketched above. A case study discussing the RPC framelet concludes the
paper.

2. FRAMELETS

Object-oriented frameworks can be of any size, ranging from just one or
a few simple classes to large sets of complex classes. However, the
conventional idea of a framework is that it constitutes the skeleton of a
complex, full-fledged application. Consequently, frameworks tend to be
relatively large, consisting of, say, hundreds or thousands of classes. We

www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study 55

argue that the common problems (see e.g., Casais (1995); Sparks et al.
(1996); Bosch et al. (1998)) associated with frameworks stem from this idea.

We argue that the reason for common problems associated with
frameworks is the conventional idea of a framework as the skeleton of a
complex, full-fledged application:
- The design of such typical frameworks is hard. Due to the complexity and

size of application frameworks and the lack of understanding of the
framework design process, frameworks are usually designed iteratively,
requiring substantial restructuring of numerous classes and long
development cycles.

- Reuse of a framework is hard. A framework conventionally consists of
the core classes of an application, and one has to understand the basic
architecture of a particular application type to be able to specialize the
framework.

- The combination of frameworks is hard. Often a framework assumes that
it has the main control of an application. Two or more frameworks
making this assumption are difficult to combine without breaking their
integrity.

A framework becomes a large and tightly interconnected collection of
classes that breaks sound modularization principles and is difficult to
combine with other similar frameworks. Inheritance interfaces and various
hidden logical dependencies cannot be managed by application
programmers. A solution proposed by many authors is to move to black-box
frameworks which are specialized by composition rather than by
inheritance. Although this makes the framework easier to use, it restricts its
adaptability. Furthermore, problems related to the design and combination
of frameworks remain.

This suggests that it is not the construction principles of frameworks that
form a problem, but the granularity of systems where they are applied. We
propose a radical downsizing of frameworks and call these assets frame lets.
In contrast to a conventional framework, a framelet

- is small in size (< 10 classes),

- does not assume main control of an application, and

- has a clearly defined simple interface.

Like conventional frameworks, a framelet can be specialized by
subclassing and composition.

We consider a framelet not only as a reusable asset but indeed as a
fundamental unit of software in general. If a software system is seen as a set
of service interfaces and their implementations, a framelet is any (small)

www.manaraa.com

56 Wolfgang Pree and Kai Koskimies

subset of such a system (see Figure 3). An interface that belongs to the
framelet without its implementation (and used within the framelet) is part of
the specialization interface of the framelet. An interface that belongs to the
framelet together with its implementation (and used outside of the framelet)
is part of the service interface of the framelet. This is basically the
foundation for using framelets in restructuring legacy systems.

Legacy system

Framelet

- ·· - -- -
Legend·

Speclollzobon
nterfoce

n Service ontertoce
U Service tmplementotlo

_L Service col

Figure 3: A frarnelet as a subset of a software system

Our vision is to have a family of related framelets for a domain area
representing an alternative to a complex framework. Thus we view framelets
as a kind of modularization means of frameworks. On a large scale, an
application is constructed using framelets as black-box components, on a
small scale each framelet is a tiny white-box framework.

A particular problem arising from the use of framelets as production
lines is specialization dependency: the problem of specializing a large
conventional framework may reappear in the case of framelets as the
existence of various hidden dependencies that the specializations of
individual framelets must follow to build a consistent application. Ideally, it
should be possible to specialize each framelet independently of the others.
To make this possible, framelets should be able to adapt themselves
automatically to the context in which they are being used, relieving the
programmer of the burden of explicitly writing the context requirements as
configuration code in the specialization. In the sequel we show that this can
be at least partially achieved using reflective features provided by many 00
languages (e.g., Java), together with certain semantic conventions.

www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study

3. REFLECTION AS THE BASIS OF SELF
CONFIGURING ASSETS

57

What frameworks and framelets have in common is that they represent
one means of implementing product line architectures. For this purpose they
rely on the constructs provided by object-oriented programming languages.
The few essential framework construction principles, as described, for
example, by Pree (1996), are applicable to framelets as well. A framelet
retains the call-back characteristic (a.k.a. the Hollywood principle) of white
box frameworks: framelets are assumed to be extended with application
specific code called by the framelet. Figure 4 (a) shows a run-time snapshot
of a framelet with the objects A and B as hot spots. Usually hot spots
correspond to abstract classes or Java interfaces in the static program code.
A reuser of the framelet would have to choose either from already existing
specific subclasses of the abstract classes or from interface implementations,
or would have to implement appropriate classes. The framelet is adapted by
replacing the place holders by instances of specific A and B classes (see
Figure 4 (b)).

(a) (b)

Figure 4: Framelet before (a) and after (b) adaptation

Besides the mentioned canonical possibilities of defining abstract entities
of a framelet, there exist significantly more flexible ways of doing this,
albeit ones that sacrifice type safety. Let us assume we design the framelet
sketched in Figure 4 in Java, where all classes have a common ancestor, i.e.,
they inherit from class Object. Now the framelet designer could decide not
to restrict the two hot spots to a specific type, such as A and B in our
example. Instead it should be possible to plug any object into the framelet.
In other words, the static type of these hot spots becomes Object. The only
useful assumption that the framelet designer can make about these abstract

www.manaraa.com

58 Wolfgang Pree and Kai Koskimies

entities is that they provide the full range of meta-information. As meta
information is supported by the Java standard library (JDK 1.1 and above)
any object offers the same range of meta-information. For example, it
becomes possible to iterate over instance variables, access their types and
values, iterate over an object's methods and invoke particular ones. On first
consideration, this seems to be useless: No semantics are associated with
these operations, as opposed to abstract classes or interfaces, whose methods
define a specific type with an associated behavior on which the framework
developer can rely.

The advantage of such reflection-based hot spots is that somewhat
"intelligent" framelets can be constructed that exhibit self-configuring
properties. The framelet generically couples itself with the objects that fill
the hot spots. In order to make this happen, some semantics have to be
defined for the abstract entities. The sample framelet discussed in the next
section applies a very simple mechanism for defining semantics, i.e., naming
conventions. The point is that the semantic definitions are completely
decoupled from the programming language level. They reintroduce a notion
of typing on a more domain-related level. Thus proper semantic definitions
render void the above mentioned drawback of giving up strong typing. They
introduce kinds of equivalents of types on the domain level. Of course,
naming conventions are probably the most basic means of defining
semantics. We are currently investigating more sophisticated means of
pragmatically defining domain-specific semantics.

4. THE RPC PRODUCT LINE-A CASE STUDY

Remember that calling a remote procedure requires some infrastructure
in addition to the mere invocation. The values of the input parameters of the
remote procedure originate from GUI elements. The return parameters of
most remote procedures are packaged in a C-array that has to be carefully
processed before they can be displayed in particular GUI elements.

The interface of a reusable asset should be designed as straightforwardly
for the user as possible. If the infrastructure surrounding an RPC is
packaged in a reusable asset, the ideal situation would be that the reuser just
invokes one method, doRPC(...), of this component. The first parameter is
the name of the RPC as a string. The second parameter of doRPC(...) is a
reference to the dialog window which contains the GUI elements
corresponding to the input parameters of the remote procedure. Finally, a
reference to the dialog window has to be specified in whose GUI elements
the result parameter values are displayed. Let's call these two dialogs input
and output dialog windows. Note that the input and output dialog windows
can be identical. The RPC component should ideally be able to do the

www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study 59

configuration job itself, i.e., extract the parameter values from the
appropriate GUI elements of the input dialog window and transfer the
results to the GUI elements of the output dialog window. This would make
the reusable asset a perfect small product line for calling remote procedures.
How can such a convenient reuse level be achieved?

Here a simple naming convention comes into play. The GUI elements
have to have the same names as the RPC parameters. The RPC component is
implemented as a framelet in Java with two core hot spots: the input dialog
window and the output dialog window. Both hot spots are of type Object. As
discussed in detail below, the RPC framelet only requires the meta
information interface to accomplish the configuration job. We'll see that the
naming convention is a sufficient semantic specification of the behavior of
the two hot spots.

The RPC product line works internally as follows: The framelet is based
on a parameter description for each remote procedure. The type of each
parameter of a particular remote procedure has to be known. Furthermore, a
parameter has to be classified as an input or an output parameter. In the
realm of the RPC framelet, the class construct was chosen to describe a
remote procedure. (These classes don't have to be written by hand. A tool
generates these descriptions out of the available RPC documentation.) Each
such class contains besides an empty constructor only public instance
variables. The instance variables correspond to the parameters of the remote
procedure. The instance variable names reflect the parameter names in the
remote procedure documentation. A suffix Out marks output parameters.
The types of the instance variables correspond to the types of the remote
procedure parameters.

In order to call a remote procedure, including all the data fetching and
processing that is associated with a call, the reuser sends the message
doRPC(...) to the RPC framelet, passing the remote procedure name as well
as the input and output dialog variables as parameters as sketched above.

Based on the remote procedure name, the RPC framelet first searches the
class that describes the parameters of the remote procedure, and instantiates
this class. The frarnelet then iterates over the instance variables of this
object and assigns to them those values to them which it retrieves from the
GUI elements of the input dialog window that have the same name as the
parameters in the description object. For this purpose, the framelet iterates
over the instance variables of the dialog window. This works fine as the GUI
elements of a dialog window manifest in public instance variables of that
dialog window object.

Figure 5 exemplifies the interaction between various components during
the invocation of a remote procedure. The solid lines again depict control

www.manaraa.com

60 Wolfgang Pree and Kai Koskimies

flow, whereas the dotted lines represent data flow. Activating the button
Search ("Suchen" in the dialog window with German labels) should imply
the invocation of a remote procedure SearchPerson which basically searches
all records in a database that correspond to the search parameters (e.g., the
entered last name).

First the method doRPC(.. .) is called (label 1 in Figure 5) and receives
the following parameters: the name of the remote procedure as a string, and
the references to the input and output dialog windows. In this example both
refer to the same dialog. The RPC framelet now retrieves the values from
the input dialog window in order to assign these values to the remote
procedure parameter description object (a) and calls the remote procedure
(labels 2 and 3 in Figure 5).

... _
__....

--- b .--------,

Server/Host

Figure 5: Schematic representation of interactions and data flow in a RPC framelet
adaptation

Note that the name of the GUI element which displays the string
Schwarzenegger is not visible in Figure 5. The GUI element has the

www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study 61

intemal2 name lastName and thus adheres to the naming convention. One
instance variable of the remote procedure description object also has the
name lastName.

The RPC framelet finally processes the results returned from the host or
server and assigns the values to the proper instance variables of the remote
procedure description object (b). The remote procedure description object
provides some additional information how to process the result (a C-array
structure) for each remote procedure. This detail will not be discussed in this
paper. From there the RPC framelet transfers the data via the meta
information interface and naming convention into the GUI elements of the
output dialog window (c).

The source code in Example 1 illustrates how reflection allows the
generic implementation of a RPC. The second parameter of this method is
the remote procedure description object whose role is explained above.

The classes Class, Method and Field are part of the standard Java library.
The first line of method invokeRP(...) stores all instance variables (fields in
Java jargon) of the remote procedure description object in an array. Suppose
that the object has N instance variables, then the arrays, params, and args
have the initial size N=fields.length. The for-loop assigns the particular
array component the type (params[i]= fields[i].getType()) and the value of
the instance variable (args[i]= fields[i].get(parametersOfRPC)) .

The class ListOfRPCs contains all remote procedures as methods. The
methods invoke the associated C functions by means of the Java Native
Interface (JNI) . The statement getMethod(...) returns the Method object that
corresponds to the name of the remote procedure. This is the first parameter
of method invokeRP(...). The reference to this Method object is stored in
the variable RPCmethod. Class Method offers a method invoke(...) to finally
carry out the call.

The selected source code illustrates how reflection is useful to decouple
the frame let from the specific remote procedure library. The description of a
remote procedure in a separate class suffices for a generic implementation of
a remote procedure call in the framelet. New or changed remote procedures
only require additional or modified descriptions. The RPC framelet itself is
not affected.

class RPCaiiManager ... {

2 The GUI editor assigns a name to each GUI element. A tool generates Java code
which corresponds to the visuaVinteractive specification of the GUI. In general, a
dialog window is represented in one class. The GUI elements contained in a
dialog window become instance variables of this class. The GUI element names
determine the instance variable names.

www.manaraa.com

62 Wolfgang Pree and Kai Koskimies

ListOfRPCs rpclist; II contains all RPCs as methods

RPCaiiManager (...) {

public void doRPC(String RPCname, Object in Dialog, Object outDialog) {

protected void invokeRP(String nameOfRPC,
Object parametersOfRPC) {

Field[] fields= parametersOfRPC.getCiass().getDeclaredFields();
Method RPCmethod = null; II auxiliary var. for invoking RPC
Class[] params =new Class[fields.length];
Object[] args =new Object[fields.length];

for all params do {

params[i] = fields[i].getType(); II type of parameter
try {

args[i] = fields[i].get(parametersOfRPC); II par. value
} catch (lllegaiAccessException iae) { ... }

RPCmethod = rpclist.getCiass().getMethod(nameOfRPC, params};

.. . II exception handling
RPCmethod.invoke(args);
... II exception handling

Example 1: Generic implementation of the remote procedure call

Overall, the automated configuration of the RPC product line relies
solely on meta-information. A method of class Class called newlnstance()
allows the instantiation of a class whose name is provided as string. Class
Class also offers methods for iterating over the instance variables of an
object. Both properties together are sufficient for the implementation of the
RPC framelet.

Measurements of the run-time overhead of iterating over instance
variables showed that the overhead can be neglected. The time for
generically assembling an RPC takes between 0.2 and 0.5% of an RPC.

www.manaraa.com

Rearchitecting Legacy Systems-Concepts and Case Study 63

5. CONCLUSION

We have introduced two basic concepts for extracting reusable elements
from legacy systems: framelets and dynamic specialization through
reflection. The latter mechanism supports the idea of a framelet by
automating part of the specialization work. Neither of these concepts is
strictly limited to the 00 world, but our discussion and case study have
been carried out in the context of 00: this paradigm fits well our purposes
through its mechanisms for abstraction, specialization and reflection. To
some extent, corresponding mechanisms are provided by various component
technologies (e.g., COM).

It should be emphasized that dynamically configurable framelets are not
only useful for restructuring legacy systems, but they can and should be
used as basic architectural units in the design of new systems as well. Since
a frame let implements only a restricted functionality, its development is
expected to be far less iterative than the development of a typical application
framework. Hence, a mature generic software system based on framelets can
be developed in essentially shorter time than a conventional framework, yet
retaining the applicability of a framework.

The feasibility of framelets may depend on the overall architectural style.
It seems that framelets are particularly natural units in a layered architecture
where the services required by a layer are implemented by a lower layer. In
this case a single layer can be sliced into several framelets. For each such
slice, the interface to the upper layer represents the specialization interface
while the interface to the lower layer represents the service interface of the
frame let.

Though framework-related design patterns (Gamma et al., 1995;
Buschmann et al., 1996) represent architectural knowledge, they are too
small to become the foundation of reusable architectural components. Based
on the first experience with framelets we argue that framelets might be a
pragmatic compromise between design patterns and application frameworks.
Framelets might be viewed as the combination of a few design patterns into
a reusable architectural building block.

To which degree an application can be based on framelets remains an
open question, but we feel that frequently used independent features suitable
for framelets can be easily found in many application domains. Future work
will focus on the prototypical development of framelet families, on
investigation of pragmatic semantic conventions used for the automatic
configuration of framelets, and on programming tools supporting the use of
frame lets.

www.manaraa.com

64 Wolfgang Pree and Kai Koskimies

REFERENCES

Bass L., Clements P., Kazman R. (1998) Software Architecture in Practice. Addison-Wesley
1998.

Bosch, J, Mattsson, M. , and Fayad, M. (1998): Framework Problems, Causes, and Solutions,
CACM, 1998 (will appear)

Buschmann F., Meunier R., Rohnert H. , Sommerlad P. and Stal M. (1996) Pattern-Oriented
Software Architecture-A System of Patterns. Wiley and Sons

Casais E. (1995): An Experiment in Framework Development. Theory and Practice of Object
Systems 1, 4(1995), 269-280.

Fayad, M. and Schmidt, D (1997) Object-Oriented Application Frameworks. CACM, Vol. 40,
No. 10, October 1997.

Gamma E., Helm R., Johnson R. and Vlissides J. (1995). Design Patterns-Elements of
Reusable Object-Oriented Software. Reading, Massachusetts: Addison-Wesley

Pree W. (1996). Framework Patterns. New York City: SIGS Books (German translation,
1997: Komponentenbasierte Softwareentwicklung mit Frameworks. Heidelberg: dpunkt)

Pree W. and Koskimies K. (1998): Framelets-Small and Loosely Coupled Frameworks.
ACM Symposium on Frameworks (will appear)

Sparks S., Benner K., Faris C. (1996): Managing Object-Oriented Framework Reuse.
Computer 29,9 (Sept 96), 52-62.

www.manaraa.com

Checking the Correctness of Architectural
Transformation Steps via Proof-Carrying
Architectures

R. A. Riemenschneider
Computer Science Laboratory, SRI International, Menlo Park, CA, USA
rar@csl.sri.com

Key words: Software architectures, architecture hierarchies, transformation, refinement
verification, proof-carrying architectures

Abstract: The end product of architecting is an architectural hierarchy, a collection of
architectural descriptions linked by mappings that interpret the more abstract
descriptions in the more concrete descriptions. Formalized transformational
approaches to architecture refinement and abstraction have been proposed.
One argument in favor of formalization is that it can result in architectural
implementations that are guaranteed to be correct, relative to the abstract
descriptions. If these are correct with respect to one another, conclusions
obtained by reasoning from an abstract architectural description will also apply
to the implemented architecture. But this correctness guarantee is achieved by
requiring that the implementer use only verified transformations, i.e., ones that
have been proven to produce correct results when applied. This paper explores
an approach that allows the implementer to use transformations that have not
been proven to be generally correct, without voiding the correctness guarantee.
Checking means determining that application of the transformation produces
the desired result. It allows the use of transformations that have not been
generally verified, even ones that are known to sometimes produce incorrect
results, by showing that they work in the particular case.

1. INTRODUCTION

The process of specifying an architecture often begins by providing a
very high-level description of it. This description characterizes the

www.manaraa.com

66 R. A. Riemenschneider

architecture in terms of a few abstract components, perhaps the principal
functions the system must perform and some data stores. These components
are linked by abstract connectors, perhaps indicating dataflow or control
flow relationships among the components. This abstract description
provides an easily understood overview of the entire system architecture, but
omits so much detail that it provides relatively little guidance to someone
charged with implementing the architecture using programming-language
level and operating-system-level constructs. So the abstract description must
be successively refined-with complex components and connectors
decomposed into simpler parts, and abstract specifications of operations and
relationships replaced by more concrete specifications-until an appropriate
amount of detail has been added. It usually is desirable to continue the
refinement until implementation-level constructs have replaced all the
abstractions.

Alternatively, architecting a system can consist of assembling instances
of reusable component and connector types selected from a library. Such
libraries effectively make the implementation-level architecture more
abstract, and reduce the conceptual gap between the requirements
specification and the implemented architecture. Nevertheless, combining a
large number of components and connectors in complex ways can easily
result in an architecture that is hard to understand and analyze. So, it is
desirable to generate more easily comprehensible abstract representations of
the implementation-level architecture.

In either case, the end product of the architecting process is typically a
collection of architectural descriptions, at different levels of abstraction and
often in different styles (Garlan, Allen, & Ockerbloom 1994). The more
abstract descriptions are linked to the more concrete descriptions by
interpretation mappings. An interpretation mapping says how the
abstractions are implemented.' It sends each sentence in the language of the
abstract description to a corresponding sentence in the language of the
concrete description. For example, the fact that some component a is
implemented by components at. a2, .••• , an would be indicated by mapping
the sentence

Component(a)

to the sentence

Component(a,)" Component (az)" ... "Component(an)

1For more details on characterizing implementation steps using interpretation mappings, see
our earlier paper (Moriconi, Qian, & Riemenschneider 1995).

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 67

The collection of architectural descriptions and interpretation mappings that
comprise the complete architectural specification is called an architecture
hierarchy.

There are many advantages to formalizing refinement and abstraction in
system development: a library of refinement or abstraction transformations
provides a "corporate knowledge base" of standard, or preferred,
development patterns; mechanizing the application of these transformations
lessens the likelihood of clerical errors during the development process;
reuse of the transformations will result in greater validation of the patterns
they codify; and so on. But one of the most fundamental advantages of
formalization is that it allows the average developer to produce abstraction
hierarchies that are guaranteed to be consistent. In other words, the use of
verified transformations in the development process will guarantee that
abstractions accurately characterize implementations, albeit more abstractly.
A verified refinement transformation is one that has been proven to produce
a correct implementation of whatever it is applied to. A verified abstraction
transformation is one that has been proven to produce a correct abstraction
of whatever it is applied to.

Even if attention is restricted to the case of architectures, there is some
debate as to exactly what correct should mean. We have proposed a
somewhat stricter-than-usual criterion for correctness (Moriconi, Qian &
Riemenschneider 1995), while others have argued that the standard criterion
is preferable (Philipps & Rumpe 1997). For present purposes, any
reasonable criterion that characterizes correctness in terms of preservation of
truth will do perfectly well. The standard correctness criterion is that every
consequence of the abstract description must be a consequence of the
concrete description as well. More precisely, for every sentence A in the
language of the abstract description, where rl is the logical theory that
formalizes the abstract description,

where r2 is the theory that formalizes the concrete description, and ll is the
interpretation mapping that links the two theories.2 A mapping Jl that
satisfies this condition is called an interpretation of T1 in h Our proposed
stronger criterion for purely structural descriptions replaces the conditional
with a biconditional, i.e., requires that the interpretation mapping be a
faithful theory interpretation. One might also employ weaker-than-standard

20ur earlier paper explains how to fonnalize structural descriptions of architectures as logical
theories. Since structural descriptions are largely declarative, the process is quite
straightforward.

www.manaraa.com

68 R. A. Riemenschneider

criteria, where only some consequences of the theory-properties of special
interest-need be preserved.

What all these criteria have in common is that they justify the use of
formal reasoning about the architecture based on the more abstract
descriptions. If some sentence is shown to be a formal consequence of the
abstract architectural theory, the concrete theory is known to correctly
implement the abstract theory, and the sentence is among those that the
correctness criterion guarantees are preserved by the implementation, then
the sentence is known to be a consequence of the concrete theory as well. It
is correctness guarantees that link the results of abstract analyses to the real
world.

The usual approach to producing a correctness guarantee is
restricting the architect to the use of verified transformations. This approach
suffers from a problem, in practice. Even given a fairly mature library of
verified transformations, it would hardly be surprising if an architect found
himself unable to perform a certain refinement or abstraction step that he
believed to be correct because the required transformation has not been
included in the library. Expecting the typical system architect to produce a
formal proof that the step is correct is unrealistic, yet the presence of a single
unverified implementation step in the hierarchy voids the correctness
guarantee provided by the restriction to verified transformations. Is there
any way to allow the user to include such arbitrary steps in the development
of the architecture hierarchy, while maintaining a correctness guarantee?

2. PROOF -CARRYING ARCHITECTURES

Our solution to this problem is based on the notion of checking the
correctness of steps in architecture hierarchy development. By checking, we
mean automatically performing some calculation that shows the step is
correct. Checking can be substantially simpler than verification, because it
is focussed on a particular step. Verifying a transformation means showing
that it always produces correct results, while checking a transformation step
means showing that a correct result was obtained in one specific case. Thus,
checking entirely avoids the sometimes difficult problem of characterizing
the preconditions required for the transformation to produce correct results
(Riemenschneider 1998).

Our initial approach to checking transformation steps was inspired by
work on compilers that generate proof-carrying code (PCC) (Necula & Lee
1998). The basic idea is that, rather than attempting to prove the
transformations performed by a compiler always produce code with certain
desired properties, to generate a purported formal proof that the complied

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 69

code has those properties as part of the code generation process. The
purported proof can then be checked and, if it turns out to be a correct proof,
it follows that the generated code has the desired properties. Thus, the
emphasis is shifted from showing that compiler transformations are correct
in general to checking that they produced correct results in individual cases.

The application of this idea to architectural transformation is
straightforward. At some abstract level, the architectural description is
proven to guarantee that the architecture has some desirable property, C.
The interpretation mapping J.L that sends abstract level sentences to their
implementations can also be applied to the proof of C. If the image of the
proof under the implementation mapping turns out to be a correct proof that
the implementation has J.L(C), then, of course, the implementation has J.L(C).
Checking the transformed proof can, therefore, provide the desired
correctness guarantee.

3. AN EXAMPLE: SECURE DISTRIBUTED
TRANSACTION PROCESSING

The idea of proof-carrying architectures can be illustrated by an example,
based on our development of software architectures for secure distributed
transaction processing (SDTP) (Moriconi, Qian, Riemenschneider & Gong
1997). These architectures extend X/Open's standard DTP architecture
(X/Open Company 1993) by enforcing a simple "no read up, no write down"
security policy. The primary result of our development efforts is a hierarchy
that links an extremely abstract architectural description, shown in Figure 1,
to three implementation-level descriptions written in a style that can be
directly translated into a programming language such as Java using standard
network programming constructs. The gap between the abstract SDTP
architecture and each concrete SDTP architectures is filled by roughly two
dozen descriptions-the exact number varies among the implementations
at intermediate levels of abstraction, linked in a chain by interpretation
mappings.

We are in the process of formally proving the implementation-level
architectures are secure by proving that the abstract description is secure,
and proving that every interpretation mapping preserves security. One of the
techniques that is being employed is showing that the interpretations
incrementally transform the abstract-level security proof into
implementation-level security proofs. The example below shows how the
interpretation mapping associated with the first refinement step in all three
chains transforms the abstract security proof into a slightly more concrete
security proof.

www.manaraa.com

70 R. A. Riemenschneider

ap

ar H tx

tm rm ... - ;;;

xa

Figure 1. Abstract SDTP architecture- components linked by secure channels

3.1 The abstract SDTP architecture

Figure 1 depicts the most abstract architecture for SDTP. The boxes are
the components of the architecture: the Application (labeled "ap"), some
number of Resource Managers (labeled "rm"), and a Transaction Manager
(labeled "tm"). The components are linked by secure channels, indicated by
the heavy double headed arrows that make up the interfaces between the
Application and Resource Managers, the Application and the Transaction
Manager, and the Resource Managers and the Transaction Manager. Secure
channels are a type of connector that enforce the security policy. In other
words, secure channels will not carry classified data from a component to a
component that lacks required clearances. To say that the system as a whole
satisfies the security policy means that there is no flow of classified data to a
component that lacks the required clearances.

3.2 An abstract proof of security

Informally, the security of the system follows almost immediately from
the fact that it employs only secure channels. Not surprisingly, a textbook
style natural deduction proof (Lemmon 1987, Mates 1972) of system
security is quite simple3• Consider the dataflow from some given Resource
Manager rm to the Application ap, for example. A proof of the formula

3 In this paper, I will use natural deduction, since that provides a familiar concrete
representation of formal proofs. In our actual verifications that the SDTP hierarchy's
interpretation steps preserve security, we are employing the PVS verification system [18].

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 71

(\id: Labeled_Data) [Fiows(d, rm, ap)
:::>label(d);?: clearance(ap)]

which says

every labelled datum d that flows from rm to ap has a security label
classifying it that is less than or equal to the clearance level of ap

from five axioms of the architectural theory is shown in Figure 2.

{1} J. (Vd : Labeled.Data)(Fiows(d, rm, ap)
::> Carries(securur..channel,d, rm's..ar..port, ap's..ar..ports(rrn))]

Axiom describing specifiC urdutecturc
{2} 2. Port_Of(ap's..ar..ports(rm), ap) Axiom describing specific arehitecture
{.'l} 3. ('lc: Secure..Channel)('ld: labeled.Data)(Vx : Output.Port)

(Vy: lnpuLPort)[Carries(c,d,x,y) ::>label(d)$ clearance(y)]
Axiom characterizing secure clumnels

{4} 4. ('fa: Component)(Vy: lnput.Port)[Port-Of(y,a) ::>dearance(y) $ clemnce(a)]
Axiom constraining port clearances

{5} 5. (\Is,, ••• s. : Socurity..l.abel)[s1 $ '' "., :5 •• ::> s1 $ s.]
Axiom specifying transitivity of s<eurity label ordering

(1} 6. Flows(do, rm, ap) => Carries(secure....ar..channel, do, rm''-'•-Port, ap',....r.ports(rm))
Universal iMt.antiation (1)

{3} 7. carr;...(secure..ar..channel, do, rm's..>r-port,ap's..>r-ports(rm))

{1,3} 8.

(4} 9.

{2,4} 10.
{5} n.

{2,4,>} 12.

{1,2,3, ·1,.';} 13.
(1,2,3,4,5} 14.

::> label(do) :5 clearance(ap's..ar..ports(rm))
UniYCr5al ill6tantiatiou (3)

Flows(do, rm, ap) ::>label(do) :5 clearance(ap's..ar-ports(rm))
Tautological consequence (6,7)

Port..Of(ap'.s..ar..ports(rm), ap) ::> :5 clearance(ap)
Unh-ert;al ill6tantiatiou (4)

clearance(ap's..ar..ports(rm)) :=:; clearance(ap) Tautological oonoequence
label(do) :5 clearanee(ap's..ar.ports(rm)) h elearanct(ap's..ar.ports(rm)) $ elearance(ap)

::>label(do) 5 dearance(ap)
Uuh.ocrstt.l instantiation (5)

label(do) :5 dearance(ap's._ar..ports(rm)) :::>label(do)::; clearance(ap)
Tautological COD""'!UC!l<e (10,11)

Flows(do, rm, ap) ::>label(do) :5 dearance(ap) Tauwlogkal «>ll""'J"'"'"" (8,12)
(Vd: l•beled.D•ta)[Fiows(d, rm, ap) :::>label(d) :5 clearance(ap))

Uni\'M'&I gcncralization (13)

Figure 2. Formal proof that dataflow from rm to ap satisfies the security policy

The five axioms say
1. every labelled datum d that flows from rm to ap is carried by

secure_ar_channel form the output port rm's_ar_port to the input port
of the port array ap's_ar_ports that is indexed by rm,

2. the input port of the port array ap's_ar_ports that is indexed by rm is a
port of ap,

3. if secure channel c carries labelled datum d from output port x to input
port y, then d's security label is less than or equal to the clearance level
ofy,

www.manaraa.com

72 R. A. Riemenschneider

4. the clearance level of any port y of component a must be less than or
equal to the clearance level of a, and

5. the ordering of security labels is transitive.

The first two axioms are facts about the particular architecture, the third
axiom is the defining property of the secure channel subtype, the fourth and
fifth axioms are general axioms of the security model.

3.3 A slightly more concrete SDTP architecture

The secure channels of abstract SDTP architecture can be implemented in
terms of ordinary dataflow channels and additional components in a variety
of ways, depending upon the security properties of the components
(Moriconi, Qian, Riemenschneider & Gong 1997). The most interesting
implementation is shown in Figure 3, where the light double headed arrows
represent ordinary dataflow channels that do not enforce the security policy.

ap

t
mls filter

t
rm tm

Figure 3. More concrete SDTP architecture-secure channels refined to ordinary

channels, or ordinary channels plus security filter

This implementation is suited to the case where all of the resource
managers are single-level, but not necessarily the same level. The security
policy is enforced by a multi-level secure component that filters dataflow
between the application and the resource managers: if passing a datum from
a resource manager to the application would violate the security policy, the
filter removes it from the stream.

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 73

The concrete architecture can be thought of as resulting from the
abstract architecture by applying several transformations. For example, one
transformation, the Filter Introduction Transformation (FIT), replaces secure
channels between components that are not multilevel secure by ordinary
dataflow channels and a component that enforces the security policy.

3.4 A slightly more concrete proof of security

Now it must be shown that, like the abstract SDTP architecture, the more
concrete SDTP architecture has the desired security property. The two
conventional approaches to establishing this result are
1. to directly prove that the more concrete architecture is secure, in much

the same way the abstract architecture was proven secure (perhaps using
the abstract-level proof for heuristic guidance), and

2. to show that the Filter introduction Transformation (ffi), and the other
transformations that produce the more concrete architecture from the
abstract architecture, always preserves the security properly.

The use of proof-carrying architectures provides a third alternative.
When transformation FIT is applied, it can be applied not only to the

architectural description, but to the formal security proof of Figure 2 as well.
The result of applying FIT to this proof is shown in Figure 4, where the
implementation mapping J.l associated with this application is determined as
follows. A complete account of how first-order interpretation mappings are
defined, and basic facts about them, can be found in logic textbooks
(Enderton 1972, Shoenfield 1967)3• For present purposes, it is enough to
know that
1. for every term t of the language of the abstract theory, J.l(t} is a (possibly

complex) term of the language of the more concrete theory,
2. for every predicate F of the language of the abstract theory, J.l(F) is a

(possibly complex) predicate of the language of the more concrete
theory,

3. for every formula A of the language of the abstract theory,
J.l(-.A) = -.J.l(A)

and similarly for the other connectors, and
4. for every formula A of the language of the abstract theory, every variable

x, and every type predicate T of the language of the abstract theory,
J.l((V'x: T) A)= J.l(V'x : T) J.l(A)

where J.l(V'x : T) is a sequence of universal quantifiers, and similarly for
the other quantifiers.

3 Technically, we will make use of what are called n-dimensional interpretations (Hodges
1993, pp. 212.) But this is a reasonably straightforward generalization of the definition
found in the cited textbooks.

www.manaraa.com

74 R. A. Riemenschneider

The Carries predicate

Carries((secure channel), (datum), (out port), (in port))

that is mentioned in formulas 1, 3, 6, and 7 of the abstract-level proof is
mapped to a conjunction of the Carries, Passes, and Carries predicates,

Carries((channel), (datum), (out port), (filter in port))

1\ Passes((filter), (datum), (filter in port), (filter out port))

1\ Passes((channel), (datum), (filter out port), (in port))

This clause in the definition of ll says that a secure channel carrying a
datum from some output port to some input port is implemented as a channel
carrying the datum from the output port to some input port of a filter, passing
the datum through the filter from the input port to some output port, and
carrying the datum from output port of the filter to the input port5. This
mapping is also applied to formula 3 in order to preserve the fact that
formula 7 should follow from formula 3 by Universal Instantiation.

The universal quantifier over secure channels in formula 3,

(V' (secure channel variable) : Secure_Channel)

is mapped by ll to universal quantifiers over channels and a universal
quantifier over MLS components,

(V' (to-filter channel variable): Channel)

(V' (filter variable) : MLS_Component)

(V' (from-filter channel variable) : Channel)

It is easy to check that the result of applying the FIT interpretation
mapping ll to the proof of security is a syntactically correct derivation of the

5 This mapping would not be appropriate to apply to every occurrence of the Carries
predicate in every derivation, because some secure channels in the abstract architecture
may not be replaced by a combination of two channels and a filter in the concrete
architecture. However, formulas I , 6, and 7 of the proof specifically refer to what
secure_ar_channel carries, and this secure channel is being implemented by two
channels and a filter , so I will use this simpler interpretation for purposes of the example.

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 75

desired security property from formulas that are images of axioms of the
more abstract architectural theory. Mapping)! sends tautological
consequence steps to correct tautological consequence steps, universal
instantiation steps to correct universal instantiation steps, and universal
generalization steps to correct universal generalization steps. So)! has
indeed mapped the formal abstract-level security proof to a concrete-level
security proof, but not necessarily a proof from axioms of the concrete
architectural theory.

{J} 1. (Vd: Labeled.Data){Fk>ws(d,rm,ap)
:> Carries(rm_toJilter .channel, d, rm's..ar .port, filttrJn..port(rm))]

" Passes(mls.lilter, d, filterJn.port(rm), filter .DUt..port(rm))]
A d, filter..out..port(rm), ap's..ar..ports(rm))j

{2} 2. Port..Of(ap's..ar..ports(rm), ap)
{3} 3. (Vc, : Channel)('lf: MLS-Component)CVct : Channei)(Vd : Labeled.Data)

(Vx1 : Output_pon)(Vxo : Output..Pcrt)(Vy1 : lnput_port)(Vy2 : lnput_port)
[Carries(c,, d,x, ,y1)" Passu(f, d, y1,x,)" Carrios(c:., d, x,, y2)

::>label(d) :5 dearance(y2)]

{4} 4. (Va : Component)(Vy: lnput-Port)[PorLOf(y, a) :> dearance(y) 5 clearance(a)]
{5} 5. (Vs,,s,, .. : Security..Label)[s, 5. .. "s, 5 .. :> •• 5. sa]
{1} 6. Fl..,s(do,rm,ap)

::> Carries(m>-toJiltor ..channel, do, rm's..ar .port, filter Jn..port(rm))
" Pmes(mlsJilter,do, filter ..in..port(rm), filter ..out.port(rm))
" Carries(filter _to..ap..channel(rm), do, filt•r..out.port(rm), ap's..ar.ports(rm))

{3} i. Carries(rrn_toJilter..channel,d, rm's..ar.port, filterJn.port(rm)
"Passes(mlsJilter, d0 , filtorJn.j)ort(rm), Mter..out..port(rm))
" Carries(filttr -to.JOp..t:hannel(rm), do, filter ..out.j)ort(rm), ap's..ar-ports(rm))

::>label(do) 5. cleoronce(ap's..ar_ports(rm))
{J, 3} 8. Flows(do, rm, ap) ::>label(do) 5 clearonco(ap's..ar..ports(rm))

{4} 0. Port..Of(ap's..ar_ports(rm),ap) ::>cloaranoe(ap's..ar_ports(rm)) 5. dearanoe(ap)
{2, 4} 10. cluranco(ap's..ar_ports(rm)) 5 cloaranco(ap)

{5} 11. label(do) 5. clearance(ap's..ar_ports(rm)) "clearanoe(ap's..ar..ports(rm))::; clearance(ap)
::>label(do) 5. clurance(ap)

{2,4, 5} 12. label(do) 5 clearance(ap's..ar_ports(rm)) :::>label(do) :5 dearance(ap)
13. Flows(do,rm, ap) ::>label(do) 5 clearance(ap)

{1, 2, 3, 4, .>} H . (Vd : Labeled.Data)[Fk>ws(d, rm,ap) :::> label(d) .$ clearance(ap)J

Figure 4. Transformed formal proof that dataflow from rm to ap satisfies the security policy

3.5 Completing the proof

The image of the first axiom under)! says that every labelled datum that
flows from rm to ap is carried to the filter from rm, passed through the filter,
and then carried to ap from the filter. Just as in the case of the first axiom,
this is a fact about the particular architecture that is either an axiom of the
concrete theory, or easily and automatically derivable from axioms of the
concrete theory. The mapping)! leaves the second axiom unchanged. This
will certainly be an axiom of the concrete theory, as well as the abstract
theory. The image of the third axiom is a bit more complex. It states that
the combination of the two channels and the filter enforces the security
property. It is quite unlikely that this would be among the chosen axioms of
the concrete-level theory, since it is the filter alone, effectively, that is

www.manaraa.com

76 R. A. Riemenschneider

enforcing security. Still, it is easy to see that this formula must be a
consequence of axioms of the concrete theory: the security model requires
that channels that do not enforce security can only connect ports with
matching clearances, and one of the defining properties of an MLS
component is that it only supplies data at an output port if the classification
of the data is less than to equal to the clearance of the port. A formalization
of this proof from particular axioms we use in the SDTP security verification
is shown in Figure 5.

{1} 1. 0fc : Chllnnel)0fd : ubeled.Data)(¥x : Output.Port)(¥y : lnput.Port)
[Carri .. (c, d,x, y) ::> clearance(x) = cluranee(y)]

Axiom sp•dfying coll.D<lCti<m consttaint impos<ld by security mod<>J
{2} 2. (Vf: MLS-Component)(Vd : tnput.Port)(Vx: Output.Port)

[Passes(f. d, y,x) ::>label(dearanee(x)]
Axiom r.hl>racterioiug MLS componentll

{3} 3. (Vx)(¥y)(Vz)[x = y :> [z :S x •• t $ y] ltL•truli!C of identity axiom sebl!mo
{1} 4. Carries(e., do, x,, y,) => dearanct(xo) = cl .. rance{y2} Uuiveml in>tautiatiOil (1)
{2} 5. Patse(fo,do,y1, x2) :>label(do) $ clearance(x.) Uniwn<al (2)

{1, 2} 6. Carries(c,,do,x.,y1)" Passes(fo,do,y1,x.) A(arries(c,,do, x, ,y,)
::>label(do)$ clearance(x,) " clearance(x,) = clearance(y2)

Tautologkal oo.-tuen<!C (3,4)
{3} 7. cloarance(x,) = cleorance(y2) ::>[label(do) $ clearance(x,) •label(do)$ clurance(y2)

Uni\-.rslll iu!ltantiation (3)
{1, 2, 3} S. Carries(c, , do,x.,y1) ·" Passes(fo.,do, y1,x.)" Carries(c,, do,x2.,y2)

=>label(do) $ clearance(y2)

Ta utologkal <Oll!IJ<Iuenc" (6,7)
{1, 2, 3) 9. 0fc,: Chlonnel)(¥f: MLS_Compottent)(Veo : Channei)(Vd: Labeled_Oata)

(Vxt : Output.Port)(Vx, : Output.Port)('v'y, : lnput.Port)(Vy, : lnput.Port)
(Carri .. (<, ,d,x, ,y1)" P..,.s(f,d,y1 ,x,) " Catfies{c,,d, x,,y,)

::> clearanct(y1)J
Universal generallzation (8)

Figure 5. Proof of image of abstract-level formula 3 under ll from axioms of concrete theory

Discovery of this proof is easy. The form of the desired conclusion-a
conjunction of conditions on Carries and Passes in the antecedent, and the
comparison of label to clearance in the consequent-immediately suggests
the use of the axioms on lines I and 2 of the proof. So it should be quite
plausible that the proof can be discovered without human intervention by the
transformation system. The interpretation mapping U does not affect the
images of the remaining two axioms; they remain general axioms in the
security model. So, by combining the proof in Figure 5 with the proof in
Figure 4, we obtain a proof of the security property from axioms of the
concrete theory. Moreover, this proof is recognizably a formalization of our
informal argument (Moriconi, Qian, Riemenschneider & Gong 1997, p. 890)
that the concrete architecture satisfies the security policy.

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 77

4. GENERALIZING FROM THE EXAMPLE

The idea of using the architectural transformation to transform the proof
that the more abstract architecture has a desired property into a proof that the
more concrete architecture has the property worked well for this rather
simple, but real-world, example. Is there any reason to believe that it will
work equally well in other cases?

Recall that the standard criterion for correctness of an
implementation mapping)l of an abstract logical theory T1 in a more
concrete theory T2 is that)l must interpret r, in T2, i.e., it must be the case
that, for every formula A in the language of h

T, 1- A => T21-)l(A)

If)l interprets T1 in T2, an easy inductive argument shows that)l

maps formal proofs from T1 to formal proofs from)l[TJ] that can be extended
to proofs from T2. If A is an axiom of then, since)l is a theory
interpretation,)l(A) is derivable from T2• Because)l is defined so that
connectives pass through it,)l maps tautological consequence steps to
tautological consequence steps. Similarly,)l maps universal instantiation and
universal generalization steps to universal instantiation and generalization
steps, respectively. Thus,)l maps formal proofs from abstract axioms to
formal proofs from images of abstract axioms, and images of abstract
axioms can always be proved from concrete axioms, as shown in Figure 6.

(I) I "• A'"*m r,

(2)1. A, A."f..tOtacl T 1

11.21 J " · T-.(1 , 1)

Formal proof from
axioms of T1

at abstract level

"

" ..

pov•.m-oe,
(ondr_,

I) I ><A,J

provo rmogo .. _,
(21l.><A,l

(ancl r.-)

,.....,_,

Formal proof from
Images of axioms of T 1

at concrete level

1, 2,

(I) 1. 8 1
121 l. B,

lt.l. I lt .Joi{AI) ,,. n+tc,
1•+1)

:"• l , a-+ .Z..
,JI+ J, JI+!,

I • .,...

•

Formal proof from
axioms o1 T 1

at concnlle level

Figure 6. Interpretation of formal proofs

N.KDaf Tl

Ax.o.of r,
"-"""""' r,

T._ (,.,,-6.,

So, if an architectural transformation step is correct, in the standard
sense, the corresponding interpretation mapping will map formal proofs to
formal proofs containing gaps that can be filled. A fortiori, an abstract-level

www.manaraa.com

78 R. A. Riemenschneider

formal proof of some particular property of interest-say, satisfaction of a
security policy-will be mapped to a proof that the implementation also has
(the implementation-level analogue of) the property. Since the replacement
of the secure channel from rm to ap by a pair of channels and a filter is
evidently correct, it is not surprising that the FIT mapping sends the abstract
level security proof to a concrete-level security proof.

It follows that the proof-carrying architecture approach allows the
architect to perform arbitrary correct transformations when implementing an
abstract architecture, provided the transformation system that supports the
approach is clever enough to find the proofs of images of axioms.

The question remains: In general, how hard is it to discover these
proofs? In our experience, it is invariably quite easy, because we deal with
refinement patterns that make only small changes in representation of the
architecture. Indeed, the example in Figure 5 is representative of the
complexity of most of these proofs. At lower levels in the SDTP hierarchy,
there are more gaps to be filled in-because lower-level architectural
theories are more complex, and proofs are based on a larger number of
axioms-but the size of the gaps is about the same. We are confident that
considerable automated support for finding proofs to fill the gaps can be
provided.

Finally, it should be noted that incorrect transformations that happen to
preserve the proof of the property of interest will also be judged acceptable
on the proof-carrying architectures approach. Therefore, it is well-suited to
the case where the focus is on obtaining an implementation with some
particular desirable property - i.e., when a weaker-than-usual correctness
criterion is adequate - and placing minimal constraints on the architect's
implementation options is preferred, as is the case in SDTP.

5. RELATED WORK

Although there is a large and growing literature on formal software
transformation, nearly all of it is oriented toward maintaining functional
correctness, rather than system structure. Similarly, there is a large body of
literature on architectural refinement and composition, nearly all of it
employing semiformal representation and analysis techniques, at best. The
comparatively few papers on formal refinement of architectural structure
include Broy's work on component refinement (Broy 1992), Brinksma, et
al.'s, work on connector refinement (Brinksma, Jonsson & Orava 1991),
Philipps and Rumpe's recent work on refinement of information flow
architectures (Philipps & Rumpe 1997), and the work described in our own
earlier papers. Also closely related is work by Garlan's group (Abowd,

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps 79

Allen, and Garlan 1995), Luckham's group (Luckham, Augustin, Kenney,
Vera, Bryan & Mann 1995) , and Moriconi and Qian's work on formally
representing the semantics of connectors and relating semantic models at
different levels of abstraction (Moriconi & Qian 1994). But, the emphasis in
all these cases has always been on verification of general refinement
patterns, rather than checking particular steps.

Necula and Lee's work on proof-carrying code and its applications
(Necula & Lee 1996, 1997, 1998) introduced the notion of replacing
verification by checking in the context of compilation. The work described
in this paper can be viewed as generalizing their ideas about code refinement
transformations to architectural transformations, both refinements and
abstractions.

6. CONCLUSIONS

Transformational development of architectures can guarantee that
implementations are correct by restricting the architect to a stock of verified
transformations. But such a correctness guarantee is quite brittle, since use
of a single non-verified transformation voids it. Moreover, if many
transformations are used, and the verification of each is difficult, then
confidence in the correctness of the implementation may be less than
desired. Checking particular refinement steps offers a way of allowing the
architect greater freedom, and of achieving higher levels of confidence that
the implemented architecture has the desired properties.

Our initial approach to checking, based on the idea of proof-carrying
architectures, is especially well suited to the case where the main
requirement is high confidence that the implementation has some specific
property. The property is shown to hold at some abstract level, and every
refinement is produced by application of a transformation known to preserve
the property, or is checked for correctness by making sure that the
transformation preserves the proof of the desired property, or both.

The main limitation of this first approach to checking is that properties
are checked one at a time. We are exploring other approaches to checking
that allow an entire class of properties to be checked at once. One that
seems particularly promising is based on the idea of applying the simplified
technique for proving implementation mapping correctness
(Riemenschneider 1997) to development steps at architecture definition
time. This complementary approach to checking will allow the correctness
of steps to be checked, relative to our strong correctness criterion, rather than
checking one or a few properties of interest. But it can be applied only to
complete architectural descriptions of single structures, not to descriptions of

www.manaraa.com

80 R. A. Riemenschneider

varied families of architectural structures. The proof-checking architectures
approach applies equally well to descriptions of single structures and
descriptions of families .

As mentioned above, our preliminary experiments with proof-carrying
architecture are being performed with the PVS verification system (Owre,
Rushby & Shankar 1992). Improved support for working with proof
carrying architectures, including automated discovery of the gap-filling
proofs, is being implemented as part of the Xform4 system, an enhanced
version of our present architectural correctness checking toolset. Xform,
pronounced transform, is a recursive acronym for "Kform, ,for Qrderly
r.eification5 and maintenance." Xform will support transformational
development and maintenance of architectural descriptions written in
languages such as SADL (Moriconi & Riemenschneider 1997) and ACME
(Garlan, Monroe & Wile 1997).

ACKNOWLEDGEMENTS

This research was supported by the Defense Advanced Projects Research
Agency (DARPA) Information Technology Office (ITO) under contracts
F30602-95-C-0277 and F30602-97-C0040, whose support is hereby
gratefully acknowledged. I would also like to thank Axel van Lamsweerde
for his many helpful comments on the first draft of this paper.

REFERENCES

Abowd, G., Allen, R., and Garlan, D., (1995) Formalizing style to understand descriptions of
software architecture. Tech. Rep. CMU-CS-95-111, School of Computer Science,
Carnegie Mellon University.

Brinksma, E., Jonsson, B., and Orava, F., (1991), Refining interfaces of communicating
systems. Proceedings ofTAPSOFf '91, S. Abramsky and T.S.E. Maibaum, Eds.,
Springer-Verlag, pp. 71-80

Broy, M. (1992), Compositional refinement of interactive systems. Tech. Rep. No. 89, Digital
Systems Research Center, Palo Alto.

Enderton, H. B. (1972), A Mathematical introduction to Logic. Academic Press.
Garlan, D., Allen, R., and Ockerbloom, J. (1994), Exploiting style in architectural design

environments. In Proceedings 2nd ACM SIGSOFf Symposium on Foundations of
Software Engineering SIGSOFf '94, ACM Press, pp. 179-185.

Garlan, D., Monroe, R.-T., and Wile, D. (1997), Acme: An archiectural description
interchange language. In Proceedings ofCASCON '97 . Available at

4Xform is a common mathematical shorthand for transform.
5To reify means to make actual. Thus, reification of software architectures is the process of

turning them into actual implementations.

www.manaraa.com

Checking the Correctness of Architectural Transformation Steps

http://www.cs.cmu.edu/afs/cs/project/abel/www/acme-web/

Hodges, W. (1993), Model Theory. Cambridge University Press.
Lemmon, E. J. (1987), Beginning Logic, seconded. Chapman and Hall.
Luckham, D. C., Augustin, L. M., Kenney, J. J., Vera, J., Bryan, D., and Mann, W. (1995),

Specification and analysis of system architecture using Rapide. IEEE Transactions on
Software Engineering 21, 4, pp. 314-335.

Mates, 0. (1972), Elementary Logic, seconded. Oxford University Press.

81

Moriconi, M., and Qian, X. (1994), Correctness and composition of software architectures. In
Proceedings 2nd ACM Symposium on Foundations of Software Engineering (SIGSOFT
'94), ACM Press, pp. 164-174.

Moriconi, M., Qian, X., and Riemenschneider, R. A. (1995), Correct architecture refinement.
IEEE Transactions on Software Engineering 21, 4, 356-372. Available at
http://www.csl.sri.com/sadl/tse95 .ps.gz.

Moriconi, M., Qian, X., Riemenschneider, R. A., and Gong, L. (1997), Secure software
architectures. In Proceedings of the 19971EEE Symposium on Security and Privacy, pp.
84-93. Available at http: I /www. csl. sri. com/sadl/ sp97. ps. gz .

Moriconi, M., and Riemenschneider, R. A. (1997), Introduction to SADL 1.0: A language for
specifying software architecture hierarchies. Tech. Rep. SRI-CSL-97-01, Computer
Science Laboratory, SRI International. Available at http: I /www. csl. sri. com/
sadl/sadl-intro.ps.gz.

Necula, G. C., and Lee, P. (1998), The design and implementation of a certifying compiler.
Submitted to PLDI '98. Available at http: I /www. cs. emu . edu/ -necula/
pldi98. ps. gz.

Necula, G. C., and Lee, P. (1996), Proof-carrying code. Tech. Rep. CMU-CS-96-165, School
of Computer Science, Carnegie Mellon University. Available at
http://www.cs.cmu.edu/-necula/tr96-165.ps.gz.

Necula, G. C., and Lee, P. (1997) Efficient representation and validation of logical proofs.
Tech. Rep. CMU-CS-97-172, School of Computer Science, Carnegie Mellon University,.
Available at http://www. cs. emu . edu/-necula/tr97-172 .ps. gz.

Owre, S., Rushby, J. M., and Shankar, N. (1992), PVS: A prototype verification system. In
11th International Conference on Automated Deduction (CADE) (Saratoga, NY,), D.
Kapur, Ed., vol. 607 of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp.
748-752.

Philipps, J., and Rumpe, B. (1997), Refinement of information flow architectures. In
Proceedings of the First IEEE International Conference of Formal Engineering Methods
(ICFEM '97), pp. 203-212. Available at http: I /www4. informatik. tu
muenchen.de/papers/icfem_rumpe_l997_Publication . html .

Riemenschneider, R. A. (1997), A simplified method for establishing the correctness of
architectural refinements. SRI CSL Dependable System Archiecture Group, Working
Paper DSA-97-02. Available at http: I /www. csl. sri. com/ sadl/
simplified.ps. gz ..

Riemenschneider, R. A. (1998), Correct transformation rules for incremental development of
architecture hierarchies. SRI CSL Dependable System Archiecture Group, Working Paper
DSA-98-01. Available at http: I /www. csl. sri. com/sadl/
incremental.ps.gz.

Shoenfield, J. R. (1967), Mathematical Logic. Addison-Wesley.
X/Open Company. (1993), Distributed Transaction Processing: Reference Model. Apex

Plaza, Forbury Road, Reading, Berkshire RGl lAX, U.K., November 1993.

www.manaraa.com

Developing Dependable Systems Using Software
Architecture

Titos Saridakis & Valerie Issamy
INRIA/IR/SA, Campus de Beaulieu, 35042 Rennes Cedex, France
{ saridaki, Valerie.Issamy}@ irisa.fr

Abstract: The construction of dependable software systems is recognized as a complex task:
the system developer has to address the usage of fault tolerance techniques in
addition to the design of the functional aspects that are specific to the system. This
paper proposes a framework aimed at easing the development of dependable
systems by providing software designers with a repository of dependable software
architectures. A dependable software architecture shows how to integrate a fault
tolerance technique with a given system so as to make the system dependable.
Furthermore, the dependability behaviors of architectures are formally specified,
which allows to unambiguously interpreting the various fault tolerance techniques
as well as to organize the repository of corresponding architectures into a
refinement-based lattice structure.

Key words: Dependability, formal specification, software architecture, software reuse,
specification refinement.

1. INTRODUCTION

Making a system dependable is recognized as a complex task. In addition
to the treatment of functional aspects that are system-specific, the system's
designer has to cope with the integration of the fault tolerant mechanisms
that satisfy the system's dependability requirements. However, the field of
dependability has reached a sufficient level of maturity to capture its various
ramifications. In particular, there exist a significant number of fault tolerant
mechanisms to handle various dependability needs over different system
platforms. Thus, there is an a priori knowledge of the mechanisms that are
eligible to make a system dependable with respect to the system's

www.manaraa.com

84 Titos Saridakis and Valerie /ssarny

dependability requirements and underlying platform. Furthermore, the
understanding of fault-tolerance mechanisms and associated abstractions
enables a separation of concerns in system design by addressing
independently the design regarding functional and dependability aspects . In
that context, we propose a framework for making a system dependable
through the reuse of appropriate fault tolerance abstractions.

Our work builds on results of the software architecture field (Perry and
Wolf 1992, Shaw and Garlan 1996). A system's software architecture
abstractly describes the system's gross organization in terms of components
(i.e., units of computation) and connectors (i.e., units of interaction). This
allows the practical use of formal methods to define the behaviors of
components and connectors, and to carry out complementary system
analyses. Our framework for the construction of dependable systems consists
of characterizing dependable software architectures that are generic with
respect to the base functional architectural elements (i.e., functional
components and connectors among them). The dependability behaviors of
the architectures are further defined formally, which enables their
unambiguous interpretation, as well as to organize the set of dependable
architectures according to a refinement relation over their behavior.
Practically, the developer is provided with a repository of dependable
architectural patterns from which he may select the one that meets the
dependability requirements of his system. Ultimately, the fault tolerance
constituents of a dependable architecture may correspond to implemented
mechanisms. Such mechanisms can be directly integrated with the system's
functional structure according to the structure shown by the dependable
architecture.

This paper is organized as follows. Section 2 details our approach to the
formal specification of dependability behaviors. Section 3 introduces our
framework for making systems dependable, presenting a repository of
dependable software architectures. Finally, we conclude in Section 4,
summarizing our contribution and comparing it with related work.

2. FORMAL SPECIFICATION OF DEPENDABILITY
BEHAVIOR

To be practically beneficial for software development, a formal
framework should satisfy two conditions:
1. It should be easy to understand and use.
2. It should be expressive enough to capture all (or at least a big majority)

of the targeted properties (i.e., properties relating to dependability in our
case).

www.manaraa.com

Developing Dependable Systems Using Software Architecture 85

Both these conditions are satisfied by an extension of predicate logic with
the precedence relation (Lamport 1978) (binary operator«<») specifying a
partial order in which predicates are verified. Based on the precedence
relation, we define the relations eventually (unary operator « 0 ») and
in the past (unary operator « V ») which denote that a predicate will be
verified in the future or was verified in the past. The extended predicate
logic provides comprehensible and easy to employ means for combining the
constraints on system states that should be reached after a failure with the
partial order of actions that should be performed to reach these states. Notice
that the use of temporal logic relations is not indispensable for modeling the
temporal precedence of the predicate. Indeed, means have been invented like
history lists, which are employed by a number of approaches (e.g., see
(Chrysanthis and Ramamritham 1994) and (Stoller and Schneider 1996)) in
order to avoid temporal relations for ordering the occurrences of events in a
system and to remain purely first order logic. However, we use them because
we believe that they render the formulas more legible. The formal
framework we use is presented hereafter, followed by our approach to the
specification of system behaviors with respect to dependability, introducing
the specification of dependability properties and a refinement relation over
them.

2.1 Formal framework

A system is a set of variables, which can be assigned different values
according to the system specifications. A state of the system is a mapping of
variables to values, where the values of some variables can be undefined.
When the values of one or more variables lay outside the range defined in
system's specifications, afailure is said to occur. An execution of a system is
a partially ordered set of system states, where one state in the set is
distinguished as being the initial state (i.e., the state preceding all other states
in the set). An objed of the system is an entity having some state. Hence, a
system can be seen as a set of objects. An action is a state transition, which
can be caused by some internal object computations, or by some 1/0
operation. Actions are associated with objects and we assume deterministic
actions, i.e., given the specifications of an object, an object state and an
action on that state, the resulting state after performing the action is uniquely
defined. However, we do not constrain the choice of the next action to be
performed, which can be a random choice among different alternatives.
Hence, although actions are deterministic, the execution of an object and,
consequently, the execution of the entire system are non-deterministic. In

1 The term object signifies a logical entity and not entities specific to programming languages
(e.g. C++ objects).

www.manaraa.com

86 Titos Saridakis and Valerie /ssarny

this context, an event is the execution of some actions or the reach of some
state. In the remainder of this document, we use the following notations:
_ Objects are denoted by the first five lower-case Greek letters, primed or

followed by a subscript value (e.g., a , etc).
cr, primed or followed by a subscript value, denotes a system state. For
object states, we prefix the object name (e.g., a .cr). We neglect the
object name when it is obvious in a given context.
"E denotes system specifications. For object specifications, we prefix the
object name (e.g., a."E).
X denotes a system execution which is a partially order set of system
states. When followed by the superscript c, it denotes a failure-free
execution.

- Actions are written in lower-case italics followed by a list of arguments
in parentheses. To distinguish among actions of different objects, we
prefix the object name to the action (e.g., data)). We neglect
the object name when it is obvious in a given context.

The structural elements of the system model presented above do not
suffice to describe the properties of a specific system (i.e., the relations
among constituent objects, their interactions, their invariants, and their
constraints). For this, a set of predicates is needed to capture the essential
properties of system entities. This set of predicates should be minimal in
order to be easy to use and understand. We present below a set of predicates
that capture the fact that the system is in a given state, and the execution of
110 actions. Notice that this set of predicates is not unique; another set of
predicates, richer or more frugal, can be chosen if it facilitates the system
programmer' s reasoning (e.g., additional predicates that can be defined are
init, exit, begin, commit, and abort, to describe the actions related to object
initialization and termination, or the actions related to transactional
properties). In the remainder of this document, we use the following
predicates:
- The predicate expressing that a system is in state cr is introduced by the

unary operator [],i.e., [cr] is true when the system is in state cr.
Similarly [a.cr] is verified when object a is in state cr.

- The predicate export expressing the 110 action performed by an object
a when it sends to an object the data d. The data d sent, are a
function of some a's state preceding the 110 action, and if some 's
state is a function of data d, the export action precedes this state. More
formally, the predicate is defined as:
export(d)= (3a.cr: V[a.cr] "d = f(a.cr))" = g(d) =>

- The predicate import expressing the 110 action performed by an object
when it receives the data d sent by object a. The export of data d

www.manaraa.com

Developing Dependable Systems Using Software Architecture 87

from a preceded, and some state after receiving dis a function
of the received data. More formally, the predicate is defined as:
import(d)= Vexport(a, A = g(d) A

Notice that the predicates export and import correspond to the
and actions respectively.

2.2 Dependability properties

Given the above formal framework, we are able to define dependability
properties, which serve to characterize dependability behaviors of software
architectures. Let us point out here that the dependability properties
introduced in the following, reflect more the authors' perspective on the
issue rather than a widely acknowledged characterization. Alternative
specifications of dependability behaviors can be envisioned. In the same
way, there may exist alternative interpretations for the terms we use to
qualify the dependability properties. Here, we base our work on the fault
tolerance perspective introduced by Laprie (Laprie 1992).

The important point we want to make with respect to our approach to the
specification of dependability properties is that it enables us to characterize
the various behaviors of a system in the presence of failure, which are
attainable using existing fault tolerance techniques. The set of these
behaviors may further be expanded as new fault tolerance techniques
emerge. In the remainder, we present the specification of some
representative dependability properties so as to give the reader, the intuition
of how dependability properties are characterized in general. Basically,
dependability properties fall into two groups:
l. Abstract properties specified in terms of system states, which are defined

independently of any fault tolerance technique. They serve to
characterize the dependability behavior of an overall architecture, when
this behavior is too abstract to associate a specific fault tolerance
technique with it.

2. Concrete properties specified in terms of system actions, whose
definition is closely related to some fault tolerance technique. They serve
to characterize the dependability behaviors associated with architectural
elements, with respect to a given fault tolerance technique.
Let us first give abstract properties defined at the state level. The most

abstract dependability property, simply qualified as Dependability, ensures
that a system makes progress despite the occurrence of failure. The Safety
property defines that, after a failure, the system should enter an error-free
state, which is some subset of a state, reached before the occurrence of the
failure. The basic characteristic of this abstraction is the removal of the

www.manaraa.com

88 Titos Saridakis and Valerie lssarny

failure products. The specification of the Availability property indicates that
the state reached after a failure is a state contained in some failure-free
system execution. The basic characteristic of this abstraction is the repair of
failure effects. Another specification is the Reliability property, which
defines that the state reached after a failure includes a state that should have
been reached in the absence of failures . The basic characteristic of this
property is the transition to the expected state despite the occurrence of
failures . More specific dependability properties are the ones of Detection and
Fmask where the former characterizes failure detection and the latter the
system capability to mask the occurrence of failures . Let faulty be the
predicate expressing that a system state contains an erroneous mapping of
variables to values, i.e., faulty(a) is true when some of the variables of cr
have been assigned values not defined by system's specifications. Similarly
faulty(a.cr) is verified when the object state a.cr contains an erroneous
mapping from variables to values.

Table 1: The fonnal specifications of some dependability properties.

Dependability (S) =([cr] /\faulty(3 cr' e r.: [cr] < [cr']

Safety(S) = ([cr] A faulty((3 cr',cr" e r.: ([cr] < [cr'])" ([cr"] < [cr])
" (cr' k cr"))

Availability(S) = ([cr] /\faulty((3 cr' e 1: : ([cr] < [cr'])" (cr' e Xc))

Reliability(S) = ([cr] A faulty((3 cr',cr" e 1: : ([cr] < [cr'])"
(cr" e Xc) " ('if crP : [crp] < [cr] [crp] < [cr"]) " (cr" ;;;:;; cr'))

Detection(S) = [cr] A faulty(cr)

Fmask(S) = "d cr e r.: (3 crr: faulty(crc) " ([cr] < [crr])) (3 cr' e 1: :
([crr] < [cr']) " (cr ;;;:;; cr'))

DetectionObj(a) = (3)
<export(a, E,

FmaskObj(a) = ([a.cr] Afaulty(a.cr)) (3 : =s a .r." [a.cr] <
"3a.cr' : (([a.cr'] < [a.cr])

(3 : = a .cr'" <

The upper part of Table I gives the specifications of the aforementioned
dependability properties, for a system S. The properties in the upper part of
Table 1 characterize only the system state that is reached after a failure

www.manaraa.com

Developing Dependable Systems Using Software Architecture 89

occurrence. They do not make explicit the system objects that are involved
in fault treatment nor the needed interactions among them. This is captured
by concrete properties, defined at the action level. For instance, the
Detection and Fmask properties may be respectively revised into the
specification of DetectionObj and FmaskObj. The specification of the former
expresses the fact that a system object transmits a message to some other
object in the system, after a failure occurred. This message contains the
information of the occurred failure, which implies that the transmitting
object captures this knowledge in its state. Similarly, the specification of the
latter expresses the fact that for a failed object, there exists an equivalent
object (not necessarily a different one) which reaches a correct state that
follows all the failed object's states preceding the failure. In other words,
this means that the state that would have been reached by a given object in
the absence of failures, is eventually reached even if a failure occurs on the
object in question.

The formal expressions that describe the aforementioned properties are
given in the lower part of Table 1. Notice that the interaction events are
expressed by the export and import predicates, and their parameters define
the exact interaction pattern between the two objects indicated by the
predicate parameters. Object E is used to signify any object of the
environment. In addition, the equivalence of object specifications, noted =s,
is defined with respect to the observable behavior of objects, i.e., the
specifications of two objects are equivalent if the sequences of import() and
export() actions performed by the objects are equivalent.

As more concrete examples, let us consider the enforcement of
dependability for an object, using a replication technique. Achieving
replication consists of replicating an object into a group of objects and
making the group behave as a single object from the perspective of the
group's environment. The behavior of the objects group may differ
depending on the replication technique (i.e., active, semi-active, passive) that
is used. The formulas of Table 2 characterize the dependability properties for
the active and passive replication techniques, where id(d) uniquely identifies
the data d among all the data exchanged in the system. The id function is
defined so that id(d) = id(d') if d and d' are exported by objects having
equivalent specifications and the export actions correspond in the sequences
of the 110 actions performed by the objects.

2.3 Refinement relation

Based en the proposed approach to the specification of dependability
properties, we are able to define a refinement relation over these properties.
This relation allows refining an initial dependability requirement into more

www.manaraa.com

90 Titos Saridakis and Valerie Issarny

Table 2: Fonnal specification of active and passive replication

Active(<X, N) = 3 .. . , <XN.J : G = {<X, <XJ. .. . , <XN.d 1\ Replication(G) 1\

Filter(G) 1\ AtomicDelivery(G)

Replication(G = {<Xi} i=J..N) = "i <Xi, <X; E G : ((<lj.L =s <X_; .L) 1\

-.(faulty(<lj.L) =>faulty(<X_;.L)))

Filter(G = { <XiL=J..N) = 3 (((Uj, <Xj E G) 1\ import(<Xi, di) 1\

import(<Xj, di) 1\ (id(di) = id(dj))) =>
(3! do) 1\ (id(do) = id(di) = id(dj))))

AtomicDelivery(G = { <Xdi=J..N) = (3 <X E G : import(£, <X, d) =>
("i <Xi E G : import(£,<lj, d))) 1\ (3 <X E G :
(import(£, <X, d1) <import(£, a, d2)) => ("i <Xi E G :
(import(£, <Xi, d1) <import(£, <lj, d2))))

Passive(<X) = 3 y, : Replication({<X, 1\ StableStorage(<X, y) 1\

Restore(<X, , y)

StableStorage(<X, y) =import(<X, y, f) 1\ (f = a.cr) 1\ ([<X.cr] <export(a, y, f))
1\ -.(3 y.cr: faulty(y.cr))

Restore(y) = (3 a.cr' : (([a.cr'] < [a.cr]) 1\ import(y, 1\ (f = a.cr')))
1\ ("i £, d: (([a.cr] <export(£, <X, d))=> d)))

concrete dependability properties, which ultimately correspond to the
behavior of fault tolerance mechanisms for which an implementation is
available. Considering two dependability properties PJ(S) and PiS), the
latter is a refinement of the former if P2(S) => PJ(S). For illustration, Figure 1
depicts the refinement relation that holds over the dependability properties
introduced in the previous subsection. In the figure, each property P is
represented by a box that contains a set of boxes to denote alternative correct
refinements of P, and each of these sub-boxes points towards a set of
properties whose conjunction is a correct refinement of P.

3. REPOSITORY OF DEPENDABLE SOFTWARE
ARCHITECTURES

The proposed specification of dependability properties provides means to
unambiguously describe the dependability behavior of an architecture, but it
is of limited help from the standpoint of easing the development of
dependable systems. To facilitate their use, we propose to attach to each

www.manaraa.com

Developing Dependable Systems Using Software Architecture 91

dependability property, the structure (i .e., the software architecture) of the
corresponding system with respect to the fault tolerance technique that is
used to enforce the given property.

Dependability

/I

/ ,,
Availability Reliability Safety

AI

/
Detection Fmask

I

DetectionObj FmaskObj

I/ '

,/
Active Passive

lA

/
At.Delivery Filter Replication St. Storage

Figure]: Some refinements of the dependability property

The refinement relation over dependability properties provides the
adequate base ground to organize the repository of dependable software
architectures. The repository is organized as a lattice structure defined
according to the refinement relation, and each node stores the acquired
knowledge about a given dependability property. For some property P, this
knowledge includes: (i) the property name, (ii) the formal specification of

www.manaraa.com

92 Titos Saridakis and Valerie /ssarny

the dependability property, (iii) the set of dependability properties (through
references to adequate nodes) into which P may be refined, and (iv) the
dependable software architecture Ap, associated with P.

The repository may be depicted in a way similar to the graph given in
Figure 1 except that each node now embeds the description of the
dependable software architecture corresponding to the property defined by
the node. The dependable architecture corresponding to an abstract property
is a black-box component embedding the system since the property is too
abstract to have a fault tolerance technique associated with it. On the other
hand, the architecture defined for a concrete property exposes the system's
structure with respect to some fault tolerance technique. The following
subsection further elaborates on the description of dependable architectures,
which, as shown in Subsection 3.2, may be derived from the specification of
dependability properties. Subsections 3.3 and 3.4 then introduce the main
functions used for the management of the architecture repository; they relate
to the introduction and retrieval of a dependable architecture with respect to
a given property.

Prior to detailing the description of dependable software architectures, let
us note that we concentrate here on the definition of architectures with
respect to the fault tolerance technique that is used to enforce a given
dependability property. The proposed architectural description may be
enriched when there is an available mechanism to implement the embedded
fault tolerance technique. For instance, the architectural definition could then
include the specification of the component's interaction protocol (e.g., using
Wright (Allen and Garlan 1997)) and of the component's functional
interface. In the same way, the definition of connectors could be introduced
so as to detail the interaction protocol used by the mechanism. In general, the
description of a dependable software architecture includes at least the
specification of the dependability behavior of its components, and may be
extended using the capabilities of existing ADLs (Architecture Description
Languages). In particular, a dependable architecture may be defined using
ACME (Garlan et al. 1997) so as to exploit different ADLs and thus allow
various architecture analyses .

3.1 Dependable software architecture

To be helpful to system developers, the description of dependable
architectures must make clear how to compose a dependable system from a
base system. The components of a dependable architecture may be of either
of the two following kinds: Generic, in which case the component
corresponds to the initial system that is to be made dependable, or
Dependable, in which case the component is specifically introduced for

www.manaraa.com

Developing Dependable Systems Using Software Architecture 93

enforcing some dependability behavior. Then, given a software architecture
providing some concrete dependability property, a system can be integrated
with the corresponding fault tolerance technique by mapping the system onto
the generic components. We propose the following description for
dependable architectures

Dependable Architecture: Name =
Dependability:

--Architecture's dependability property-
Components:

{Component Name: TypeComp: -- Dependability behavior--} +
Configuration:

-- Description of a configuration through bindings among
components --

where the specifications of dependability behaviors and properties are
expressed according to our approach discussed in the previous section.

Table 3: Architectural descriptions associated with the Replication, Filter, and
AtomicDelivery properties

Dependable Architecture : Replication =
Dependability : Replication(G);
Components : G[i: l..N] : Generic: Replication(G);
Configuration : nil ;

Dependable Architecture : AtornicDelivery =
Dependability : AtornicDelivery(G);
Components: G[i: l..N]: Generic: (i:l..N):

(import(£, G(i), \fj E [1, N] :import(£, GG), d))
1\ ((import(£, G(i), d)< import(£, G(i), d'))

(\fj E [1, N] :import(£, GG), d)< import(£, GG), d'));
Configuration: (i: l..N) : AtornicDelivery.Import to G(i).lmport;

Dependable Architecture : Filter =
Dependability: Filter(G);
Components: G[i: l..N]: Generic: TRUE;

F: Dependable: (i,j E [1, N] 1\ import(G(i), F, d) 1\

import(GG), F, d') 1\ (id(d) = id(d')))
(3 ! export(F, £, d"): (id(d") = id(d)));

Configuration : (i: l..N) : G(i).Export to F.Import;
F.Export to Filter.Export;

www.manaraa.com

94 Titos Saridakis and Valerie lssarny

A dependability behavior may simply be TRUE if there is no
dependability requirement associated with the architectural element. The
type of a component identifies whether the component is generic or
dependable. We further assume that each architectural component (including
the architecture itself) has an Import and an Export port. For illustration,
Table 3 gives the descriptions of the architectures associated with the
Replication, Filter, and AtomicDelivery properties. Let us remark that the
proposed architectural descriptions expose only structural information
regarding fault tolerance. In particular, only bindings dedicated to fault
tolerance are characterized.

Considering the proposed description of dependable architectures, a
system S may be modified so as to enforce a given dependability property P
by mapping S onto each generic component of the architecture associated
with P while ensuring the declared dependability behavior, and providing an
adequate implementation for the dependability-specific components.
Alternatively, the repository of dependable architectures may further be
exploited to find out more refined architectures, which possibly correspond
to available fault tolerance mechanisms.

3.2 Deriving dependable architectures from properties
specifications

Ideally, one would like to have a systematic way to derive the structure
of a dependable architecture from its associated formal specification.
Although not direct, the proposed specification of dependability properties
embeds the needed information. Let us take a close look at dependability
properties. From a property specification, we are able to infer:
1. the objects involved in the enforcement of the property, which are all the

objects appearing in the specification
2. the objects' behaviors with respect to dependability, which are given by

part of the specification that refers to the object
3. the needed interactions among objects, which are given by part of the

specification expressed in terms of import and export predicates.

To systematically infer the above information and hence a dependable
architecture, from a property specification, we propose to structure the
specification of dependability properties accordingly. For ObjectType stating
whether the object is generic or not, and parameters VarName being of type
integer, Table 4 gives the form of the specifications of a property P,
followed by an illustration of its employment using as an example the Filter
property.

www.manaraa.com

Developing Dependable Systems Using Software Architecture

Table 4. The fonn of property specification and an example

?(objects {ObjectName: ObjectType}*; lnd {VarName}+) =
objects : { ObjectName : ObjectType ; }+
behaviors : { ObjectName : -- formula -- ; }+
configuration : -- formula -- ;

Filter(G: Generic[I, N]) =
objects : F : Dependable ;
behaviors: (i: l..N) : G(i): TRUE;

95

F: (import(G(i), F, d) A import(G(j), F, d') A id(d) = id(d')) =>
(3 ! export(F, e, d") : (id(d") = id(d)));

confi2uration: ((i: l..N) : import(G(i), F, d)) 1\ export(F, e, d');

Intuitively, we can infer from the specification of the Filter property that
the corresponding dependable architecture is made of the set of generic
components G(i) and of the dependable component F. In addition, the
formula given in the configuration part enables to deduce interaction among
components based on the semantics of the import and export predicates:
import(d) as well as export(a, implies that the Export port of a
is bound to the Import port of further recall that e is used to signify
any object of the environment. Thus, import(a, e, d) (resp. import(e, a, d))
signifies that the Export (resp. Import) port of a is bound to the
architecture's Import (resp. Export) port. The same applies for the export
predicate. Precisely, the inference of the logical formula and of the software
architecture corresponding to a given dependability property is achieved as
follows. Let P be defined as:

?(objects 0;, I:s;i::;n;var ...) =
objects: 0';, 1:::; i:::; n' ;
behaviors : 0; : B; , I :::; i :::; m ;
configuration : B ;

The corresponding logical formula is equivalent to: 3 ... , O., 3 0'., ... ,
0' n' : (B 1\ (1\i=l..m B;))

Let us remark here that the proposed specification of properties may lead
to extend the original specifications. This is exemplified by the new
definition of Filter , which extends the original one with the formula stated
in the configuration part. As another example, let us consider the
AtomicDelivery property. The embedded formula 3 a E G : import(e, a, d)
=> ('if a.; E G : import(e, a.;, d)) relates to the behavior of the as. It also
relates to the architecture's configuration: all the as are accessible by objects
of the environment. Thus, this formula must appear in two parts of the

www.manaraa.com

96 Titos Saridakis and Valerie /ssarny

property specification. However, the formula for configuration is simplified
into V <Xi E G : import(£, <X;, d). fu general, we do not see the required
modification of property specification as a major drawback given the
resulting benefit for the production of architectural descriptions.

Let us now examine the inference of the architecture associated with P().
It consists of defining the interpretation of each constituent of the property
specification in terms of architectural description. The treatment of the
objects and behaviors parts of the specification is direct: each object given
in the objects lists translates into an architectural component whose type
(i.e., dependable or generic) is the one declared in the embedding list; and
each object behavior given in behaviors is attached to the corresponding
architectural component. The interpretation of the configuration part is less
direct, it requires to interpret each element of the corresponding logical
formula. Precisely, a formula defining a configuration is of the form: /\; P;
where each P; is expressed as either an import or an export predicate, whose
parameters may possibly be universally quantified. Thus, each P; is
translated into bindings among components according to the parameters of
the import or export predicates.

3.3 Updating the repository

Updating the architecture repository requires providing functions for the
addition and removal of dependability properties. However, since the
treatment of the latter is quite straightforward, we address only the former in
the following. The introduction of a dependability property P leads to insert
the corresponding node N within the repository, according to the refinement
relation over properties.

Inserting a property: Let us use the following notations:

- P denotes the set of dependability properties.
N denotes the set of nodes of the repository.
Prop(N) is the function that returns the property defined by node N.
AncN(P) denotes the set of immediate ancestor nodes of N, with respect
to the dependability property P.
DecN denotes the set of immediate successor nodes of N.
POvt{'X) denotes the power-set of X.

Let us first consider the introduction of a property P refining a
property of the repository (i.e., P needs not to be conjuncted with another
property). For instance, if we consider Figure 1, P may be Reliability but not
Fmask, which has to be conjuncted with Detection to be a refinement of an
existing property. Given our assumption, the node N for property P must be

www.manaraa.com

Developing Dependable Systems Using Software Architecture 97

introduced within the repository in a way that guarantees the following two
conditions:

Cl(P, AncN(P)) = '1/N'E AncN(P) : (P Prop(N')) 1\ --{3 N"E N-{N'} :
(P Prop(N") Prop(N))

C2(P, DecN) = 'II N' E DecN: ((Prop(N') P) 1\ --,(3 N" E N - {N'}
(Prop(N') Prop(N") P)))

Let us now consider the introduction of a property P that refines an
existing one, when conjuncted with a set of complementary properties. We
require all these properties to be inserted in the repository at once, using the
following Insert function. Given a set of properties {P;}i=t..n to insert and
the current nodes of the repository, the function returns the ancestor nodes
that are common to all the Nis defining the Pis, with respect to the property
1\i=t..n Pi, and the set of successor nodes for each Ni :

Insert: POWP) x POWN) P x POWPOWP))

Insert({P;}i=l..n• N) = ((\=t..nAncN;(/\j=l..n Pj) , {DecN;}i=t..n)) if
Cl(/\i=l..n h (\=t..nAncN;(/\j=t..n Pj)) and
ViE [1, n] : C2(Pi, DecNi)

When a node defining a concrete property P is created within the
repository, the node should be completed with its corresponding architecture
description. This is realized by inferring the architecture description from the
property specification as discussed in the previous subsection.

Correct architecture refinement: Up to this point, we have seen that the
introduction of a property within the repository is achieved according to the
refinement relation over dependability properties. Let us consider two
properties P 1 and P2 such that P2 refines P 1• From the developer's
standpoint, this means that the architecture A2 associated with P2, may be
safely used to enforce property P 1• Let us now assume that the architecture
A1 associated with P 1 was originally selected to make a system dependable,
but was later replaced by A2 (e.g., such a replacement may be due to the
availability of the mechanisms embedded by A2). The replacement of A1 by
A2 is practical only if both architectures have compatible structures, i.e., A2

exposes the structure of A 1 's architectural elements. In this way, the later
replacement of a dependable architecture by an architecture enforcing a
stronger property does not impact on the design decision made so far. Thus,
when a property P2 refines a property we require the architecture A2

www.manaraa.com

98 Titos Saridakis and Valerie Issarny

associated with P2, to be compatible with the architecture A1 associated with
P1• We say that A2 is a correct refinement of A1 (with respect to their
architectural structures). Let us notice that in the case of architectures
corresponding to available mechanisms, the refinement relation over
architectures could additionally be constrained according to the definition of
(Moriconi et al. 1995).

Let us first consider the simplest case that is when P2 corresponds to a
single node: the corresponding architecture A2 is a correct refinement of an
architecture if P2 refines the dependable property associated with and
if A2 defines a set of sub-architectures that maps onto the components of A1•

Let us use the following notations:
- An architecture A is defined by the triplet (P A• CA, BA) .
- P A denotes the dependability property of A.
- CA denotes the components of A.
- BA = { (C;, C; ') }i=J..n, C;, C;' E CA, defines the architectural bindings

among A's components.
- Comp : P0£.1-(B) P0£.1-(C) is the function that returns the set of

components embedded in a given set of bindings.
- A denotes the set of dependable architectures.
- Beh : P x C P is the function that returns the dependable behavior of a

given component belonging to the specification of a given dependability
property.

We introduce the following function to identify whether an architecture AR is
a correct refinement of an architecture A, with respect to the architectures'
structures:

Refine : Ax A BOOL

Refine(A, AR) = 3 total function M : CA POW BAR) such that M is I -to-1
and onto, and
V C, C' E CA : (C::;; C'" Comp(M(C)) n Comp(M(C')) = 0, and
V C E CA :Dependability(? AR, M(C)) => Beh(P A• C)

Dependability gives the dependability behavior of the sub-architecture given
by a set of bindings among components:

Dependability : P x P0£.1-(B) P

Dependability(?, B) = (/\Ci e comp(BJ Beh(P, Ci)) 1\ 1\'I(C. C) e s(import(C, C',
d)=> export(C, C', d))

Let us now consider the case where a conjunction of dependability
properties Pi. 1 i N, is introduced as a refinement of an existing property
P. We must define the software architecture A that results from the

www.manaraa.com

Developing Dependable Systems Using Software Architecture 99

combination of the set of architectures Ai, 1 i N, associated with each
property Pi, and then verify that A is a correct refinement of the architecture
associated with P, according to the definition of Refine. We have seen that
the components of an architecture subdivide into generic and dependable
components. Let us further recall that generic components correspond to the
same functional component that is the software system to be made
dependable. Henceforth, the generic components of the Ais correspond to the
same components. Thus, generic components are mapped onto the same
components in the architecture A, and their dependable behavior is the
conjunction of the behavior declared in each of the Ais for generic
components.

On the other hand, the dependable components of an architecture are in
general specific to this architecture. Thus, the dependable components of A
are the union of the dependable components of the Aj. However, there are
two cases where dependable components of distinct architectures may have
to be merged into a single component. One of these cases is exemplified by
the architectures used to enforce Passive replication: they object is shared by
the architectures enforcing StableStorage and Restore. In general, this case is
detected through the definition of the conjunction of properties, which may
explicitly share objects. The other situation where dependable components
of distinct architectures may be merged is when there is a relation of logical
implication between each pair of associated dependable behaviors. Here, we
can keep only the dependable component that enforce the strongest
dependability behavior among the set of components. So far, we have stated
how to infer the set of generic and dependable components of an architecture
resulting from the composition of some architectures. The set of bindings
among these components are further the ones that are specified for the
corresponding components within the Ais.

3.4 Using the repository

Using the architecture repository for the construction of a dependable system
consists of retrieving the software architecture associated with the
dependability property that is targeted for the system. Let .l be the undefined
node. The retrieval function is defined as Retrieve : P N u .l with:

Retrieve(P) = N if (N e N) 1\ (Prop(N) P) 1\ ---,(3 N' e N :
(Prop(N) Prop(N') P)), or

.l if ---.(3 N e N : (Prop(N) P))

The node N returned by the Retrieve function allows us to identify all the
dependable architectures that are eligible to make a system dependable with

www.manaraa.com

100 Titos Saridakis and Valerie Issamy

respect to the given dependability property. These architectures are all the
architectures defined by the nodes of the sub-lattice whose root is N. Some
of the eligible architectures may possibly be combinations of architectures
when properties of the sub-lattice are refined into a conjunction of
properties. Architecture combination is achieved according to the approach
discussed in the previous subsection. Given eligible architectures, it is up to
the system developer to select the one that is the most appropriate for the
system. Several factors may influence the selection process. Among the most
prominent factors, we foresee the existence of implementation for all or part
of the dependable components embedded in the architectures. At this time,
the selection of the most appropriate dependable architectures among the set
of eligible ones is left upon the system developer.

We are currently examining solutions to help the developer in the
selection process by coupling the architecture repository with an
implementation repository. The benefit of our proposal for the construction
of dependable systems lies in providing a repository of dependable
architectures whose behaviors are precisely characterized using temporal
first order logic. This characterization allows: (i) to infer an architectural
description from a property specification, (ii) to retrieve an architecture
providing the dependability property targeted for a given system, and (iii) to
use an architecture selected from the repository to know how to extend a
base non-dependable system with appropriate fault tolerance mechanisms.
However, we cannot expect system developers to carry out the proofs
appertained to the management of the repository of dependable architectures.
Tools must be provided to assist this management. These tools include:
- A tool for the inference of a dependable architecture from the

specification of a dependability" property.
- A tool for updating the repository and retrieving architectures. This tool

subdivides into a tool for classical database management, and a theorem
prover for implementing the database functions that are defined over
dependability properties.
We are currently implementing the first tool as well as the one relating to

database management, their features are direct from the presentation we
made in this paper. From the standpoint of providing a theorem prover, we
are currently examining existing provers (e.g., (Manna et al. 1994)) so as to
reuse an existing one for our framework.

4. CONCLUSIONS

This paper has presented a framework aimed at easing the construction of
dependable systems. The framework relies on the formal specification of

www.manaraa.com

Developing Dependable Systems Using Software Architecture 101

dependability properties, using temporal first-order logic. The proposed
specification of dependability properties allows to infer the dependable
software architecture corresponding to a property, which characterizes the
structure of a dependable system with respect to the fault tolerance technique
enforcing the given property. The structure of a dependable architecture
further makes clear how to compose a dependable system from a base
system. Formal specification of dependability properties enables us to
provide a repository of dependable architectures, which is organized
according to the refinement relation holding over dependability properties.
Our proposal relates to a number of research efforts of the software
engineering domain. In particular, it builds on results in the area of
architecture description languages, and of software reuse.

From the standpoint of existing ADLs, there have been many proposals
based on formal techniques. However, these proposals aim at
complementary goals to ours. For instance, objectives for ADLs based on
formal techniques include comparison of architectural styles using the Z
notation (Abowd et al. 1995), reasoning about interaction patterns of
architectural styles using a CSP-based calculus (Allen 1997), comparison of
architecture designs and proving properties with regard to a specific
architecture using the chemical abstract machine model (Inveradi and Wolf
1995), verification of reconfiguration correctness of architectures using
graph grammars (LeMetayer 1996), definition of executable prototypes for
architectures using partially ordered set of events (Luckham et al. 1995), and
correct stepwise refinement of architectures using first-order logic (Moriconi
et al. 1995). The last reference appears to be the most closely related to our
proposal. However, in this reference, the architectural refinement relates to
preserving topological constraints of the architectural elements. On the other
hand, we are concerned with characterizing the semantics of an architecture
from the standpoint of provided dependability properties. This
characterization further serves to provide developers with a repository of
dependable architectures that show how to make a base system dependable,
using a fault tolerance technique enforcing the targeted dependability.

There is a significant amount of work in the area of software reuse
(Krueger 1992). In this subsection, we concentrate on two research efforts on
this topic: systematic component retrieval, and software reuse for
customizing execution environment. To our knowledge, systematic
component retrieval based on a specification of components using first-order
logic has firstly been experimented in the Inscape environment (Perry 1989).
This environment belongs to the family of development environments that
can be seen as ancestors of the ones based on ADL, i.e., applications are
described using a module interconnection language which is roughly an

www.manaraa.com

102 Titos Saridakis and Valerie /ssarny

ADL without the connector notion. The Inscape environment demonstrated
that it was feasible to use the specification of components in terms of pre
and post-conditions to guide complex system design but also to retrieve
component implementations in a systematic way. Successors of this proposal
then enhanced the practicality of systematic software retrieval. A software
retrieval tool that may be used in any development environment is presented
in (Rollins and Wing 1991). This capacity is further enhanced in (Zaremski
and Wing 1997), which provides a framework to support the definition of
various refinement relations. Efficiency of software retrieval is addressed in
(Mili et al. 1997), which proposes to organize the software database
according to a refinement relation over software specifications. This work
and its more recent version (Jilani et al. 1997) supply, moreover, a retrieval
function that returns a software component approaching a specification if
there is no available component matching the requested specification. The
proposal presented in (Schumann and Fischer 1997) also addresses
efficiency of the software retrieval process; it consists of using rejection
filters based on signature matching and model checking technology to rule
out non-matching components as early as possible. Our proposal builds on
the above results and applies them to the domain of retrieving a software
architecture with respect to a requested dependability property instead of a
functional one.

Customizing execution platforms so as to adapt to application needs is
now a growing concern in the software engineering domain. This has led to
the definition of notations to ease the development of customized systems
using existing software. Examples of environments offering such a facility
can be found in (Batory and O'Malley 1992, Hiltunen and Schlichting 1995,
Stroman and Agha 1994). These proposals differ from ours in that we are
addressing customization of execution platforms based on the refinement of
requested dependability properties, while they provide a way to construct
such platforms based on its adequate structuring. Thus, these environments
could be conveniently exploited in our framework to take over the
construction of the dependable system after the selection of the adequate
dependable architecture.

REFERENCES

Abowd G. et al. (1995) Formalizing Style to Understand Descriptions of Software
Architecture. ACM Transactions on Software Engineering and Methodology, 4(4):319-
364.

Allen R. (1997) A Formal Approach to Software Architecture. PhD Thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA, USA.

www.manaraa.com

Developing Dependable Systems Using Software Architecture

Allen R. and GarlanD. (1997) A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213-249.

103

Batory D. and O'Malley S. (1992) The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM Transactions on Software Engineering and
Methodology, 1(4):355-398.

Chrysanthis P. and Ramamritham K. (1994) Synthesis of Extended Transaction Models using
Acta. ACM Transactions on Database Systems, 19(3):450-491.

Garlan D. et al. (1997) ACME: An Architecture Interchange Language. Technical Report,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, USA.

Hiltunen M. A. and Schlichting R.D. (1995) Constructing a Configurable Group RPC Service.
Proceedings of the 15th IEEE International Conference on Distributed Computing
Systems, pages 288-295.

Inverardi P. and Wolf A. L. (1995) Formal Specification and Analysis of Software
Architectures Using the Chemical Abstract Machine Model. IEEE Transactions on
Software Engineering, 21(4):373-386.

Jilani L. L. et al. (1997) Retrieving Software Components that Minimize Adaptation Effort.
Proceedings of the IEEE International Conference on Automated Software Engineering,
pages 255-262.

Krueger C. W. (1992) Software Reuse. ACM Computing Surveys, 24(2): 131-183.
Lamport L. (1978) Time, Clocks, and the Orderings of Events in a Distributed System.

Communications of the ACM, 21(7):558-565.
Laprie J. C. (1992) Dependability: Basic Concepts and Terminology. Dependable Computing

and Fault-Tolerant Systems, Springer-Verlag.
LeMetayer D. (1996) Software Architecture Styles as Graph Grammars. Proceedings of the

ACM SIGSOFT'96 Symposium on Foundations of Software Engineering, pages 15-23.
Luckham D. C. et al. (1995) Specification and Analysis of System Architecture Using Rap ide.

IEEE Transactions on Software Engineering, 21(4):336-355.
Manna Z. et al. (1994) STeP: The Stanford Temporal Prover. Technical Report No.94-1518,

Computer Science Department, Stanford University, Stanford, CA, USA.
Mili R. et al. (1997) Storing and Retrieving Software Components: A Refinement Based

System. IEEE Transactions on Software Engineering, 23(7):445-460.
Moriconi M. et al. (1995) Correct Architecture Refinement. IEEE Transactions on Software

Engineering, 21(4):356-372.
Perry D. E. (1989) The Inscape Environment. Proceedings of the 11th International

Conference on Software Engineering, pages 2-12.
Perry D. E. and Wolf A. L. (1992) Foundations for the Study of Software Architecture. ACM

SIGSOFT Software Engineering Notes, 17(4):40-52.
Rollins E. J. and Wing J. M. (1991) Specifications as Search Keys for Software Libraries.

Proceedings of the 8th International Conference on Logic Programming, pages 173-187.
Schumann J. and Fischer B. (1997) NORA/HAMMR: Making Deduction-based Software

Component Retrieval Practical. Proceedings of the 12th IEEE international Conference
on Automated Software Engineering, pages 246-254.

Shaw M. and GarlanD. (1996) Software Architecture: Perspectives on an Emerging
Disciplines. Prentice Hall.

Stoller S.D. and Schneider F. B. (1996) Automated Analysis of Fault-Tolerance in
Distributed Systems. Technical Report No.l4853, Department of Computer Science,
Cornell University, Ithaca, NY, USA.

Sturman D. C. and Agha G. A. (1994) A Protocol Description Language for Customizing
Failure Semantics. Proceedings of the Thirteenth IEEE Symposium on Reliable
Distributed Systems, pages 148-157.

www.manaraa.com

104 Titos Saridakis and Valerie Issarny

Zaremski A. M. and Wing J. M. (1997) Specification Matching of Software Components.
ACM Transactions on Software Engineering and Methodology, 6(4):333-369.

www.manaraa.com

ARCHITECTURAL MODELS AND
DESCRIPTIONS

www.manaraa.com

Specification and Refinement of Dynamic Software
Architectures

Calos Canal, Emesto PimenteP, Jose M. Troya
Depto. de Lenguajes y Ciencias de Ia Computaci6n, Universidad de Malaga, Spain
E-mail: {canal, emesto, troyaj@lcc.uma.es

Key words: Software architecture, architecture description languages, 7t-calculus,
compatibility, inheritance of behaviour, prototyping

Abstract: Several notations and languages for software architectural specification have
been recently proposed. However, some important aspects of composition,
extension, and reuse deserve further research. These problems are particularly
relevant in the context of open systems, where system structure can evolve
dynamically, either by incorporating new components, or by replacing existing
components with compatible ones. Our approach tries to address some of these
open problems by combining the use of formal methods, particularly process
algebras, with concepts coming from the object-oriented domain. In this paper
we present LEDA, an Architecture Description Language for the specification,
validation, prototyping and construction of dynamic software systems.
Systems specified in LEDA can be checked for compatibility, ensuring that the
behaviour of their components conforms to each other and that the systems can
be safely composed. A notion of polymorphism of behaviour is used to extend
and refine components while maintaining their compatibility, allowing the
parameterisation of architectures, and encouraging reuse of architectural
designs.

1. INTRODUCTION

The term software architecture (SA) has been recently adopted referring
to the discipline of Software Engineering that deals with the description,

1 This work was funded in part by the "Comisi6n Interministerial de Ciencia y Tecnologfa"
(CICYD under grant TIC98-0445-C03-03.

www.manaraa.com

108 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

verification, and reuse of the structure of software systems (Shaw and
Garlan, 1996). At the level of abstraction of SA, software is represented as a
collection of computational and data elements, or components,
interconnected in a certain way, and it is at this level where the structural
properties of software systems are naturally addressed. SA pays special
attention to the interaction among components, instead of the internal
computations of these components.

The significance of explicit architectural specifications is widely
accepted. First, they raise the level of abstraction, facilitating the description
and comprehension of complex systems. Second, they increase reuse of both
architectures and components (Shaw and Garlan, 1995). However, effective
reuse of a certain architecture often requires that some of its components can
be removed, replaced, and reconfigured without perturbing other parts of the
application (Nierstrasz and Meijler, 1995). These aspects are particularly
relevant when dealing with open distributed systems, whose architecture
evolves dynamically, and consistency has to be guaranteed for every
substantial change produced on the system. In the context of SA, consistency
must be analysed in terms of the compatibility between components, since
system performance depends on the correct interaction among them.

Although object-orientation can be applied to all levels of software
design, in SA the more general term component-oriented is preferred,
allowing to consider not only objects but architectures, interaction
mechanisms and design patterns as first-class concepts of an architecture
(Nierstrasz, 1995). However, most concepts corning from the object-oriented
paradigm can be applied to SA. Particularly, in this work we address the
application of inheritance, parameterisation, and polymorphism to the
specification of software architectures.

A number of Architectural Description Languages (ADLs) have been
already proposed. ADLs address the need for expressive notations in
architectural design, trying to provide precise descriptions of the glue for
combining components into larger systems. Despite the proposed notations
are useful for the description of complex software systems, most of them are
not formally based, which prevents the analysis and proof of the properties
of the systems and architectures described (Abowd et al., 1993). In addition,
several significant issues, such as specification of dynamic systems,
architecture parameterisation and refinement, are not usually addressed. In
Section 9 we compare our approach with other related works, particularly
Wright and Darwin, while an exhaustive comparison on the characteristics of
some outstanding ADLs can be found in (Medvidovic and Rosenblum,
1997).

In order to avoid some of these limitations, our interests focus on the
application of formal methods to SA. Formal specifications have a precise

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 109

meaning derived from the semantics of the notation used, and validation
tools can be developed to prove properties of the systems specified. To this
effect, process algebras are widely accepted for the specification of software
systems, which can be checked for equivalence, deadlock freedom, and other
interesting properties.

Dynamic architectures are those which describe how components are
created, interconnected, and removed during system execution, and which
allow run-time reconfiguration of their communication topology. Formal
specification of such systems requires the use of an adequate formalism. In
particular, we propose the use of the 7t-calculus (Milner et al., 1992), a
simple but powerful process algebra which can express directly mobility,
allowing the specification of dynamic systems in a very natural manner.
However, the 7t-calculus is a low level notation, which makes difficult its
direct application to the specification of large systems.

This was our original motivation for the development of LEDA, an ADL
which embodies mechanisms of inheritance and dynamic reconfiguration.
The language is structured in two levels: components, representing system
parts or modules, and roles, which describe the observable behaviour of
components. Roles are written in an extension of the 1t-calculus, thus
allowing the specification of dynamic architectures. Each role describes the
protocol that a component follows in its interaction with other components.
In turn, components are described as composed of other components. The
structure or architecture of a component is indicated by the relations among
its subcomponents, which are expressed by a set of attachments or
connections among the roles of these subcomponents.

LEDA differs from other ADLs in that it makes no distinction, at the
language level, between components and connectors, i.e. connectors are
specified as a special kind of components. This allows the language to be
more simple and regular, and does not impose a particular compositional
model in the description of software architectures.

Since the semantics of LEDA is written in terms of the 7t-calculus (Canal
et al., 1998b), specifications can be both executed, allowing architecture
prototyping, and analysed. In this sense, it is possible to determine whether a
system is safely composable, i.e. whether its components present compatible
behaviour and can be combined to form the system. This kind of analysis has
been traditionally limited to interface conformance, but we are also
interested in determining whether the behaviour of a component is
compatible with that of its environment. On the other hand, component reuse
would be encouraged if we could check whether a certain existing
component can be used in a new system where a similar behaviour is
required. Again, the intuitive notion of compatibility arises. We have
formalised compatibility of behaviour in the context of 7t-calculus (Canal et

www.manaraa.com

110 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

a!., 1998a), ensuring that compatible roles are able to interact successfully
until they reach a well-defined final state. Architectures written in LEDA are
tested for compatibility in each of the attachments among roles of their
components. Compatibility does not require that the components involved
have strictly complementary behaviour, since we usually want to connect
components which match only partially.

Reuse of existing software components would be promoted if we had a
way for adapting a component to an interface which is not compatible with
its own interface. This is what LEDA adaptors are made for. Adaptors are
small elements, similar to roles and also written in 1t-calculus, which are
able to communicate successfully components whose behaviour is not
compatible.

Our approach is completed with mechanisms of inheritance and
parameterisation for roles and components which ensure that compatibility is
preserved. A child component inherits its roles from its parents, while
redefinition of behaviour is restricted by several conditions which ensure the
maintenance of compatibility. Thus, we can replace safely a component in an
architecture with any other component which inherits from the former. This
gives place to a mechanism of architecture instantiation, by which a software
architecture can be considered as a generic framework, which can be
partially instanced and reused as many times as needed. Component
frameworks derive from the idea of design patterns, and they represent the
highest level of reusability in software development: not only source code of
components, but also architectural design is reused in applications built on
top of the framework (Pree, 1996). In this sense, LEDA specifications can be
considered as generic architectural patterns or frameworks which can be
extended and reused, adapting them to new requirements (Canal et a!. ,
1997).

Although specification certainly plays an important role during system
design and prototyping, the final goal of software design is to obtain real
executable applications. LEDA specifications are also used for the creation,
interconnection and deletion of components on an executable distributed
platform. Combining the capabilities of prototyping and execution of LEDA,
it is possible to simulate the execution of partially implemented systems.
Hence, system development can be done gradually, providing a smooth
transition from specification to implementation.

The structure of this paper is as follows . First, we describe briefly the
1t- calculus and the notation we use for specifying roles with it. Then,
Sections 3 and 4 deal with the specification of components, roles and
attachments in LEDA. Next, in Section 5 we discuss how our approach
addresses architecture prototyping and validation, while Section 6 deals with
component and role inheritance, and also addresses the topic of architecture

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 111

refinement. Section 7 shows how non-compatible components can be
interconnected using adaptors . All the notions introduced in these sections
are illustrated by several examples. Finally, Section 8 discuss briefly how
LEDA specifications can be used in order to derive executable applications
from an architecture. We conclude comparing our approach with some
related proposals.

2. THE 1t-CALCULUS

The 1t-calculus, developed by Milner as a successor of CCS, is specially
suited for the description of dynamic systems, in which components are
created and interconnected during system execution, because it permits
direct expression of mobility. Mobility is achieved in 1t-calculus by the
transmission of channel names as arguments or objects of messages. When a
process receives a channel name, it can use this channel as a subject for
future transmissions. This allows an easy and effective reconfiguration of the
system. In fact, the calculus does not distinguish between channels and data,
all of them are generically names. This homogeneous treatment of names is
used to construct a very simple but powerful calculus. In contrast,
1t-calculus is a low level notation, and its use in industrial-size problems
would be tedious and difficult.

LEDA embodies the 1t-calculus for specifying the roles which describe
the behaviour of components. Roles are described in LEDA as processes,
using a syntax which derives from the original notation of the 1t-calculus,
adding some syntactic sugar to obtain more friendly specifications. Let
P,Q, ... range over processes, and a,b,c, ... range over names. Sequences of
names are abbreviated using tildes (li). Then, processes are built from names
and processes as follows:

P ::;;. 0 I r.P I x!(o).P I x?(ii).P I (x)P l{x;;.z}P I PIQ I P+Q I A(ii)

Empty or inactive behaviour is represented by 0. Silent transitions, given
by 't, model internal actipns. Thus, a process r.P will eventually evolve to P
without with its environment. An output-prefixed process x!(o).P
sends the na,mes o (objects) name x (subject) and then continues like
P. An input-prefixed process x?(ii).P waits for some names ii to be sent
along x and then behaves like P{o/ii}, where {alii} is the substitution of a
with a.

Restrictions are used to create private names. Thus, in (x)P, the name xis
private to P. Private names can be exported to other processes simply by
sending them as objects of output actions, as in (z)x!(z) . A match {x;;.z}P
behaves like P if the names x and z are identical, and otherwise like 0.

www.manaraa.com

112 Carlos Canal, Emesto Pimentel, and Jose M. Troya

The composition operator is defined in the expected way: P I Q consists
of P and Q acting in parallel. Summation is used for specifying alternatives:
P + Q may proceed to P or Q. The choice can be locally or globally taken. In
a global choice, two processes agree synchronously in the commitment to
complementary actions, as in

(. .. + x!(o).P + ...)I(... + x?(ii).Q + ... Q{O!ii}
On the other hand, local choices are expressed combining the summation

operator with silent actions. Hence, a process like(. .. + r.P + r.Q + ...)may
proceed to P or to Q with independence of its context. We use local and
global choices to state the responsibilities for action and reaction.

Finally, A(ii) is an agent with names ii. Each agent identifier A is defined
by an unique equation: A(ii) = P. The use of agents allows modular and
recursive definition of processes.

Some examples of processes written in 1t-calculus can be found in the
following sections, but for a detailed description of the calculus, including its
transition system, we refer to (Milner et al., 1992).

3. COMPONENTS AND ROLES

LEDA is an ADL for the description and validation of structural and
behavioural properties of software systems. The language is structured in
two levels: components and roles. Components represent software pieces or
modules, each one providing a certain functionality while roles describe the
behaviour of components and are used for architecture validation,
prototyping, and execution.

3.1 Components

LEDA distinguishes between component classes and instances, and
provides mechanisms for the extension and parameterisation of components.
The specification of a component class consists of three main sections: (i)
interface, consisting of several role instances; (ii) structure or composition,
consisting of several component instances; and (iii) attachments, which
contains a list of connections which indicate how the component is built
from its parts.

The interface of a component is described as a set of role instances,
which specify the behaviour of the component from the point of view of
each other component that interacts with it. Each role is a partial abstraction
representing both the behaviour that the component offers to its
environment, and the behaviour that it requires from those connected to it.

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 113

LEDA distinguishes between role classes and instances, and provides
constructions for the extension and derivation of roles.

For instance, consider a file transmission between two components,
named Sender and Receiver respectively. Component Receiver plays the role
of reader, receiving the data which is sent by Sender, which acts as writer
(Figure 1).

component Sender {
interface

writer: Writer;
}

component Receiver {
interface

reader : Reader;
}

Figure 1: Components Sender and Receiver

3.2 Specification of component's behaviour

Traditionally, interface description has been limited to the signature of
the methods that a component imports and exports, or the messages that it
can send or receive. However, our goal is to describe the observable
behaviour of components, that is, how they react to external stimuli, and how
input and output stimuli are related. This behaviour is described by the roles
that form the interface of the component. Roles are specified as processes in
the 7t-calculus.

Roles Writer and Reader in Figure 2 specify the protocol of interaction
between the components Sender and Receiver, i.e. they describe how these
components behave in order to perform a successful data transmission. Data
is transmitted matching two complementary actions w!(data) and w?(data).
As indicated by the use of local choices, the responsibility for action falls in
the Writer part, which knows when the file has been completely transmitted,
and sends an event wq!() (writer quits), while the Reader must be able to
react to both Writer actions.

role Writer(w,wq) {
spec is

}

't.(data)w!(data). Writer(w,wq)
+ 't.wq!().O;

role Reader(w,wq) {
spec is

}

w?(data).Reader(w, wq)
+ wq?().O;

Figure 2: Roles Writer and Reader, from components Sender and Receiver

3.3 Composites

Components can be either simple or composite. A composite contains
several subcomponents which are instances of other component classes. Any

www.manaraa.com

114 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

software system can be described as a composite. Thus, the syntax of LEDA
does not distinguish between components and systems or architectures. As
we have shown, simple components are described by the roles of their
interfaces, but for composites, we must also describe their internal
architecture. This architecture is the result of the interconnection or
attachment of several subcomponents. The specification of composites in
LEDA will be shown by means of a set of examples of increased
complexity, describing a family of systems following a Client/Server
architectural pattern.

Consider first a very simple Client/Server system in which the Client
requests services from the Server (Figure 3). Both the Client and the Server
are composites which contain an unbound array of service components. Role
request describes the behaviour of the Client, while role serve describes that
of the Server. When receiving a request, the Server creates a service
component with the statement new. Then, the reference to the service is
transmitted to the Client through the private link reply. Notice that the type
of the component service is not indicated, but is declared of a generic type
any, allowing future refinement of the Client/Server architecture, as will be
shown in Section 6, for providing different kinds of services. The name n is
used in the role serve for taking account of the number of requests received,
which will be also used in a subsequent example.

component Client {
interface

request : Request(request) {
spec is

(reply)request!(reply).
reply?(service).Request(request);

composition
service[] : any;

I

component Server {
interface

serve : Serve(request) {
names

n : Integer:= 0;
spec is

request?(reply).
(new service)reply!(service).
n++.Serve(request);

composition
service[] : any;

}

Figure 3: Components Client and Server with their roles

4. ATTACHMENTS

The architecture of a composite is determined by the relations that its
subcomponents maintain with each other. These relations are explicitly
represented in LEDA by a set of attachments among the roles of these
subcomponents. Attachments relate roles of several components, and they

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 115

are specified in the composite which contains these components.
Attachments are set when the corresponding components and role instances
are created, possibly dynamically, and can be modified during system
execution.

LEDA distinguishes among several kinds of attachments, which permit
the specification of both static, reconfigurable, and dynamic software
systems.

Static attachments are those which are never modified once they are set.
For instance, recall the components Client and Server from Figure 3. We can
specify our Client/Server architecture as a composite which contains both
components and connects their roles using a static attachment (Figure 4).
The symbol used for indicating the attachment is<>.

component ClientServer {
interface none;
composition

client: Client;
server : Server;

attachments
client.request(r) <> server.serve(r);

}

Figure 4: A simple Client/Server system

On the other hand, reconfigurable attachments are used for architectures
that present several configurations, i.e. those in which the interconnection
patterns among components changes over time, and the roles connected
depend on a certain condition . For instance, suppose that we have two Server
components, and each request is assigned to one of them trying to balance
their work load (Figure 5).

component ReconfigurableClientServer {
interface none;
composition

client: Client;
server[2] : Server;

attachments
client.request(r) <>if (server[I].n <= server[2].n)

then server[l].serve(r)
else server[2].serve(r);

}

Figure 5: A reconfigurable system, consisting of one Client and two Servers

Finally, multiple attachments describe communication patterns among
arrays of components. Each pair of interconnected components may use

www.manaraa.com

116 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

private links in their communication, or these links may be shared by all the
components involved. Thus, multiple attachments can be either shared or
private. A shared attachment describes a 1 :M communication channel, while
private attachments establish multiple 1: 1 communication channels.

For instance, consider a more realistic Client/Server system in which
several Clients are connected to a pool of Servers. The composite
ServerPool (Figure 6, left) contains an array of Servers whose roles are tied
together using a multiple shared attachment (represented by the '*' in the left
part of the attachment), and exported as a single role serve (role exportation
is described below). Each request will be served by one of the Servers non
deterministically. On the other hand, the attachment between the Clients and
the ServerPool is also multiple (Figure 6, right), and all clients share the link
r through which they request services. Notice that mobility is used to
establish private reply links for each request, though all the Clients are
connected to the ServerPool using a single request link. Such an example
can be hardly specified using formalisms like CSP (and consequently with
CSP-based ADLs like Wright), which shows the richer expressiveness of the
7t-calculus when compared with other process algebras .

component Server Pool {
interface

serve : Pool;
composition

server[] : Server;
attachments

server{*].serve(r) >> serve(r);
}

component MultipleClientServer {
interface none;

composition
client[} : Client;
pool : ServerPool;

attachments
client[*].request(r) <> pool.serve(r);

}

Figure 6: A Client/Server system, with multiple clients and a pool of Servers

An additional form of attachment is that of role exportation. Usually,
when dealing with a composite, some of the roles of its components are not
used for the interconnection of these components, but to form the interface
of the composite. Thus, we say that these roles are exported by the
composite, which is indicated in LEDA using the operator>> instead of<>.
We have already used this mechanism in Figure 6, left, where the roles of
the Servers were exported to form the interface of the ServerPool.

5. ARCHITECTURE PROTOTYPING AND
VALIDATION

The specifications written in LEDA can be used for prototyping.
Attachments have a formal semantics (Canal et al., 1998b) which allows the

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 117

derivation of 1t-calculus prototypes from architectural specifications. These
prototypes can be executed using a 1t-calculus interpreter like the MWB
(Victor, 1994). Thus, specifications can be tested at an early stage of the
development process, checking their conformance with system requirements.

Apart from description and prototyping, LEDA specifications also serve
for validation purposes. In particular, for determining whether a system is
consistent, i.e. whether the behaviour of its components is compatible.

As we usually want to connect components that match only partially, the
relations of bisimilarity customarily used in process algebras are not well
suited for our purposes. Thus, we have defined a relation of role
compatibility in the context of 1t-calculus. A formal definition of
compatibility and its properties is out of the scope of this paper, but it can be
found in (Canal et al., 1998a). A proof of compatibility for every system
attachment using this relation ensures that the corresponding components
will be able to interact safely until they reach a well-defined final state.
Thus, if a software system is built according to the specifications of the
architecture, no failure will arise from the interaction in any attachment
between its components.

Obviously, local analysis of compatibility cannot ensure that the whole
system is deadlock-free, since deadlock could arise from the global
interaction of a set of components whose roles are compatible. However,
compatibility serves for determining whether two components can be
composed or plugged into each other, guaranteeing that the connector <> is
safe. We consider that a system is consistent when each attachment in its
architecture connects compatible roles, indicating behavioural conformance
of the corresponding components. On the other hand, a failure detected when
analysing an attachment stands for a mismatch in the behaviour of the
corresponding components, usually leading to a system crash.

6. EXTENSION AND REFINEMENT

6.1 Extension of roles and components

In order to promote effective reuse of both components and architectures,
a mechanism of redefinition and extension for roles and components is
required. In the object-oriented paradigm, reuse is achieved by inheritance
and polymorphism. Data polymorphism is defined as the capability of an
identifier to point or refer to instances of different classes, while inheritance
refers to a relation among object classes by which an heir class inherits the
features (methods and attributes) of its parent classes. Heirs can extend their
parents by adding new features, and they may also redefine some of the

www.manaraa.com

118 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

inherited features, usually under certain restrictions. Inheritance is a natural
precondition for polymorphism, since it ensures that heirs will have at least
the same features than their parents, and that they can replace them safely.

A relation of inheritance will be also of use for specifications of software
components. However, in our context the interface of a component is defined
not only by the signature of its features (i. e. the signature of its roles), but it
also includes the behavioural patterns described in the roles. Thus, role
redefinition and extension must be restricted in order to preserve the
behaviour specified in the parent role. We have defined a relation of
inheritance among roles in the context of 7t-calculus. This relation defines
the restrictions for polymorphism of behaviour, allowing the replacement of
a role by a derived version, while preserving compatibility. Role extension in
LEDA can be formally validated. Again, we refer to (Canal et al., 1998a) for
a formal definition of role inheritance and its properties.

Role extension can be used to (i) redefine, partially or completely, the
parent role, giving a new specification for some of its agents; and (ii) extend
a role, providing it with additional functionality. In both cases we must
check, using the relation of inheritance, that the extended role is effectively
an heir of the parent role.

For instance, consider the role Serve of Figure 3. Its behaviour can be
extended allowing clients to query the number of requests solved by the
server, which can be used for statistics.

role StatServe(request,statistics) extends Serve {
adding

statistics! (n). StatServe(request, statistics);
}

Figure 7: An extension of role Serve

The notion of extension can be also applied to components. Derived
components inherit their parent's specification, including roles,
subcomponents and attachments. An heir component extends its parent by
adding new roles, components, or attachments, or by redefining some of its
parent's. In case of redefinition of a role or component, the redefined
instance must be an heir of the original instance.

Component extension can be implicitly achieved by architecture
instantiation, which indicates the replacement of a component instance in a
composite with another one whose class extends that of the former.
Architecture instantiation can be used for incremental specification,
description of families of software products sharing a common architecture,
and also for dynamic replacement of a component in a software system. The
syntax of instantiation is as follows:

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 119

derivedComponent : ComponentClass[subcomponent: DerivedSubcomponentClass];

which means that derivedComponent is an instance of ComponentClass in
which we have replaced its subcomponent (which let's suppose was declared
of a certain SubcomponentClass) by an instance of DerivedSubcomponent
Class, where DerivedSubcomponentClass must be an heir of Subcomponent
Class.

When instancing an architecture, some of its attachments are modified,
since some of its former components are replaced by derived versions.
However, compatibility rechecking of the instanced architecture is not
required, since role inheritance ensures the preservation of compatibility.

6.2 Architecture Refinement

Architectural descriptions can be used with different levels of abstraction
during the development process. This property is commonly referred to as
refinement. For example, we can begin with a high level specification of a
system in which we describe only its top-level components, their interface,
and how they are attached to construct the system. Then, refinement is
applied to obtain a more detailed specification, by describing the internal
structure or the behaviour of previously defined components, obtaining more
complex specifications which come gradually closer to implementation. As
we have seen, component extension is a useful mechanism for refinement,
but other forms of refinement can be applied using LED A.

In the Client/Server system in Figure 6, services were defined as generic
components of type any. Thus, we have described an abstract Client/Server
architecture which follows a simple protocol of requests and replies. We can
obtain more specific architectures by describing the details of the service, i.e.
describing the behaviour that both components follow during the service.

component ReceiverClient extends Client {
interface

request : RequestSenders(request) extends Request {
spec is
(reply)request!(reply).
(new receiver)reply?(service).RequestSenders(request);

composition
receiver[] : Receiver;
service[J : Sender;

attachments
receiver[J.reader(w, wq) <> service[J.writer(w, wq);

}

Figure 8: Specialisation of a Client/Server, using Senders and Receivers

www.manaraa.com

120 Carlos Canal, Emesto Pimentel, and Jose M. Troya

The ReceiverClient in Figure 8 is a specialisation of the Client in Figure
3. Its role request is refined indicating that a component receiver is created
each time the client requests a service. The service itself is refined, too,
indicating that its type is now Sender instead of any, and a new attachment is
included, connecting the roles of the receiver and the service. Components
Receiver and Sender were specified in Figure 1, while its roles were
described in Figure 2.

Hence, we have refined our Client/Server architecture, obtaining the
description of a system in which the service provided is a file transmission.
We can use the mechanism of architecture instantiation for obtaining an
instance of the refined architecture:

refinedCS : MultipleClientServer[client: ReceiverClient, pool.server[].service[] : Sender];

Since role RequestSenders extends Request, compatibility with server's
role Serve is ensured. On the contrary, the compatibility of the new
attachment between the roles Reader and Writer, which was not present in
the original architecture, must be checked.

7. ADAPTORS

Sometimes the behaviour of two components is not compatible, but these
components can be adapted so they can collaborate with each other. This
will be done using an adaptor, which acts as a glue allowing the construction
of composites from components which are not strictly compatible. Adaptors
are also used to modify the interface that a certain component exports to its
environment.

Adaptors are specified in 7t-calculus, using the same syntax as for roles.
However, roles describe the interface of a component, and they are declared
in the interface section, while adaptors are mainly used as a glue to tie the
components of a composite, and they are declared in the composition
section.

In the preceding examples, servers are always prepared to receive
requests, which is not a realistic assumption. The specification of a non
reliable server NRServer is shown in Figure 9, left. Observe how local
choices, indicated by the combination of the sum operator and '!-transitions,
specify that the NRServer may crash unexpectedly.

Obviously, the behaviour of our NRServer is not compatible with that of
Clients, which suppose that servers are always willing to attend their
requests. However, using a simple adaptor restart we can build a fault
tolerant server pool (FTServerPool, Figure 9, right). Each time an NRServer
crashes it is restarted by the adaptor (in fact, it creates a new NRServer).

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 121

Thus, the adaptor modifies the observable behaviour of the pool of
NRServers, and the combination of roles NRServe and the adaptor Restart
provides an interface which can be proved as a refinement of role serve in
Figure 6. Thus, FTServerPool extends ServerPool, and its behaviour is also
compatible with role Request.

component NRServer {
interface

serve : NRServe(request,crash) {
spec is

J

1:. request?(reply).
(new service)reply!(service).

NRServe(request, crash)
+ 't.crash!().O;

composition
service[] : any;

J

component FTServerPool extends Server Pool {
composition

server[] : NRServer;
restart : Restart(crash) {
spec is

crash?()(new server)Restart(crash);

J
attachments

restart(e),server[*].serve(r,e) >> serve(r);

J

Figure 9: A fault-tolerant pool of servers, built from non-reliable servers

Hence, we can instance the Client/Server architecture of Figure 6
replacing its component ServerPool by an instance of FTServerPool:

ftcs: MultipleClientServer[pool: FTServerPool];

Compatibility with client's role request is ensured by inheritance, and
there is no need to recheck the attachment between the server pool and the
clients. Thus, we obtain a specialised version of the Client/Server system in
which we use non-reliable servers, but maintaining the properties of the
original architecture.

8. SYSTEM CONSTRUCTION AND EXECUTION

We have already discussed how LEDA specifications can be used for
system validation and prototyping, but we can go one step further, and use
them also for obtaining an executable system.

Using LEDA we can validate that each attachment in an architecture
connects compatible roles. Our goal is now to translate this compatibility to
the implementation level. First, each role is automatically translated into a
state machine which encapsulates the behaviour of the corresponding
component. These implementations of roles control the interaction of the
corresponding components with the rest of the system. Thus, they are similar
to IDL specifications, but augmented with the protocol that describes the
behaviour of the components.

www.manaraa.com

122 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

In tum, composites are responsible for the creation of components and
for interconnecting their roles, following the communication patterns
described in their attachments. Communication between roles is done using a
process communication mechanism, (e.g. sockets).

Finally, components must be implemented using a programming
language. Typically each component specification will be implemented as a
class or group of classes using an object-oriented language. Each component
is connected to its roles, through which it communicates with the rest of the
system. When a component requires to invoke a method of another one, it
invokes the corresponding method in its own role, which will contact the
role of the other component in order to invoke the method.

Consider again the Client/Server system specified in Figure 3.
Components Client and Server are implemented as classes, while their roles
are translated into RoleRequest and RoleServe respectively (Figure 10, top) .

invoke

request ()

request (rep ly)

inv oke

r eques t ()

re turn

servi ce

reply . r ead (servi ce }

re t ur n s e rvi c e

rep l y (servi c e)

return

service

[r eturn s ervi ce I
r epy. wri te (service)

r e quest ()

r equest . write (reply)

reque s t. r ea d (reply)

s erver. request (l

Figure 10: Implementation scheme of the Client/Server architecture

In order to obtain a service, the object Client invokes the method
request() from its role RoleRequest. Then, RoleRequest sends the request to
RoleServe through the appropriate channel. Next, RoleServe invokes the
method request() from Server, and gets the service returned. The service is
sent through a specific reply channel to RoleRequest, which in turns returns
the service to Client. Thus, the implementations of Client and Server invoke

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 123

or are invoked by their roles, but they don't know the location of the objects
which finally receive the invocation, nor they are responsible for establishing
or managing the communication channels indicated in the architecture.

This scheme for system implementation has several advantages. First,
connections among components are encapsulated in the roles, which
establish and modify them according to the interaction patterns specified in
the architecture. Second, components are implemented as object classes that
invoke or receive invocations of methods, but which are independent of the
interaction mechanisms used in the architecture. Third, a component may
have several implementations which can be interchanged without affecting
the behaviour of the system.

9. DISCUSSION

In this paper we have presented LEDA, an ADL for the description of
dynamic software architectures. In these systems, components interact
following flexible patterns that can be modified during system execution.
The basic unit in LEDA is that of components, which are represented by
their interface, divided into a set of roles. These roles describe, using the
1t-calculus, the behaviour of the corresponding components. Software
architectures are specified in LEDA as sets of components related by
attachments between their roles. The semantics of components and
attachments is given using the 1t-calculus, a well-known process algebra,
which allows us to use this formalism for architecture prototyping and
validation of properties like behavioural compatibility. LEDA roles and
components can be extended, adapting them to new requirements, but
maintaining the compatibility of the original roles. Analysis of compatibility
and inheritance can be both automated, which leads to the development of
tools for the analysis of the specifications. Formal validation of compatibility
and inheritance encourage both software quality and reuse, determining
whether some existing software components can be used to build a larger
system.

In the last years several proposals related to the specification of software
architectures have been presented. Although most of them are not formally
founded, which limits their possibility of analysis, several works have
already proposed the use of different formalisms for architecture
specification.

A first formalisation of the notion of compatibility is described in (Allen
and Garlan, 1997), where CSP is used for determining compatibility in the
ADL Wright. However, formalisms like CSP or CCS do not seem
appropriate for the description of evolving or dynamic structures. At most,

www.manaraa.com

124 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

CSP can be used in systems with a finite number of configurations, as it is
shown in (Allen et al., 1998), but not in highly dynamic systems, where the
1t-calculus is best suited. Furthennore, Wright does not address aspects of
component and role extension or refinement, nor of architecture simulation
or execution.

Our approach differs from that of Allen and Garlan in other significant
aspect: LEDA does not distinguish between components and connectors, nor
between ports and roles. This distinction would complicate unnecessarily the
language, specially the fonnalisation of compatibility and inheritance in
1t-calculus. Besides, we consider that the distinction between components
and connectors does not scale properly, since composition would lead to
mixed composites with free ports and roles which could not be considered
either as components nor as connectors. For these reasons, connectors are
described in LEDA as specific classes of components, their behaviour being
described by roles.

The 1t-calculus has been used for describing the semantics of several
computer languages. In fact, the operational semantics of the ADL Darwin
(Magee and Kramer, 1996) is described using 1t-calculus, endowing this
language with a mechanism of dynamic binding. However, type checking is
restricted in Darwin to name matching, and the behaviour of components is
not described, neither this language incorporates characteristics of extension
or inheritance. On the contrary, our approach uses the 1t-calculus not only
for semantics, but it integrates the calculus in the language. LEDA
components and attachments are higher-level constructs that simplify the
description of complex software systems, while LEDA roles take advantage
of the expressiveness of the 1t-calculus for describing the behaviour of
components. This allows us to state more precisely which are the relations
between the components of a certain software architecture, and also to
perfonn analysis of compatibility and inheritance.

The notions of component subtyping and inheritance are present in
several other ADLs, and recent work of (Medvidovic et al., 1998), addresses
description and verification of behavioural conformance using the Z
notation. On the contrary, our approach describes component's behaviour
using state machines, and addresses what they call protocol conformance.

We are currently working in the development of a Java run-time platform
for LEDA, capable to use the information about component behaviour and
architecture configuration present in the specifications to create, interconnect
and remove the implementations of the components described using the
language, thus obtaining executable applications.

Our future work will be the application of LEDA to the specification of
different industrial software systems, in order to determine the need for new
forms of interaction in the language. Another task will be the development of

www.manaraa.com

Specification and Refinement of Dynamic Software Architectures 125

supporting tools, such as graphic editors or validation tools . All these tools
should hide the difficulties inherent to the formal foundations of the
language, making easier the specification of software systems in LEDA to
those not acquainted with formal methods.

REFERENCES

Abowd, G., Allen, R., and Garlan, D. (1993). Using style to understand descriptions of
software architecture. In Proc. ACM FSE'93.

Allen, R., Doucence, R., and Garlan, D. (1998). Specifying and analyzing dynamic software
architectures. In Proc. ETAPS'98, Lisbon.

Allen, R. and Garlan, D. (1997). A formal basis for architectural connection. ACM Trans. on
Software Engineering and Methodology.

Canal, C., Pimentel , E., and Troya, J. (1997). On the composition and extension of software
systems. In Proc. of FSE'97 FoCBS Workshop, pp. 50-59, Zurich.

Canal, C., Pimentel, E., and Troya, J. (1998a). Compatibility, inheritance and extension of
n-calculus agents. Technical Report LCC-ITI-98-13, Computer Science Dept.,
Universidad de Malaga. http://www.lcc.uma.es/-canaVLCC-ITI-98-13.

Canal, C., Pimentel, E., and Troya, J. (1998b). it-calculus semantics of an architecture
description language. Technical Report LCC-ITI-98-17, Computer Science Dept.,
Universidad de Malaga. http://www.lcc.uma.es/-canal!LCC-ITI-98-17.

Magee, J. and Kramer, J. (1996). Dynamic structure in software architectures. In Proc. ACM
FSE'96, pp. 3-14, San Francisco.

Medvidovic, N. and Rosenblum, D. (1997). Domains of concern in software architectures and
architecture description languages. In Proc. USENIX Conf. on Domain-Specific
Languages, Santa Barbara (USA).

Medvidovic, N., Rosenblum, D. and Taylor, R. (1998). A Type Theory for Software
Architectures. Technical Report UCI-ICS-98-14. Dept. Information and Computer
Science, University of California, Irvine.

Milner, R., Parrow, J. and Walker, D. (1992). A calculus of mobile processes. Journal of
Information and Computation, 100:1-77.

Nierstrasz, 0. (1995). Requirements for a composition language. In Proc. of ECOOP'94
Workshop on Models and Languages for Coordination of Parallelism and Distribution,
no. 924 in LNCS, pp. 147-161. Springer Verlag.

Nierstrasz, 0 . and Meijler, T. (1995). Research directions in software composition. ACM
Computing Surveys, 27(2):262-264.

Pree, W. (1996). Framework Patterns. S!GS Publications.
Shaw, M. and Garlan, D. (1995). Formulations and formalisms in software architecture. In

van Leeuwen, J., editor, Computer Science Today, no. 1000 in LNCS, pp. 307-323.
Springer Verlag.

Shaw, M. and Garlan, D. (1996). Software Architecture. Perspectives of an Emerging
Discipline. Prentice Hall.

Victor, B. (1994). A verification tool for the polyadic n-calculus. Master's thesis, Department
of Computer Systems, Uppsala University (Sweden).

www.manaraa.com

Modeling Software Architectures and Styles with
Graph Grammars and Constraint Solving

Dan Hirsch, Paola Inverardi, and Ugo Montanari
Departamento de Computai6n, Universidad de Buenos Aires, Ciudad Universitaria, Pab.l,
(1428), Buenos Aires, Argentina, dhirsch@dc.uba.ar
Dip. Di Mat. Pura ed Applicata, Universita dell 'Aquila, Via Vetoio, Localita' Coppito, L'Aquila,
ltalia, inverard@univaq.it
Dipartimento di Informatica, Universita di Pisa, Corso ltalia 40, (56125), Pisa, ltalia,
ugo@di.unipi.it

Key words: Architectural descriptions, graph rewriting, styles, dynamic architectures,
reconfiguration

Abstract: A software architecture style is a class of architectures exhibiting a common
pattern. The description of a style must include the structure model of the
components and their interactions (i.e., structural topology), the Jaws
governing the dynamic changes in the architecture, and the communication
pattern. A simple and natural way to describe a system is by using graphs, and
as an extension of this, by using grammars to describe styles. The construction
and dynamic evolution of the style will be represented as context-free
productions and graph rewriting. To model the evolution of the system we use
techniques of constraint solving already applied in the representation of
distributed systems. From this approach we obtain an intuitive way to model
systems, and a unique language to describe the style (but still a clear
separation of coordination and configuration). With these we have a direct way
of following the evolution of the system and proving its properties.

1. INTRODUCTION

A software architecture style is a class of architectures exhibiting a
common pattern (Shaw, M. and Garlan, D., 1996). The description of a style
must include the structure model of the components and their interactions
(i.e., structural topology), the laws governing the dynamic changes in the

www.manaraa.com

128 Dan Hirsch, Paola lnverardi, and Ugo Montanari

architecture, and the communication pattern. In the following we refer to all
these aspects as a complete style description. A simple and natural way to
describe a system architecture is by using graphs, and as an extension of this,
by using grammars to describe styles. So a grammar will generate all
possible instances of that style. This approach has first been proposed in (Le
M'etayer, D., 1998).

In our work we represent a system as a graph where edges (or
hyperedges) (Drewes, F. et al., 1996) are components and nodes are ports of
communication. The construction and dynamic evolution of the style will be
represented as contextjree productions and graph rewriting. The productions
that represent the style will be grouped in three sets. The first one contains
the productions that correspond to the construction of the initial static
configuration of the system. The second set contains the rules that model
dynamic changes in the configuration of the system (create and remove
components) and the third set contains the rules that model the
communication pattern.

To model the evolution of the system we need to choose a way of
selecting which components will evolve and communicate. For this we
propose a technique already applied in (Montanari, U. and Rossi, F., 1997)
and (Montanari, U. and Rossi, F. , 1996) to represent distributed systems with
graph rewriting and constraint solving. A graph represents a distributed
system, where edges represent processes and nodes represent shared data. In
order to evolve, one process may need to synchronize with adjacent
processes on some conditions on the shared data. If they agree on these
conditions, then all of them can evolve. This is modeled by a two phased
approach where, context-free process productions are specified (a set for
each process) with synchronization conditions for each of the possible
moves. After that, context-sensitive subsystem rewriting rules are obtained
by combining some context-free productions (this is called the rule-matching
problem) (Corradini, A. et al., 1985).

Applying one of these context-sensitive rules, allows for the evolution of
a subpart of the system consisting of several processes (each with one of its
context-free productions) that agree on the conditions imposed on the shared
data. Applying the rule means making all such processes (and not a proper
subset of them) evolve, each with one of its context-free productions.

The solution to the rule-matching problem is implemented considering it
as a finite domain constraint problem (Mackworth, A., 1988). In this paper
we will not describe these techniques; the interested reader may refer to the
references. In the case of software architectures we use constraint rules to
coordinate the dynamic evolution of the system. This is done by using
constraints on ports to represent communication between components and (if
necessary) to control changes in the configuration of the system. One

www.manaraa.com

Modeling Software Architectures and Styles 129

difference from (Montanari, U. and Rossi, F., 1997), is that in our approach,
we will rely on two basic types of communication paradigms: point-to-point
and broadcast communication. These will be represented with two types of
nodes. With point-to-point communication the rule-matching problem is
easier; it has to choose only two rules (for each sender, one receiver) . In the
case of broadcast the solution is the same as in (Montanari, U. and Rossi, F.,
1997). This allows to represent both types of communication at the same
time.

The use of hyperedge rewriting grammars and constraints to represent
styles and model evolution gives us an intuitive way to model systems and a
unique language to capture the style, but still with a clear separation between
coordination and configuration. Besides we have a direct way of following
the evolution of the system and proving properties and the inheritance of the
distributed solutions for the rule-matching problem. Moreover, context-free
hyperedge rewriting is natural for modeling the behavior of components
independently of each other, and its generality can be used (if one wants to)
to incorporate descriptions of more complex connector elements in the
specification of a system (you just represent connectors as edges and their
evolution as productions).

A related work that uses graph grammars is (Le M'etayer, D., 1998).
There, a dual approach is taken and architectural styles are represented as
context-free graph grammars where nodes represent components and edges
their communication links. But, in this case the grammar only specifies the
static configuration of the system (referred to as the style). The dynamic
evolution (create and remove components) is defined independently by a
coordinator, and the rules of the coordinator are checked to preserve the
constraints imposed by the grammar that defined the style. Also a CSP-Iike
language for the individual entities is given to fit with the coordinator
semantics.

The main difference between the two approaches is that in our work we
give a uniform description of the complete style with grammars (but still
maintaining an independent description of components behavior). Also, we
don't have a global coordinator of evolution; instead, each component
defines its own evolution (Magee, J. and Kramer, J., 1996a).

In (Le M'etayer, D., 1998), communication links are represented as
edges, and components as nodes. We chose a dual approach, because we
want the evolution of the style (including the communication pattern) to be
modeled with the rewriting steps of the graphs. So, in this way hyperedges
(and their associated nodes) are used only to represent components and the
ports that they will share and use to communicate among them. A graph with
this representation gives a simple view of the structure of an instance of
architecture at a given state, separated from the application of the rewriting

www.manaraa.com

130 Dan Hirsch, Paola lnverardi, and Ugo Montanari

rules that shows the evolution between states. In this way, a clearer
representation of the system is obtained while a separation of configuration
and evolution is achieved, which is a desirable property of software
architecture description languages (Medvidovic, N., 1997).

Another important point is that the evolution and communication pattern
can be followed directly by the rewriting sequences on the graphs,
analogously to what happens in the CHAM description of software
architectures (lnverardi, P. and Wolf, A. , 1995). This also allows the
verification of properties of the architecture, such as deadlock (Degano, P.
and Montanari, U., 1987; Compare, D. eta!.,) .

In section 2 basic notions of graph rewriting and constraint rules are
introduced, then in section 3 we apply these notions to software architectures
using some examples, and finally in section 4 we draw the conclusions and
describe our future work.

2. BACKGROUND

In this section we introduce the basic notions of hypergraphs,
hypergraph rewriting, and constraint productions.

2.1 Graphs and Graph Rewriting

DEFINITION [HYPERGRAPHS)

We define an edge-labeled hypergraph, or simply a graph as a tuple G =
< N, E, c, ext, labLN, fabLE> , where:
1. N is a set of nodes.
2. E is a set of edges.
3. c: E is the connection function (each edge can be connected to a list

of nodes).
4. ext E N* is a set of external nodes.
5. /abLE: E the labeling function of edges.
6. labLN: N LN is the labeling function of nodes.

A graph production rewrites a graph into another graph, deleting some
elements (nodes and edges), generating new ones, and preserving others. In
this paper we will just consider context-free productions, which rewrite a
graph containing a single hyperedge, into an arbitrary graph, while
preserving the (external) nodes connected by the rewritten hyperedge.
Therefore, in a context-free production, no nodes are deleted.

www.manaraa.com

Modeling Software Architectures and Styles 131

DEFINITION [GRAPH PRODUCTIONS]

Given a set of external nodes EN, a graph production p is a pair< L , R >,
where:
1. L is a graph containing only an hyperedge.
2. R is a graph.
3. The external nodes of Land Rare exactly those in EN.

Context-free graph productions will be written as L 7 R, where L is the
(graph containing only the) hyperedge to be rewritten and R is the graph to
be generated. A production p = (L 7 R) can be applied to a graph G yielding
H (G =>pH) if there is an occurrence of Lin G. The result of applying p to G
is a graph H which is obtained from G by removing the occurrence of L and
addingR.

DEFINITION [GRAPH REWRITING SYSTEM]

A graph rewriting system is a pair GRS = < G0 , P >, where:
1. G0 is a graph.
2. P is a set of graph productions.

A derivation for GRS is a finite sequence of direct derivation steps of the
form G0 =>p1 G1 =>p2 ... =>pn Gn = H, where Pb ... , Pn are in P.

To model coordinated rewriting, it is necessary to add some labels to the
nodes in the left member of productions. Assuming an alphabet of
requirements A, we need a partial function f nodes(L)----? A that associates
conditions (or actions) to some of the nodes. In this way, each rewrite of an
edge must match conditions with its adjacent edges and they have to move as
well. For example, consider two edges that share one node, such that no
other edge is attached to that node, and let us take one production for each of
these edges. Each of these productions has a condition on that node (a and
b). If a ;1: b, then the edges cannot rewrite together (using that rule). If a = b,
then they can move, via the context-sensitive rule obtained from merging the
two context-free rules (rule-matching problem).

3. GRAPH REWRITING FOR SOFTWARE
ARCHITECTURE STYLES

Now we will apply the notions introduced in the previous section to the
description of software architectures. Software architectures are represented
as hyperedge graphs where edges are components and nodes are
communication ports. Two edges sharing a node means that there is a

www.manaraa.com

132 Dan Hirsch, Paola lnverardi, and Ugo Montanari

communication link between the two components. As we mentioned in the
introduction, we have two types of nodes: point-to-point and broadcast
communication.

A software architecture style is described by a hyperedge context-free
grammar. The productions of a grammar are grouped in three sets.

The first set represents the construction of all possible initial
configurations of the class of architectures modeled by the style.

The second set represents the rules for the dynamic evolution of the
configuration, this means create and remove components.

The third set contains the rules that model the communication pattern of
the architecture. This set contains productions to model the communication
evolution for each type of component. These rules are constrained
productions that during rewriting will coordinate for the evolution of the
system. Also, some of the rules in the second set can be (if necessary)
constrained. This can be used to model coordinated changes in the
configuration. We will show this in the second example.

Edge labels have two parts. One is the component name and the other is
the status of the component that represents its different states during
evolution. Edges are drawn as boxes, broadcast ports as full circles, and
point-to-point ports as empty circles. Nodes are labeled with port names
(port names are local to rules, and external nodes have to be matched when a
production is applied). Constraints decorate nodes in bold letters, and appear
on the right-hand part of a production. For point-to-point we have a CCS like
notation for the constraints, where a node labeled as a means that the
component is the sender of a message a and a node labeled a is its receiver.
For broadcast, all nodes that have to coordinate are labeled with the
constraint representing the message.

Now we present three simple examples to show how a style is modeled.

3.1 Client-Server

The first example is a client-server case study based on the one used in
(Le M'etayer, D., 1998). We have clients, servers and a manager. An
instance of the style can have an initial configuration with any number of
clients, any number of servers and one manager. Clients and servers
communicate through the manager. Clients and manager are connected via
the CR (client request) and CA (client answer) ports. Servers and manager
are connected via the SR (server request) and SA (server answer) ports. In
this example all nodes are point-to-point ports.

As we said at the beginning of this section we grouped productions in
three sets. The first set represents the construction of all possible initial
configurations of the class of architectures modeled by the style.

www.manaraa.com

Modeling Software Architectures and Styles

SR CR SR CR

66 m
SA CA SA CA

SR CR

??
ll I. M !

(1111!) ! rr
SA <:A

SR CR

SA CA

CR
0

b
CA

Figure 1. Client-server: static productions

SR CR

-+G¥2+-
,/ v

SA CA

133

CR

CA SA SA

SR Cit

SA CA

Figure 2. Client-server: an instance of the architecture style generated by the static
productions

SR CR

M
(idle)

SA CA

-
SR CR

M
(idle)

SA CA

c
(idle)

CR

c
(idle)

CA

Figure 3. Client-server: dynamic productions

CR

0

-
0

CA

For the client-server example these are the productions in figure I. This
figure shows that all instances start with the manager and then clients and
servers are attached to it. This is done by the application to the manager of
the first and second rules in figure 1 (the dashed line is a shortcut to describe
two productions for the manager) . Note that the status of all components at
this level is (init), indicating that they are in a construction (or initialization)
phase.

Figure 2 shows an instance with two clients and one server generated by
these productions. After the desired initial configuration is obtained, then

www.manaraa.com

134 Dan Hirsch, Paola lnverardi, and Ugo Montanari

(init) rules are applied (last three in figure 1). These rules mean that
the construction phase is over and that the system is ready to start to work.
Now, you can apply the last two sets of rules for the evolution of the
architecture.

Figure 3 shows the dynamic rules. In this example we have two simple
rules . The first one states that the manager accepts the incorporation of a
new client in the system, and the second one is for clients that want to leave
the system.

CR CR _ ,h ?

CA

SA CA

SR

T-
SA

CA

SA CA

wa: waiting answer
per: processing client request
wsa: waiting server anS\\iCf

psa: processing server answer
pr: processing request

SA CA SA CA

SA SA

a)

CR

0

c I
(idle) I

SR CR

SA CA
ans"

Figure 4. Client-server: communication pattern productions

SA CA

t

SA CA

t

SA CA

'
SA CA

b)

Figure 4a shows the rules corresponding to the communication pattern.
Note that all component specifications are independent from each other and
that the only relation between them is by the communication coordination.

www.manaraa.com

Modeling Software Architectures and Styles 135

This is important for a better understanding and analysis of the system
behavior. In this example all ports are point-to-point so, the manager will
have to choose among the clients that want to make a request (obviously this
is handled by the constraint resolution algorithms). In a broadcast
communication all rules that want to rewrite and share nodes have to agree
on the conditions imposed by the constraints.

In figure 4b you can see how the constrained rules work with a client that
sends a request, the manager, and a server that returns the answer. These
components can be part of a bigger graph but we assume that they were
already chosen by the constraint solving algorithm at each rewriting step.
The three components start from an idle state. Then the manager and the
client rewrite respectively to the per and wa states after having coordinated
on the client request. The second rewriting is between the manager and the
server (to wsa and pr states, respectively) when the manager forwards the
request the server. The last two steps are from the server to the manager (to
idle and psa states, respectively) delivering the answer, and from the
manager to the client returning the answer to its request. At the end of the
sequence they return to an idle state (the server already after returning the
answer), where new communications can be performed or any of the
dynamic productions can be applied.

Note that the dynamic productions in figure 3 can be applied only when
components are in an idle status (they cannot be in the middle of a
communication).

It is worthwhile mentioning that we choose the level of abstraction for
the description of the communication pattern. For example, figure Sa is an
alternative set of rules for the communication pattern, where there are two
rewrites instead of four: one that sends the request from the client to the
server (via the manager), and the other that returns the answer to the client
(figure 5b).

With this grammar we obtained a complete characterization of the style
in a unique language and a clear identification of the steps that every
architecture instance gives during its evolution. Also note that by analyzing
the derivation tree it is possible to have all the computations of the system
allowing the verification of properties of the architecture, such as deadlock
(Degano, P. and Montanari, U., 1987).

3.2 Remote Medical Care System

This example is a simplification of a case study presented in (Balsamo, S.
et al., 1998) for performance evaluation of a software architecture. We
present here only a partial specification of the style, to show how constraints

www.manaraa.com

136 Dan Hirsch, Paola lnverardi, and Ugo Montanari

CR CR CR SR CR
0 req<

I

-
GfJ

-
SA CA

0 t CA CA CA
SR CR

req, req<
SR CR SR CR SR CR

- - SA CA

t
SR CR

SA CA SA CA SA CA
ans5 ans.

SR SR SR
9 req 5

I
I (;r) I

SA CA - - b)

I
0 wa: waiting answer

SA SA SA per: processing client request

a) pr: processing request

Figure 5. Client-server: communication pattern productions-an alternative

can be used to control an ordered evolution in the configuration of the
system. This system is part of a project carried out by the University of
L'Aquila at Parco Scientifico e Tecnologico d'Abruzzo, a regional
consortium of public and private research institutions and manufacturing
industries.

The Teleservices and Remote Medical Care System (TRMCS) provides
and guarantees assistance services to users with specific needs, like disabled
or elderly people. It is composed of a set of Users, which are connected to a

www.manaraa.com

Modeling Software Architectures and Styles 137

Router which interacts with a Server. An external component, the Timer
allows the modeling of time.

The four types of units operate as follows:

User sends either alarm (i.e., help requests) or check signals (i.e., control
messages about the subsystem user state or the user's health state,
respectively).

Router accepts signals (control or alarm) from the users. It forwards the
alarm requests to the Server and checks the behavior of the subsystem
user though the control messages.

Server dispatches the help requests.

Timer sends a clock signal for each time unit.

alarm OR

alarmUR alarmRS

; L i
1 <'"'') (••••> r-o

i l i i
0

ackRU 4l ackSR
clock

a)

b)

alannUR: Alarm User-Router
alarmRS: Alarm Routcr-serwrr
not· un: messap
ackSR: A<knowledgmcnl Sen1:r·Router
ackRU; Acknowledgment.Roucer

Figure 6. TRMCS: static productions

There is only one server in the system. A variable number of routers are
connected to the server and a variable number of users are connected to each
router. The timer controls all routers. Figure 6a shows the static productions

www.manaraa.com

138 Dan Hirsch, Paola lnverardi, and Ugo Montanari

and figure 6b shows an instance of the system with two routers, and one user
attached to the first one and two others to the second router.

In the Client-Server example presented above, clients can leave the
system independently of the other components. The only restriction, as it is
modeled in the productions, is that they cannot leave the system if they are in
the middle of a communication. In the TRMCS system, users have a similar
behavior to the clients, but for routers the situation is different. In the case of
a router, it is allowed to leave the system, but it cannot disappear without
checking if there are users still connected to it. One possible action for the
router if there are users connected to it, is to wait until all of them leave and
then, when there are no users connected, it can leave too. These actions are
described with the productions in figure 7.

alarmUR

User
(init) ---check

ackRU

alarmUR alarmRS

no Fun ---

alarmUR
0

0
ackRU

alarmUR

©
check

alam1RS
00

no USER no Fun
©

check
0

0 0
ackRU E;) ackSR

clock

Figure 7. TRMCS: dynamic productions

These productions are part of the set of dynamic productions for the
TRMCS. The first rule is for the user and it allows it to leave the system
independently (i .e., it is not constrained). The second rule is for the router
and it is constrained. The condition noUSER is imposed on the check port.
A router and its users are connected to this port. This is a broadcast type of
port, so a condition in it means that for this rule to be applied it must
coordinate with all other edges connected to that port (i. e. the users). So, if

www.manaraa.com

Modeling Software Architectures and Styles 139

all neighbors agree on the condition, then everybody can rewrite. But in this
case, the only one with this condition is the router and it cannot leave the
system while users are attached to it.

When all users connected to the router leave the system then the
production with condition noUSER is satisfied and then it can be applied to
the router. The rule can be applied because there are no neighbors, so the
router is the only one that has to agree on the constraint. Note that, after the
router leaves the system, the three isolated nodes that remain can be
eliminated with a special action called end that functions as a type of
garbage collection. This is an example of coordinated evolution, where
constraints are used to control and coordinate the dynamics of a system.

3.3 Connectors: Parallel Point-to-point

Software architectures may require complex interactions among
components. Usually, connectors may be defined as architectural building
blocks to help model and specify these interactions. The modeling of
connectors explicitly and independently, helps to achieve a higher level of
reusability allowing to use already specified connectors in different styles
and to create new connector types as the composition of basic ones.

So, in this direction we propose to use the generality of the model we are
presenting to obtain independent connector descriptions. Using the same
language to specify connectors based on more basic ones, allows to
incorporate them to the primitive set of communication types and reuse them
successively in different style descriptions.

In all the examples presented we use two basic types of communication:
broadcast and point-to-point communication. In the next example we use the
broadcast port as a basic type and specify with constrained productions the
parallel point-to-point communication. The specification of a parallel point
to-point port allows for a set of adjacent components to perform parallel
communications between pairs. This means that in a given port (the one we
are specifying), for each sender a receiver (if there are available) is selected
to accept the communication and if there are more than one pair willing to
communicate, simultaneous interactions are allowed.

Figure 8 shows the specification for a connector (edge C) from two to
four components. In this figure all ports are broadcast ports. For two
components broadcast and point-to-point are the same (figure 8a). For three
components, figure 8b shows the three possible alternatives (with three
components there are no parallel communications) and figure 8c shows the
nine possible interactions that can take place between four components. In a
similar way this specification can be generalized for n components. In this
case, point-to-point communication is associative and commutative so once

www.manaraa.com

140 Dan Hirsch, Paola lnverardi, and Ugo Montanari

we have the connector specification we can abstract from it and use the new
connector as a new type of port. Also, we can mention that repeatedly
composing the connector specification for three components, and the
corresponding one for four components (only considering the rules for a
single pair communication), in a sequential pattern, we obtain the simple
point-to-point communication. In this way, an independent specification of a
new connector is obtained and it can be reused in the description of other
software architecture styles.

cb clr ar •o ·jj}o
0 0 b . • 6 • 0
B) b)

+- • Q ++ 0 0

Y l · ·: .· •' y ·· c :

' ' 10

c)

Figure 8. Parallel point-to-point connector

4. CONCLUSIONS AND FUTURE WORK

In this work we have presented a specification method for software
architecture styles using hyperedge context-free graph grammars. Based on
the rewriting system specified by the grammars we describe the style as a set
of productions that model the initial structural topology of the architecture,
the laws governing the dynamic changes, and its communication pattern.

Among the benefits of this approach are: a simple description of systems
with a unique language is obtained, the use of constraints to model
coordination of components allows a clear description of component
interactions and controlled dynamics, and the inheritance of the distributed
solutions for the rule-matching problem. As we said, we propose to use a
technique already applied in (Montanari, U. and Rossi, F., 1997) and
(Montanari, U. and Rossi, F., 1996) to represent distributed systems with
graph rewriting and constraint solving. This is modeled by a two-phased
approach where, context-free process productions are specified (a set for
each process) with synchronization requests for each of the possible moves.

www.manaraa.com

Modeling Software Architectures and Styles 141

After that, context-sensitive subsystem rewriting rules are obtained by
combining some context-free productions.

The solution of the rule-matching problem is implemented considering it
as a finite domain constraint problem (Mackworth, A., 1988), where
variables are associated with processes and constraints with ports. The
domain of a variable is then the set of all context-free productions for the
corresponding process, and each constraint is satisfied by the tuples of
context-free productions (one for each adjacent process) whose
synchronization requirements agree on the considered port. In this kind of
constraint problem, a solution is thus a choice of a context-free production
for each process, such that all synchronization requirements are satisfied.
Usually, finite domain constraint problems are solved by a backtracking
search over a tree of the possible alternatives for each variable. To deal with
this type of problems many efficient techniques have been proposed, such as
constraint propagation or local consistency algorithms (Mackworth, A.,
1988), (Dechter, R. and Pearl, J., 1988). As in (Montanari, U. and Rossi, F.,
1997), this kind of graph rewriting can be raised to a general framework,
called the tile model (Gadducci, F. and Montanari, U., 1996), that permits a
clear separation between sequential rewriting and synchronization.

Also, context-free rules are a natural way for modeling the behavior of
components independently of each other allowing a distributed
implementation, and as we saw in the client-server example, constrained
rules allows different levels of detail for the description of transactions
(Bruni, R. and Montanari, U., 1997). This is a convenient property to model
architectures in which components are required to configure themselves
(Magee, J. and Kramer, J., 1996a).

In this paper we model ports just as connections between components but
as was shown in the examples the generality of the method can be used to
incorporate descriptions of more complex connector elements in the
specification of a system. If it is necessary complex connectors can be
incorporated as a new type of edge.

Another thing to note is that in the examples presented we did not include
termination rules. Constraints and productions can be used to model local
and coordinated termination and this will be important for the verification of
properties on the derivation tree.

We agree that the use of context-free rules limits the type of architecture
styles that can be described, but we consider this as a first step on our work.
With this type of rules, two separate edges already created cannot be bound
later, so for example, an architecture instance that has a pipeline style cannot
be converted, after its creation, into a ring. This is a great restriction that can
easily be modeled in languages like • -calculus. But work like (Montanari,

www.manaraa.com

142 Dan Hirsch, Paola lnverardi, and Ugo Montanari

U. and Pistore, M., 1995), shows that this type of calculus can be represented
with graph rewriting (not context-free).

Finally, the productions that we use are all rewriting rules (one thing is
replaced by another), but an interesting extension is to incorporate
refinement rules where the history of the system is remembered. It is worth
mentioning that in the original paper (Degano, P. and Montanari, U., 1987)
the partial ordering is generated with the past history of the derivation. This
can be useful in the description of a bigger class of software architectures,
specially those in which the organization of components and connectors may
change during system execution (Magee, J. and Kramer, J ., 1996b).

In spite of the fact that context-free productions limit the classes of
systems that can be described, it is clear that the description language
proposed has very good properties for modeling reconfiguration and self
organising architectures. It is our intention to continue the research in this
direction for a deeper analysis of the subject.

ACKNOWLEDGMENTS

The third author was partially supported by CNR Integrated Project
Sistemi Eterogenei Connessi mediante Reti di Comunicazione, Esprit
Working Group COOR-DINA and Italian Ministry of Research Tecniche
Formali per Sisterni Software. The first author was partially supported by
ARTE Project, PIC 11-00000-01856, ANPCyT and FOMECProject 376,
Contract 164.

REFERENCES

Balsamo, S., Inverardi, P., Mangano, C. and Russo, F. (1998). Performance evaluation of a
software architecture: A case study, Proceedings of the Ninth International Workshop on
Software Specification and Design.

Bruni, R. and Montanari, U. (1997). Zero-safe nets, or transaction synchronization made
simple, EXPRESS'97, Electronic Notes in Theoretical Computer Science 7.

Compare, D., lnverardi, P. and Wolf, A. (n.d.). Uncovering architectural mismatch in
dynamic behavior. To appear.

Corradini, A., Degano, P. and Montanari, U. (1985). Specifying highly concurrent data
structure manipulation, in Bucci, G. and Valle, G. (eds), COMPUTING 85:A Broad
Perspective of Concurrent Developments, Elsevier Science.

Dechter, R. and Pearl, J. (1988). Network-based heuristics for constraint satisfaction
problems, in Kana! and Kumar (eds), Search in Artificial Intelligence, Springer Verlag.

Degano, P. and Montanari, U. (1987). A model for distributed systems based on graph
rewriting, Journal of the Association for Computing Machinery 34(2).

www.manaraa.com

Modeling Software Architectures and Styles 143

Drewes, F., Kreowski, H.-J. and Habel, A. (1996). Foundations, in G. Rozenberg (ed.),
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. I, World
Scientific, chapter 2.

Gadducci, F. and Montanari, U. (1996). The tile model, Technical Report TR-96-27,
Department of Computer Science, University of Pisa.

Inverardi, P. and Wolf, A. (1995). Formal specification and analysis of software architectures
using the chemical abstract machine model, IEEE Transactions on Software Engineering
21(4): 373-386. Special Issue on Software Architectures.

Le M'etayer, D. (1998). Describing software architecture styles using graph grammars, IEEE
Transactions on Software Engineering . to appear.

Mackworth, A. (1988). Encyclopedia of /A, Springer Verlag, chapter Constraint Satisfaction.
Magee, J. and Kramer, J. (1996a). Dynamic structure in software architectures, Proceedings

of the FourthACM SIGSOFT Symposium on the Foundations of Software Engineering,
ACM Software Engineering Notes.

Magee, J. and Kramer, J. (1996b). Self organising software architectures, Proceedings of the
Second International Software Architecture Workshop.

Medvidovic, N. (1997). A classification and comparison framework for software architecture
description languages, Technical Report /CS-TR-97- 02, University of California, Irvine,
Department of Information and Computer Science.

Montanari, U. and Pistore, M. (1995). Concurrent semantics for the • -calculus, Electronic
Notes in Theoretical Computer Science 1.

Montanari, U. and Rossi, F. (1996). Graph rewriting and constraint solving for modelling
distributed systems with synchronization, Lecture Notes in Computer Science 1061.

Montanari, U. and Rossi, F. (1997). Graph rewriting, constraint solving and tiles for
coordinating distributed systems. To appear in Applied Category Theory.
Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall.

www.manaraa.com

Describing Software Architecture with UML

C. Hofmeister, R. L. Nord, D. Soni
Siemens Corporate Research, Princeton, New Jersey, USA
{chofmeister, mord, dsonij@scr.siemens.com

Key words: Software architecture, UML, architecture descriptions, multiple views

Abstract: This paper describes our experience using UML, the Unified Modeling
Language, to describe the software architecture of a system. We found that it
works well for communicating the static structure of the architecture: the
elements of the architecture, their relations, and the variability of a structure.
These static properties are much more readily described with it than the
dynamic properties. We could easily describe a particular sequence of
activities, but not a general sequence. In addition, the ability to show peer-to
peer communication is missing from UML.

1. INTRODUCTION

UML, the Unified Modeling Language, is a standard that has wide
acceptance and will likely become even more widely used. Although its
original purpose was for detailed design, its ability to describe elements and
the relations between them makes it potentially applicable much more
broadly. This paper describes our experience using UML to describe the
software architecture of a system.

For these architecture descriptions, we wanted a consistent, clear
notation that was readily accessible to architects, developers, and managers.
It was not our goal to define a formal architecture description language. The
notation could be incomplete, but had to nevertheless capture the most
important aspects of the architecture. In this paper we start by giving an
overview of the kinds of information we want to capture in a software
architecture description. Then we give an example of a software architecture

www.manaraa.com

146 C. Hofmeister, R. L. Nord, and D. Soni

description for part of particular system: the image processing portion of a
real-time image acquisition system. The final section discusses the strengths
and weaknesses of UML for describing architecture.

We separate software architecture into four views: conceptual, module,
execution, and code. This separation is based on our study of the software
architectures of large systems, and on our experience designing and
reviewing architectures (Soni, 1995). The different views address different
engineering concerns, and separation of such concerns helps the architect
make sound decisions about design trade-offs.

The notion of this kind of separation is not unique: most of the work in
software architecture to date either recognizes different architecture views or
focuses on one particular view in order to explore its distinct characteristics
and distinguish it from the others (Bass, 1998). The 4+ 1 approach separates
architecture into multiple views (Kruchten, 1995). The Garlen and Shaw
work focuses on the conceptual view (Shaw, 1996). Over the years there has
been a great deal of work on the module view (Prieto-Diaz, 1986). There is
other work that focuses on the execution view, and in particular explores the
dynamic aspects of a system (Kramer, 1990; Purtilo, 1994). The code view
has been explored in the context of configuration management and system
building.

The conceptual view describes the architecture in terms of domain
elements. Here the architect designs the functional features of the system.
For example, one common goal is to organize the architecture so that
functional features can be added, removed, or modified. This is important for
evolution, for supporting a product line, and for reuse across generations of a
product.

The module view describes the decomposition of the software and its
organization into layers. An important consideration here is limiting the
impact of a change in external software or hardware. Another consideration
is the focusing of software engineers' expertise, in order to increase
implementation efficiency.

The execution view is the run-time view of the system: it is the mapping
of modules to run-time images, defining the communication among them,
and assigning them to physical resources. Resource usage and performance
are key concerns in the execution view. Decisions such as whether to use a
link library or a shared library, or whether to use threads or processes are
made here, although these decisions may feed back to the module view and
require changes there.

The code view captures how modules and interfaces in the module view
are mapped to source files, and run-time images in the execution view are
mapped to executable files. The partitioning of these files and how they are

www.manaraa.com

Describing Software Architectures with UML 147

organized into directories affect the buildability of a system, and become
increasingly important when supporting multiple versions or product lines.

Each of the four views has particular elements that need to be described.
The elements must be named, and their interface, attributes, behavior, and
relations to each other must be described. Some of the views also have a
configuration, which constrains the elements by defining what roles they can
play in a particular system. In the configuration, the architect may want to
describe additional attributes or behavior associated with the elements, or to
describe the behavior of the configuration as a whole.

In the next four sections, we show how we used UML to describe each of
these four views, starting with the conceptual view and ending with the code
view. To make the explanation clearer, we use an example from an image
acquisition system.

The image acquisition system acquires a set of digitized images. The user
controls the acquisition by selecting an acquisition procedure from a set of
predefined procedures, then starting the procedure and perhaps adjusting it
during acquisition. The raw data for the images is captured by a hardware
device, a "camera", and is then sent to an image pipeline where it is
converted to images. The image pipeline does this conversion, first
composing the raw data into discrete images, and then running one or more
standard imaging transformations to improve the viewability of the images.
The image pipeline is the portion of the system that we will use as an
example.

2. CONCEPTUAL ARCHITECTURE VIEW

The basic elements in the conceptual view are components with ports through
which all interactions occur, and connectors with roles to define how they
can be bound to ports. The components and connectors are bound together to
form a configuration. In order to bind together a port and role in a
configuration, the port and role protocols must be compatible. Components
can be decomposed into other components and connectors. These elements,
their associated behavior, and the relations of the conceptual view are
summarized in Table 1.

Table 1. Elements of a conceptual architecture view

Elements Behavior

component
port
connector
role

component functionality
port protocol
connector protocol
role protocol

Relations

component decomposition
port-role binding (for
configuration)

www.manaraa.com

148 C. Hofmeister, R. L. Nord, and D. Soni

Figure 1 is a UML diagram that describes much of the conceptual view
for the image pipeline. It is represented by the ImagePipeline component,
which has ports acqControl for controlling the acquisition, packetln for the
incoming raw data, and framedOutput for the resulting images.

The ImagePipeline is decomposed into a set of components and
connectors that are bound together to form a configuration. The components,
ports, and connectors are a stereotype of Class 1, but we use the convention of
special symbols for ports and connectors (and leave off the stereotype for
components) in order to make the diagrams easier to read. Roles are shown
as labels on the port-connector associations. We also use the convention that
when an association's multiplicity is not specified, it is assumed to be one.

lmlgePipellne

Figure 1. Conceptual configuration

The multiplicities on the components, connectors, and bindings show the set
of allowable configurations. Each acquisition procedure has a distinct set of
processing steps, represented by the Imager component. So the diagram shows
the general structure of an image pipeline, which all acquisition procedures
adhere to.

The first stage of the pipeline is the Framer, followed by one or more
subsequent stages, represented by the Imager. Each of the stages is connected to

"A stereotype is, in effect, a new class of modeling element that is introduced at modeling
time. It represents a subclass of an existing modeling element with the same form
(attributes and relationships) but with a different intent... To permit limited graphical
extension of the UML notation as well, a graphic icon or a graphic marker (such as texture
or color) can be associated with a stereotype." (UML, 1997)

www.manaraa.com

Describing Software Architectures with UML 149

the pipelineControl port via a Client/Server connector. The Imager component
has a multiplicity of "1.. *", meaning that an acquisition procedure has one or
more of these later stages.

The Imager is bound to "1.. *" Client/Server connectors, but the association is
one-to-one, so each Imager instance is bound to exactly one Client/Server
instance. Each Client/Server instance is bound to the pipelineControl port of
exactly one PipelineMgr, but pipelineControl is bound to all Client/Server
instances in the pipeline. Similarly the "1.. *" ImagePipe connectors have a one
to-one association with the Imagers. Because the bindings also have
multiplicities, we can conclude that there are the same number of Client/Server,
Imager, and lmagePipe elements bound together in a legal configuration.

We use the " {or}" annotation at the source side of the ImagePipe to show
that an ImagePipe is either bound to the output of the first stage or a later stage.
But while the output of the first stage (the Framer) is always bound to the
lmagePipe, the later stages could be bound to framedOutput. When a later stage
is bound to framedOutput, it is necessarily the last stage in the pipeline .

..
<<protocol>>

ReQuestoataPacmt

ircomirg /reques!P<JJ:.kel
pac ket(p:j)

outgoirg
subscribe
des ubsc ri be
requestP <JJ:. ket

Figure 2. Protocol for packetln Port

Figure 2 shows the protocol RequestDataPacket, which the packetln ports on
the ImagePipeline and Framer follow. We have adopted the ROOM notation
here, showing the incoming and outgoing messages, then either a sequence
diagram or state diagram to show the legal sequences of these messages (Selic,
1994; Selic, 1998).

The resource budgets are attributes of the components and connectors.
They can be described in the attribute box of the appropriate class in a UML
diagram, in a table, or in text.

www.manaraa.com

150 C. Hofmeister, R. L. Nord, and D. Soni

For the conceptual view, we represent components, ports, and connectors
as stereotyped classes. Decomposition is shown with nesting (association),
and bindings are shown by association. We use:

UML Class Diagrams for showing the static configuration.
- ROOM protocol declarations and UML Sequence Diagrams or State

Diagrams for showing the protocols that ports adhere to.
UML Sequence Diagrams for showing a particular sequence of
interactions among a group of components.

3. MODULE ARCHITECTURE VIEW

In the module architecture view, subsystems are decomposed into
modules, and modules are assigned to layers in accordance with their use
dependencies (Table 2). There is no configuration for the module view
because it defines the modules and their inherent relations to each other, but
not how they will be combined into a particular product.

Table 2. Elements of the module architecture view

Elements Behavior Relations

module
subsystem
layer

interface protocol module implements
conceptual component
subsystem decomposition
module use-dependency

Table 3 shows how the image pipeline's conceptual elements are mapped to
module elements. Notice that ports, connectors, and components are sometimes
combined into one module. This information could also be shown in a UML
class diagram, with the mapping between conceptual and module elements
shown as an explicit association.

Table 3. Mapping between conceptual and module architecture views

Conceptual element Subsystem or Module

lmagePipeline
acqControl, pipelineControl
PipelineMgr,lmagePipe, Client/Server
stageControl , imageln, imageOut
Framer
Imager

SPipeline
MPipelineAPI
MPipelineControl, MlmageBuffer
MlmageMgrAPI
MFramer
Mlmager

The SPipeline subsystem is decomposed into the six modules shown in
Figure 3. This decomposition is dictated by the modules' correspondence to
the conceptual elements, and their decomposition. Again we use nesting to

www.manaraa.com

Describing Software Architectures with UML 151

show the decomposition, and we use stereotypes for each different type of
element.

We do not use the UML "component" notation for a module, because in
the module view the modules are abstract, not the physical modules of
source code.

I

«module>>
MPipelineAPI

«module>>
MlrnageMgrAPI

<<subsystel11>>
SPipeline

<<module>>
M PipelineControl

«module>>
M lrnageBuffer

«module>>
MFrarrer

«module>>
Mlrnager

Figure 3. Decomposition of SPipeline

The use-dependencies among the pipeline modules are also derived from
the conceptual elements' associations. These are shown in Figure 4. The
MClient and MDataMgrAPI are not part of the SPipeline subsystem, but we
included them in order to show all use-dependencies of the SPipeline
subsystem. We use the UML "lollipop" notation to show the interface(s) of
each module, and to make it clear that the modules are dependent on the
interface of another module, not the module itself.

Figure 4 also shows some of the layers of the system. These are based on
the use-dependencies among modules and subsystems, so we often show
use-dependencies between and within layers in the same diagram, as we did
here.

For the interface definition, we use a simple list of the interface methods.
This information could be put inside the class definition in a UML diagram.
We generally prefer to list it separately, using the class diagrams to focus on
the relations among modules rather than a complete description of the
modules. In the module view, we represent modules with a stereotyped class,
and subsystems and layers with stereotyped packages. Decomposition is
shown by nesting (association), and the use-dependency is a UML
dependency.

We use:
- tables for describing the mapping between the conceptual and module

views.

www.manaraa.com

152 C. Hofmeister, R. L. Nord, and D. Soni

- UML Package Diagrams for showing subsystem decomposition
dependencies.
UML Class Diagrams for showing use-dependencies between modules.
UML Package Diagrams for showing use-dependencies among layers
and the assignment of modules to layers.

I

I «mcdul.,.> I
Me lien!

<<layer>>
ApplicalionServicos

« layer>>
IIIIIQIIProoessirg

Figure 4. Use-dependencies of SPipeline

4. EXECUTION ARCHITECTURE VIEW

The execution architecture view describes how modules will be
combined into a particular product by showing how they are assigned to run
time images. Here the run-time images and communication paths are bound
together to form a configuration. Table 4 lists the elements, behavior, and
relations of the execution view.

Table 4. Elements of the execution architecture view

Elements Behavior

run-time image
communication path

communication protocol

Relations

run-time image contains
module
binding (for configuration)

www.manaraa.com

Describing Software Architectures with UML 153

The execution configuration of the Image pipeline in Figure 5 indicates
that there is always just one EC!ient process, but multiple pipelines can exist
at one time. A pipeline has one process each for EPipelineMgr,
ElmageBuffer, and EFramer, and one process each for additional pipeline
stages.

We again use a stereotype of the UML Class for run-time images. They
are stereotyped with the name of the platform element, in this case
<<process>> or <<shared data>>. We originally used the UML "active
object" notation for a process, but now prefer to use a stereotyped class. One
reason is that we often want to use classes rather than objects in a
configuration diagram. A second reason is that active objects have a thread
of control, whereas passive objects run only when invoked (UML, 1997).
This distinction was not what we wanted to describe; we wanted to
characterize the run-time image by its platform element (e.g. process, thread,
dynamic link library, etc.) rather than convey control flow information about
the elements.

<<PrOCesS>> 1 <<process>> *
ECIIenl EPipellneMgr

I I 0 .. 1
MCII&nl MPipellneControl

IPC 1 1

«rrodUe>> * / " I MPipelneAPI·r- 7
* <<process>> * <<shMEdda.ta>> * <<process>>

Efran11r ElmgeiiUIIer E"'-r

I 1/ 1 <<module>> *1 «module>> J
UlmgeMgrAPI 11 rtw 1 l Mllnilgellltfer J 1 rtw i_ M"'-MgrAPI

shared shared

I I
I «module>> I memory memory <<module>>

UllralaMgrAPI M.,_r

I «module>> I
LlfntiTJlr

Figure 5. Execution configuration of the image pipeline

This diagram uses nesting to show the modules associated with each run
time image. The modules have a multiplicity that is assumed to be one if
none is explicitly shown. In the configuration in Figure 5, there are multiple
modules MlmageMgrAPI, but at most one per process, and only in the
EFramer and Elmager processes. There are also multiple modules
MPipelineAPI in the configuration, but all of these reside in process EClient.

The run-time images also have multiplicity, as do communication paths,
which are labeled to show the communication mechanisms. This has the
same implications as for the conceptual configuration, namely that with
multiplicities on the run-time images, communication paths, and modules we
can show all allowable configurations in a single diagram.

www.manaraa.com

154 C. Hofmeister, R. L. Nord, and D. Soni

UML class diagrams cannot show dynamic behavior, so we use different
diagrams to show the dynamic aspects of configurations. Figure 5 shows the
configuration of the pipeline during an imaging procedure. The processes
that implement the pipeline are created dynamically when the imaging
procedure is requested, and are destroyed after the procedure has completed.
A UML sequence diagram shows how the pipeline is created at the start of a
procedure (Figure 6).

For the execution view, we represent the run-time images as stereotyped
classes, and the communication paths as associations. Module containment is
shown by nesting (association). We use:
- UML Class Diagrams for showing the static configuration.

UML Sequence Diagrams for showing the dynamic behavior of a
configuration, or the transition between configurations.

- UML State Diagrams or Sequence Diagrams for showing the protocol of
a communication path.

:ECiient
(module MPipelineAPI)

create

create

create

Figure 6. Image pipeline creation

5. CODE ARCHITECTURE VIEW

The code architecture view contains files and directories, and like the
module view, does not have a configuration. The relations defined in the
code view apply across all products, not just to a particular product. The
code view elements and their relations are listed in Table 5. Modules and
interfaces from the module view are partitioned into source files in a
particular programming language.

Table 6 shows this mapping for the MPipelineControl module and its
interfaces: the public interfaces are each mapped to a file, and we have
created an additional file for the private interface to the module.

www.manaraa.com

Describing Software Architectures with UML

Table 5. Elements of code architecture view
Elements Relations

source implements module
source includes source

155

source
intermediate
executable
directory

intermediate compiled from run-time image
executable implements run-time image
executable linked from intermediate

Table 6. Source files for module MPipelineControl
Module or Interface Source File

MPipelineControl

IPipelineControl
IStageControl

CPipelineControl.CPP,
CPipelineControiPvt.H
CPipelineControl.H
CStageControl.H

<<cireclory>>
<<Source» PipelineControl

CPIPehneControl CPP __ _

'
\ ... '

<<directory>>
PipelineAPI

<<Source:->
CPipeline.H

<.::Source>>
CPipelinePvt.H

<<Source>>
CPipelineControiPvt.H

<<Source»
CstageControi.H

Figure 7. Include dependencies among source files

<<directory>>
lmageMgrAPI

<<Source>>
ClmageMgr.H

<<Source>>
ClmageMgrPvt.H

The source files are organized into directories, as shown in Figure 7. We
use the UML "component" notation to represent the files, and the package
notation for directories. Both files and directories have stereotypes to clarify
their meaning. In UML, the component symbol is used for "source code
components, binary code components, and executable components" (UML,
1997). We believe the intention of this symbol is closest to our notion of a
file (whether source, intermediate, or executable).

www.manaraa.com

156 C. Hofmeister, R. L. Nord, and D. Soni

Figure 7 also shows the include dependencies for the PipelineControl
source files. We use the UML dependency notation for these relationships,
with the stereotype <<include>> if the diagram contains more than one type
of dependency. Source files can also have a "generate" dependency, for
example when a preprocessor uses one source file to generate another.

The run-time images from the execution view also have a relationship to
elements in the code view, in this case to executable files. Table 7 shows
how two of the run-time images in the image pipeline are mapped to
executable files. Here the mapping is one-to-one, but if the run-time image
contained dynamic link libraries, each of these libraries would be in a
separate executable file.

Table 7. Mapping between run-time image and executable file
Run-time Image Executable File

EPipelineMgr
EFramer

EPipelineMgr.exe
EFramer.exe

The executable files are also organized into directories (Figure 8). The
relationship between executable files and source files is through intermediate
files. An executable file has link dependencies to the object files it links in,
and an object file has compile dependencies to the source files from which it
is compiled. These dependencies are also shown in Figure 8.

For the code view, we represent the source, object, and executable files
as stereotyped classes, and the directories as stereotyped packages. The
include, compile, and link relationships are shown as stereotyped
dependencies. We use:
- Tables to describe the mapping between elements in the module and

execution views and elements in the code view.
- UML Component Diagrams for showing the dependencies among source,

intermediate, and executable files.

6. DISCUSSION

Table 8 summarizes the elements of our four architecture views and their
corresponding UML Metamodel Classes and stereotype names, if any. For
relations among the architecture description elements, we use UML
associations and dependencies. We generally create a separate diagram for
each kind of relation, but sometimes we combine them (e.g. the execution
configuration diagram).

We use UML Class/Object, Package, and Component Diagrams for the
elements and their relations, sometimes including the interfaces and

www.manaraa.com

Describing Software Architectures with UML 157

attributes in these diagrams. Sequence Diagrams or State Diagrams are used
to describe behavior.

l

<<d:rectory>>

8 « executable»
EPipellneMgr.exe

I
:<<link>>

J
------, <<cirectorv>>

<<drectory>>

8. IEFrmw --
EFramer.exe

<<hnk>>,' : " .. «link>>
/ : <<link>> " ..

<<directory>>

<<directory>>

Figure 8. Dependencies among source, object, and executable files

The configuration diagrams in the conceptual and execution views are
UML Class/Object Diagrams, but we added some conventions to help define
the semantics and improve the readability of the diagrams.

One convention is to use nesting to indicate decomposition. This makes
the structure easier to see, although it can make layout difficult for complex
structures. With this convention we cannot show recursive or indefinite
nesting, which could be easily described in a diagram that depicts
decomposition as a labeled association (a line) between two objects.

A semantic convention we use is that a configuration diagram describes
the set of possible configurations at a single point in time. Systems generally
have defined modes, e.g. start-up, shut-down, operational, diagnosis,
recovery, etc. Each of these modes can have a different configuration, so
should have a different diagram. In some modes (in our example, the
operational mode) the configuration changes over time (in our case,
pipelines are created and destroyed with each acquisition procedure). The
dynamic behavior should be described separately. A sequence diagram
works well to describe start-up and shut-down behavior.

www.manaraa.com

158 C. Hofmeister, R. L. Nord, and D. Soni

Table 8. Summary of architecture description elements
Element UML Metamodel Class

component Class
port Class
connector Class
role label on association
port or role protocol Class
module Class
subsystem Package
layer Package
run-time image Class

communication path association
source Component
intermediate Component
executable Component
directory Package

Stereotype Name

<<component>>
<<port>>
<<connector>>

<<protocol>>
<<module>>
<<subsystem>>
<<layer>>
<<process>>, <<shared
data>>,
<<thread>>, etc.

<<source>>
<<object>>
<<executable>>
<<directory>>

An important concern we have about using UML to describe software
architecture is that the same notation can have a wide range of semantics.
We use the same basic diagram, the UML Class/Object diagram to show
most of the aspects of the architecture. We use stereotypes and special
symbols to minimize the confusion between different views.

The more traditional use of UML is for the design of implementation
classes for a system. We are also concerned that by using the same notation
to describe the software architecture, we run the risk of further blurring the
distinction between the architecture and the implementation. This is another
reason to consistently use particular conventions, stereotypes, and special
symbols for these architecture diagrams.

In summary, we found UML deficient in describing:
correspondences: A graphical notation is too cumbersome for
straightforward mappings such as the correspondence between elements
in different views. This information is more efficiently described in a
table (e.g. Table 3).
protocols: The ability to show peer-to-peer communication is missing
from UML. We used ROOM to describe protocols (e.g. Figure 2).
ports on components: We used nesting to show the relationship between
ports and components, but this is visually somewhat misleading. We
would prefer a notation more similar to the lollipop notation for the
interfaces of a module.
dynamic aspects of the structure

- a general sequence of activities
UML worked well for describing:

www.manaraa.com

Describing Software Architectures with UML

the static structure of the architecture
variability: e.g. the conceptual configuration in Figure 1 describes the
structure of a set of pipelines.

159

a particular sequence of activities: e.g. the start-up behavior of an Image
Pipeline (Figure 6).

REFERENCES

Bass, L., Clements, P., and Kazman, R. (1998) Software Architecture in Practice. Addison
Wesley, Massachusetts.

Eriksson, H., and Penker, M. (1998) UML Toolkit. John Wiley and Sons, London.

Fowler, M., with Scott, K. (1997) UML Distilled. Applying the Standard Object Modeling
Language. Addison-Wesley, Massachusetts.

Hofmeister, C., Nord, R., Soni, D. (to appear) Applied Software Architecture. Addison
Wesley, Massachusetts.

Kramer, J., and Magee, J. (1990) The Evolving Philosophers Problem: Dynamic Change
Management. ACM Transactions on Software Engineering, 16(11), 1293-1306.

Kruchten, P. (1995) The 4+ 1 View Model of Architecture, IEEE Software, 12(6).
Prieto-Diaz, R., and Neighbors, J.M. (1986) Module Interconnection Languages. The Journal

of Systems and Software, 6(4), 307-334.
Purtilo, J.M. (1994) The Polylith Software Bus. ACM Transactions on Programming

Languages and Systems, 16(1), 151-174.
Selic, B., Gullekson, G., and Ward, P.T. (1994) Real-Time Object-Oriented Modeling. John

Wiley and Sons, New York.
Selic, B., and Rumbaugh, J. (1998) Using UML for Modeling Complex Real-Time Systems.

http://www.objectime.com/uml/uml.html.
Shaw, M., and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging

Discipline. Prentice Hall.
Soni, D., Nord, R.L., and Hofmeister, C. (1995) Software Architecture in Industrial

Applications, in Proceedings of the 17th International Conference on Software
Engineering, Seattle, W A.

UML (1997) UML Notation Guide, Version 1.1. http://www.rational .com/uml.

www.manaraa.com

Assessing the Suitability of a Standard Design Method
for Modeling Software Architectures

Nenad Medvidovic and David S. Rosenblum
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, U.S.A.
{neno,dsr}@ics.uci.edu

Key words: Software architecture, architectural style, object-oriented design, architecture
description languages, Unified Modeling Language

Abstract: Software architecture descriptions are high-level models of software systems.
Most existing special-purpose architectural notations have a great deal of
expressive power but are not well integrated with common development
methods. Conversely, mainstream development methods are accessible to
developers, but lack the semantics needed for extensive analysis. In our
previous work, we described an approach to combining the advantages of
these two ways of modeling architectures. While this approach suggested a
practical strategy for bringing architectural modeling into wider use, it
introduced specialized extensions to a standard modeling notation, which
could also hamper wide adoption of the approach. This paper attempts to
assess the suitability of a standard design method "as is" for modeling
software architectures.

1. INTRODUCTION

Software architecture is an aspect of software engineering directed at
reducing the costs of developing applications and increasing the potential for
commonality among different members of a closely related product family
(Garlan and Shaw, 1993; Perry and Wolf, 1992). Software development
based on common architectural idioms has its focus shifted from lines-of
code to coarser-grained architectural elements and their overall

www.manaraa.com

162 Nenad Medvidovic and David Rosenblum

interconnection structure. This enables developers to abstract away the
unnecessary details and focus on the "big picture:" system structure, high
level communication protocols, assignment of software components and
connectors to hardware components, development process, and so forth
(Garlan and Shaw, 1993; Kruchten, 1995; Luckham and Vera, 1995; Perry
and Wolf, 1992; Soni, et al., 1995; Taylor, et al., 1996). The basic promise
of software architecture research is that better software systems can result
from modeling their important aspects during, and especially early in the
development. Choosing which aspects to model and how to evaluate them
are two decisions that frame software architecture research (Medvidovic and
Rosenblum, 1997).

Part of the software architecture research community has focused on
analytic evaluation of architecture descriptions. Many researchers have come
to believe that, to obtain the benefits of an architectural focus, software
architecture must be provided with its own body of specification languages
and analysis techniques (Garlan, ed., 1995; Garlan, et al., eds., 1995; Wolf,
ed., 1996). Such languages are needed to demonstrate properties of a system
upstream, thus minimizing the costs of errors. They are also needed to
provide abstractions that are adequate for modeling a large system, while
ensuring sufficient detail for establishing properties of interest. A large
number of architecture description languages (ADLs) has been proposed
(Allen and Garlan, 1997; Garlan, et al., 1994; Luckham and Vera, 1995;
Magee and Kramer, 1996; Medvidovic, Taylor, et al., 1996; Moriconi, et al.,
1995; Shaw, DeLine, eta!., 1995; Vestal, 1996).

Each ADL embodies a particular approach to the specification and
evolution of an architecture. Answering specific evaluation questions
demands powerful, specialized modeling and analysis techniques that
address specific aspects in depth. However, the emphasis on depth over
breadth of the model can make it difficult to integrate these models with
other development artifacts, because the rigor of formal methods draws the
modeler's attention away from day-to-day development concerns. The use of
special-purpose modeling languages has made this part of the architecture
community fairly fragmented, as revealed by a recent survey of architecture
description languages (Medvidovic and Taylor, 1997).

Another part of the community has focused on modeling a wide range of
issues that arise in software development, perhaps with a family of models
that span and relate the issues of concern. By paying the cost of making such
models, developers gain the benefit of clarifying and communicating their
understanding of the system. However, emphasizing breadth over depth
potentially allows many problems and errors to go undetected, because lack
of rigor allows developers to ignore certain details. Several competing
notations have been used in this part of the community, but there now exists

www.manaraa.com

Assessing the Suitability of a Standard Design Method 163

a concerted effort to standardize methods for object-oriented analysis and
design (Object Management Group, 1996).

In our previous work, we described an approach to combining the
advantages of specialized, highly formal methods of modeling architectures
with general, less formal design methods (Robbins, et a!., 1998). This
approach suggested a practical strategy for bringing architectural modeling
into wider use, namely by incorporating substantial elements of architectural
models into a standard design method, the Unified Modeling Language
(UML) (Rational, 1997a). However, our technique is not without drawbacks:
for each architectural approach and ADL, we introduced a somewhat
specialized extension to UML. In particular, we relied heavily on UML's
Object Constraint Language (OCL) (Rational and IBM, 1997) to specify
architecture- and ADL-specific concepts.

OCL constraints are highly formal. Their formality may hamper wide
adoption of our technique, although end users of the enhanced UML meta
model typically will not need to write OCL constraints. Furthermore, OCL is
a part of the standard UML definition and it is expected that standardized
UML tools will be able to process it. However, OCL is considered an
uninterpreted part of UML and UML tools may not support it to the extent
needed for creating, manipulating, analyzing, and evolving designs. For this
reason, in this paper we attempt to assess the suitability of UML "as is" for
modeling software architectures. In particular, we focus on one of the
architectural approaches we addressed previously (Robbins, et al., 1998), the
C2 architectural style (Taylor, et al. , 1996). We use a simple meeting
scheduler application to highlight the issues. In the process, we attempt to
shed light on the relationship between architecture and design.

The paper is organized as follows. The next section briefly describes
UML. Section 3 briefly describes the example application, a meeting
scheduler, used to illustrate our arguments throughout the paper. In
Section 4, we introduce the C2 style and discuss a possible C2 architecture
for the meeting scheduler application. Section 5 provides a "C2 style" UML
design of the meeting scheduler. We discuss the results and key lessons
learned in Section 6. Our conclusions round out the paper.

2. OVERVIEW OF UML

2.1 UML background

A UML model of a software system consists of several partial models,
each of which addresses a certain set of issues at a certain level of fidelity .
There are eight issues addressed by UML models:

www.manaraa.com

164 Nenad Medvidovic and David Rosenblum

1. classes and their declared attributes, operations, and relationships;
2. the possible states and behavior of individual classes;
3. packages of classes and their dependencies;
4. example scenarios of system usage including kinds of users and

relationships between user tasks;
5. the behavior of the overall system in the context of a usage scenario;
6. examples of object instances with actual attributes and relationships in

the context of a scenario
7. examples of the actual behavior of interacting instances in the context of

a scenario; and
8. the deployment and communication of software components on

distributed hosts.
Fidelity refers to how close the model will be to the eventual

implementation of the system: low-fidelity models tend to be used early in
the life-cycle and are more problem-oriented and generic, whereas high
fidelity models tend to be used later and are more solution-oriented and
specific. Increasing fidelity demands effort and knowledge to build more
detailed models, but results in more properties of the model holding true in
the system.

UML is a graphical language with fairly well-defined syntax and
semantics. The syntax of the graphical presentation is specified by examples
and a mapping from graphical elements to elements of the underlying
semantic model (Rational, 1997c). The syntax and semantics of the
underlying model are specified semi-formally via a meta-model, descriptive
text, and constraints (Rational, 1997b). The meta-model is itself a UML
model that specifies the abstract syntax of UML models. This is much like
using a BNF grammar to specify the syntax of a programming language. For
example, the UML meta-model states that a Class is one kind of model
element with certain attributes, and that a Feature is another kind of model
element with its own attributes, and that there is a one-to-many composition
relationship between them.

UML is an extensible language in that new constructs may be added to
address new issues in software development. Three mechanisms are
provided to allow limited extension to new issues without changing the
existing syntax or semantics of the language. (1) Constraints place semantic
restrictions on particular design elements. (2) Tagged values allow new
attributes to be added to particular elements of the model. (3) Stereotypes
allow groups of constraints and tagged values to be given descriptive names
and applied to other model elements; the semantic effect is as if the
constraints and tagged values were applied directly to those elements.
Another possible extension mechanism is to modify the meta-model, but this
approach results in a completely new notation to which standard UML tools

www.manaraa.com

Assessing the Suitability of a Standard Design Method 165

cannot be applied. We discuss this approach in more detail in Section 2.2.
Figure I shows the parts of the UML meta-model used in this paper. We
have simplified the meta-model for purposes of illustration.

Note: All classes are sti>classes of
MOOelEiement (except McxlelEiement
itself). This rehtionship is mt shown.

Figure 1. Simplified UML meta-model, adapted from (Rational, 1997b).

2.2 Our strategy for adapting UML for architecture
modeling

In (Robbins, et at., 1998) we studied two possible approaches to using
UML to model architectures. One approach is to define an ADL-specific
meta-model. This approach has been used in more comprehensive
formalizations of architectural styles (Abowd, et at., 1995; Medvidovic,
Taylor, et at., 1996). Defining a new meta-model helps to formalize the
ADL, but does not aid integration with standard design methods. By defining
our new meta-classes as subclasses of existing meta-classes we would
achieve some integration. For example, defining Component as a subclass of
meta-class Class would give it the ability to participate in any relationship in
which Class can participate. This is basically the integration that we desire.
However, this integration approach requires modifications to the meta-model
that would not conform to the UML standard; therefore, we cannot expect
UML-compliant tools to support it.

The approach for which we opted instead was to restrict ourselves to
using UML's built-in extension mechanisms on existing meta-classes
(Robbins, eta!., 1998). This allows the use of existing and future UML
compliant tools to represent the desired architectural models, and to support
architectural style conformance checking when OCL-compliant tools

www.manaraa.com

166 Nenad Medvidovic and David Rosenblum

become available. Our basic strategy was to first choose an existing meta
class from the UML meta-model that is semantically close to an ADL
construct, and then define a stereotype that can be applied to instances of
that meta-class to constrain its semantics to that of the ADL.

Neither of the two approaches answers the deeper question of UML's
suitability for modeling software architectures "as is," i.e., without defining
meta-models specific to a particular architectural approach or extending the
existing UML meta-model. Such an exercise would highlight the respective
advantages of special- and general-purpose design notations in modeling
architectures. It also has the potential to further clarify the relationship
between software architecture and design. Therefore, in this paper we study
the characteristics of using the existing UML features to model architectures
in a particular style, C2.

3. EXAMPLE APPLICATION

The example we selected to motivate the discussion in this paper is a
simplified version of the meeting scheduler problem, initially proposed by
(van Lamsweerde, et al., 1992)and recently considered as a candidate model
problem in software architectures (Shaw, Garlan, et al., 1995). We have
chosen this problem partly because of our prior experience with designing
and implementing a distributed meeting scheduler in the C2 architectural
style, described in (Taylor, et at., 1996).

Meetings are typically arranged in the following way. A meeting initiator
asks all potential meeting attendees for a set of dates on which they cannot
attend the meeting (their "exclusion" set) and a set of dates on which they
would prefer the meeting to take place (their "preference" set). The
exclusion and preference sets are contained in some time interval prescribed
by the meeting initiator (the "date range").

The initiator also asks active participants to provide any special
equipment requirements on the meeting location (e.g., overhead-projector,
workstation, network connection, telephones); the initiator may also ask
important participants to state preferences for the meeting location.

The proposed meeting date should belong to the stated date range and to
none of the exclusion sets. It should also ideally belong to as many
preference sets as possible. A date conflict occurs when no such date can be
found. A conflict is strong when no date can be found within the date range
and outside all exclusion sets; it is weak when dates can be found within the
date range and outside all exclusion sets, but no date can be found at the
intersection of all preference sets. Conflicts can be resolved in several ways:
- the initiator extends the date range;

www.manaraa.com

Assessing the Suitability of a Standard Design Method

some participants expand their preference set or narrow down their
exclusion set; or

- some participants withdraw from the meeting.

167

4. MODELING THE EXAMPLE APPLICATION IN
C2

4.1 Overview of C2

C2 is a software architectural style for user interface intensive systems
(Taylor, et al., 1996). C2SADEL is an ADL for describing C2-style
architectures (Medvidovic, Taylor, et al., 1996; Medvidovic, Oreizy, et al.,
1996); henceforth, in the interest of clarity, we use "C2" to refer to the
combination C2 and C2SADEL. In a C2-style architecture, connectors
transmit messages between components, while components maintain state,
perform operations, and exchange messages with other components via two
interfaces (named "top" and "bottom"). Each interface consists of a set of
messages that may be sent and a set of messages that may be received. Inter
component messages are either requests for a component to perform an
operation, or notifications that a given component has performed an
operation or changed state.

In the C2 style, components may not directly exchange messages; they
may only do so via connectors. Each component interface may be attached to
at most one connector. A connector may be attached to any number of other
components and connectors. Request messages may only be sent "upward"
through the architecture, and notification messages may only be sent
"downward."

The C2 style further demands that components communicate with each
other only through message-passing, never through shared memory. Also,
C2 requires that notifications sent from a component correspond to the
operations of its internal object, rather than the needs of any components that
receive those notifications. This constraint on notifications helps to ensure
substrate independence, which is the ability to reuse a C2 component in
architectures with differing substrate components (e.g., different window
systems). The C2 style explicitly does not make any assumptions about the
language(s) in which the components or connectors are implemented,
whether or not components execute in their own threads of control, the
deployment of components to hosts, or the communication protocol(s) used
by connectors.

www.manaraa.com

168 Nenad Medvidovic and David Rosenblum

4.2 Modeling the meeting scheduler in C2

Figure 2 shows a graphical depiction of a possible C2-style architecture
for a simple meeting scheduler system. This system consists of components
supporting the functionality of a Meetinginitiator and several potential
meeting Attendees and ImportantAttendees. Three C2 connectors are used to
route messages among the components. Certain messages from the Initiator
are sent both to Attendees and ImportantAttendees, while others (e.g., to
obtain meeting location preferences) are only routed to ImportantAttendees.
Since a C2 component has only one communication port on its top and one
on its bottom, and all message routing functionality is relegated to
connectors, it is the responsibility of MainConn to ensure that AttConn and
ImportantAttConn above it receive only those message relevant to their
respective attached components.

Important
AttConn

Figure 2. A C2-style architecture for a meeting scheduler system.

The Initiator component sends requests for meeting information to
Attendees and ImponantAttendees. The two sets of components notify the
Initiator component, which attempts to schedule a meeting and either
requests that each potential attendee mark it in his/her calendar (if the
meeting can be scheduled), or it sends other requests to attendees to extend
the date range, remove a set of excluded dates, add preferred dates, or
withdraw from the meeting. Each Attendee and ImportantAttendee
component, in tum, notifies the Initiator of its date, equipment, and location
preferences, as well as excluded dates. Attendee and ImportantAttendee
components cannot make requests of the Meetinginitiator component, since
they are above it in the architecture.

Most of this information is implicit in the graphical view of the
architecture shown in Figure 2. For this reason, we specify the architecture
in C2SADEL, a textual language for modeling C2-style architectures
(Medvidovic, 1996; Medvidovic, Taylor, et al., 1996; Medvidovic, Oreizy,

www.manaraa.com

Assessing the Suitability of a Standard Design Method 169

et al., 1996). For simplicity, we assume that all attendees' equipment needs
will be met, and that a meeting location will be available on the given date
and that it will be satisfactory for all (or most) of the important attendees.

The Meeting/nitiator component is specified below. The component only
communicates with other parts of the architecture through its top port.

component Meetinglnitiator is
interface

top_domain is
out

in

GetPrefSet ();
GetExciSet ();
GetEquipReqts ();
GetLocPrefs ();
RemoveExciSet ();
RequestWithdrawal (to Attendee);
RequestWithdrawal (to lmportantAttendee);
AddPrefDates ();
MarkMtg (d : date; I : loc_type);

PrefSet (p : date_mg);
ExciSet (e : date_rng);
EquipReqts (eq : equip_type);
LocPref (I : loc_type);

bottom domain is
out-null;
in null;

parameters null;

methods
procedure Start ();
procedure Finish ();
procedure SchedMtg (p : set date_rng; e : set date_rng);
procedure AddPrefSet (pref : date_rng);
procedure AddExciSet (exc : date_rng);
procedure AddEquipReqts (eq : equip_type);
procedure AddLocPref (I : loc_type);
function AttendlnfoCompl () return boolean;
procedure lncNumAttends (n : integer);
function GetNumAttends () : return integer;

behavior
startup

invoke_methods Start;
always_generate GetPrefSet, GetExciSet, GetEquipReqts,

GetLocPrefs;
cleanup

invoke_methods Finish;
always_generate null;

received_messages PrefSet;
invoke_methods AddPrefSet, lncNumAttends, AttendlnfoCompl,

GetNumAttends, SchedMtg;
may_generate RemoveExciSet xor RequestWithdrawal xor

MarkMtg;
received_messages ExciSe!;

invoke_methods AddExciSet, AttendlnfoCompl, GetNumAttends,

www.manaraa.com

170 Nenad Medvidovic and David Rosenblum

SchedMtg;
may_generate AddPrefDates xor Remove ExciSe! xor

RequestWithdrawal xor MarkMtg;
received_messages EquipReqts;

invoke_methods AddEquipReqts, AttendlnfoCompl,
GetNumAttends, SchedMtg;

may_generate AddPrefDates xor RemoveExciSet xor
RequestWithdrawal xor MarkMtg;

received_messages LocPref;
invoke_methods AddLocPref;
always_generate null;

context
boHom_most computational_unit;

end Meetinglnitiator;

The Attendee and lmportantAttendee components receive meeting
scheduling requests from the Initiator and notify it of the appropriate
information. The two types of components only communicate with other
parts of the architecture through their bottom ports.

component Attendee is
interface

top_domain is
out null;
in null;

bottom_domaln is
out

in

PrefSet (p : date_rng);
ExciSe! (e : date_rng);
EquipReqts (eq : equip_type);
Witdrawn ();

GetPrefSet ();
GetExciSet ();
GetEquipReqts ();
RemoveExciSet ();
RequestWithdrawal ();
AddPrefDates ();
MarkMtg (d : date; I: loc_type);

parameters null;

methods
procedure Start();
procedure Finish ();
procedure NoteMtg (d : date; I : loc_type);
function DeterminePrefSet () return date_rng;
function DetermineExciSet () return date_rng;
function AddPrefDates () return date_mg;
function RemoveExciSet () return date_rng;
procedure DetermineEquipReqts (eq : equip_type);

behavior
startup

invoke_methods Start;

www.manaraa.com

Assessing the Suitability of a Standard Design Method

always_generate null;
cleanup

invoke_methods Finish;
always_generate null;

received_messages GetPrefSet;
invoke_methods DeterminePrefSet;
always_generate PrefSet;

received_messages AddPrefDates;
invoke_methods AddPrefDates;
always_generate PrefSet;

received_messages GetExciSet;
invoke_methods DetermineExciSet;
always_generate ExciSe!;

received_messages GetEquipReqts;
invoke_methods DetermineEquipReqts;
always_generate EquipReqts;

received_messages RemoveExciSet;
invoke_methods RemoveExciSet;
always_generate ExciSe!;

received_messages RequestWithdrawal;
invoke_methods Finish;
always_generate Withdrawn;

received_messages MarkMtg;
invoke_methods NoteMtg;
always_generate null;

context
top_most computational_unit;

end Attendee;

171

lmportantAttendee is a specialization of the Attendee component: it
duplicates all of Attendee's functionality and adds specification of meeting
location preferences. /mportantAttendee is thus specified as a subtype of
Attendee that preserves its interface and behavior, but can implement that
behavior in a new manner.

component lmportantAttendee is subtype Attendee (int and beh)
interface

bottom_domain is
out

LocPrefs (I : loc_type);
in

GetlocPrefs ();
methods

function DeterminelocPrefs () return loc_type;
behavior

received_messages GetlocPrefs;
invoke_methods DetermineLocPrefs;
always_generate LocPrefs;

end lmportantAttendee;

www.manaraa.com

172 Nenad Medvidovic and David Rosenblum

The MeetingScheduler architecture depicted in Figure 2 is shown below.
The architecture is specified with conceptual components (i .e., component
types). Each conceptual component (e.g., Attendee) can be instantiated
multiple times in a system.

architecture MeetingScheduler is
conceptual_ components

top_most
Attendee;
lmportantAttendee;

internal null;
bottom_most

Meeting initiator;
connectors

connector MainConn is
message_filter no_filtering;

end MainConn;
connector AttConn is

message_filter no_filtering;
end AttConn;
connector lmportantAttConn is

message_filter no_filtering;
end lmportantAttConn;

architecturaUopology
connector AttConn connections

top_ports
Attendee;

bottom_ports
MainConn;

connector lmportantAttConn connections
top_ports

lmportantAttendee;
bottom_ports

MainConn;
connector MainConn connections

top_ports
AttConn;
lmportantAttConn;

bottom_ports
Meeting initiator;

end MeetingScheduler;

An instance of the architecture (a system) is specified by instantiating the
components. For example, an instance of the meeting scheduler application
with three participants and two important participants is specified as follows .

system MeetingScheduler_1 is
architecture MeetingScheduler with

Attendee instance Att_1, Att_2, Att_3;
lmportantAttendee instance lmpAtt_1, lmpAtt_2;
Meeting initiator instance Mtginit_1;

end MeetingScheduler_1;

www.manaraa.com

Assessing the Suitability of a Standard Design Method

5. MODELING THE C2-STYLE MEETING
SCHEDULER APPLICATION IN UML

173

The process of designing a C2-style application in UML should be driven
and constrained both by the rules of C2 and the modeling features available
in UML. The two must be considered simultaneously. For this reason, the
initial steps in this process are to develop a domain model for a given
application in UML and an informal C2 architectural diagram, such as the
one from Figure 2. Such an architectural diagram is key to making the
appropriate mappings between classes in the domain and architectural
components. Furthermore, it points to the need to explicitly model
connectors in any C2-style architecture. Another important aspect of C2
architectures is the prominence of components' message interfaces. This is
reflected in a UML design by modeling interfaces explicitly and
independently of the classes that will implement those interfaces.

Our initial attempt at a UML class diagram for the meeting scheduler
application is shown in Figure 3. The diagram shows the domain model for
the meeting scheduler application consisting of the domain classes, their
inheritance relationships, and their associations.

I Person j<J---
0 .• I Important I

tlORSIJ"'OnTUCtsmm Attendee Attendee l

ConflictsW111l 0 .. 0 .. •
1 .. • t..• o.• o .. •

Prefer•

0 .. •

I Location I I Date I
1 1 f

1 Prehn 0 .•

Meeting 1 Exclude! 0 .. •

Initiator t PrODOSO! 1 Meeting

Invites 2

Figure 3. UML class diagram for the meeting scheduler application. Details (attributes and
methods) of each individual class have been suppressed for clarity.

The diagram abstracts away many architectural details, such as the
mapping of classes in the domain to implementation components, the order

www.manaraa.com

174 Nenad Medvidovic and David Rosenblum

of interactions among the different classes, and so forth. Furthermore, much
of the semantics of class interaction is missing from the diagram. For
example, the Invites association associates two Meetings with one or more
Attendees and one Meetinglnitiator. However, the association does not make
clear the fact that the two Meetings are intended to represent a range of
possible meeting dates, rather than a pair of related meetings.

Each class exports one or more interfaces, shown in Figure 4. The
ImportantMtglnit and lmportantMtgAttend interfaces inherit from the
Mtglnit and MtgAttend interfaces, respectively. The only difference is the
added operation to request and notify of location preferences.

«interface» <<interface>>
Mtginit MtgAttend

GetPretset O; Pre !Set (date_mg);
Get&clSet Q;
Remove&clSet Q;

&clSet (date_mg);
EquipReqts (equip_type);

RequestWithdrawal (Attendee); WitdrawnQ;
AddPrefDates Q;

f <<Interface>>
<<Interface>> ImportantMtgAttend

ImportantMtginit
LocPrefs (Joe_ type);

GetLocPrefs O;

Figure 4. Meeting scheduler class interfaces.

Note that every interface element corresponds to a C2 message in the
architecture specified in Section 4.2. All methods in the UML design will be
implemented as asynchronous message passes, as they would in C2. Since
C2 components communicate via implicit invocation, C2 messages do not
have return values; this is also reflected in Figure 4.

In order to model a C2 architecture in UML, connectors must be defined.
Although connectors fulfill a role different from components, they can also
be modeled with UML classes. However a C2 connector is by definition
generic and can accommodate any number ant type of C2 components;
informally, the interface of a C2 connector is a union of the interfaces of its
attached components. UML does not support this form of genericity, so that
the connectors specified in UML have to be application-specific. For that
purpose, the connectors for the meeting scheduler application share the
components' interfaces. Each connector can be thought of as a simple class

www.manaraa.com

Assessing the Suitability of a Standard Design Method 175

that forwards each message it receives to the appropriate components.
Therefore, while the component class interface specifications, shown in
Figure 4, correspond to the different C2 components' outgoing messages
(i.e., their provided functionality), the connector interfaces are routers of
both the incoming and outgoing messages, as depicted in Figure 5.
Connectors do not add any functionality at the domain model level; we have
thus chosen to omit them from the class diagram in Figure 3.

<<interface>>
AttConn

GetPrefSet Q;
GetFxclSet Q;
RemoveFxclSet Q;
Request Withdrawal (Attendee);
AddPrefDates Q;
PrefSet (date_mg);
FxclSet (date_mg);
EquipReqts (equip_type);
WitdrawnQ;

f
<<Interface>>

ImportantAttConn

GetLocPrefs Q;
LocPrefs (loc_type);

<<interface>>
MainConn

Figure 5. Application-specific UML classes representing C2 connectors.

A refined class diagram for the meeting scheduler application is shown in
Figure 6. The Attendee and lmportantAttendee classes are related by
interface inheritance, which is depicted in Figure 4, but is only implicit in
Figure 6 (and altogether omitted from Figure 3). We have omitted from
Figure 6 the Location, Meeting, and Date classes shown in Figure 3, since
they have not been impacted. We have also omitted the two superclasses for
the components and connectors (Person and Conn, respectively).

Note that the class diagram in Figure 6 is similar in its structure to the C2
architecture depicted in Figure 2. The only difference is that the diagram in
Figure 2 depicts instances of the different components and connectors, while
a UML class diagram depicts classes and their associations. UML provides

www.manaraa.com

176 Nenad Medvidovic and David Rosenblum

several types of diagrams that depict class instances (objects). One candidate
is UML's object diagrams; however, we choose to depict a collaboration
diagram to further draw the contrast between UML and C2.

Figure 6. UML class diagram for the meeting scheduler application designed in the C2
architectural style.

Figure 7 shows the collaboration between an instance of the
Meetinglnitiator class (MI) and any instances of Attendee and
lmportantAttendee classes: Ml issues a request for a set of preferred meeting
dates; MC, an instance of the Main Conn class routes the request to instances
of both connectors above it, AC and lAC, which, in tum, route the requests to
all components attached on their top sides; each participant component
chooses a preferred date and notifies any components below it of that choice;
these notification messages will eventually be routed to Ml via the
connectors. Note that, if Ml had sent the request to get meeting location
preferences (GetLocPrefs in the lmportantMtglnit interface in Figure 4), MC
would have routed them only to lAC and none of the instances of the
Attendee class would have received that request

The diagrams in this section, and particularly Figure 6, differ from a C2
architecture in that they explicitly specify only the messages a component
receives (via interface attachments to a component rectangle). UML also
allows specification of messages a component sends; we believe those

www.manaraa.com

Assessing the Suitability of a Standard Design Method 177

messages to be obvious from the diagram and have thus chosen to omit them
to simplify the diagrams.

[: Attendee =pl I: ImportantAttendee 1 U

1s:GetPre!SetQ 14:GetPrefSetQ

1 A1 : Att onn 1 1 lAC : ImportantAttConn I

9 :PrefSet(date_rng) 8:PrefSet(

13:GetPrefSetQ 12:GetPrefSetQ

I MC : MainConn I
11

11 :GetPrefSetQ

I MI : Meetinglnitiator 1

Figure 7. Collaboration diagram for the meeting scheduler application showing a response to
a request issued by the Meeting Initiator to both Attendees and lmportantAttendees.

6. DISCUSSION

The exercise of modeling a C2-style architecture in UML has been fairly
successful. Part of the success can be attributed to the fact that many
architectural concepts are found in UML (e.g. , interfaces, component
associations, behavioral modeling, and so forth). On the other hand, the
modeling capabilities provided by UML do not always fully satisfy the needs
of architectural description. We discuss several major similarities and
differences in this section.

6.1 Software modeling philosophies

Neither C2 nor UML constrain the choice of implementation language or
require that any two components be implemented in the same language or
thread of control. C2 limits communication to asynchronous message
passing and UML supports this restriction. Both C2 and UML include
specifications of messages that may be sent and received.

Although we did not model details of the internal parts of a C2
component or the behavior of any C2 constructs (components, connectors,
communication ports, and so forth) in our UML specification, we believe
that many of those aspects could be modeled with UML' s sequence,

www.manaraa.com

178 Nenad Medvidovic and David Rosenblum

collaboration, statechart, and activity diagrams. Existing ADLs, including
C2SADEL, are often not able to support all of these kinds of semantic models
(Medvidovic and Taylor, 1997).

6.2 Assumptions

Like any notation, UML embodies its developers' assumptions about its
intended usage. "Architecting" a system was not an intended use of UML.
While one can indeed focus on the different perspectives when modeling a
system (discussed above), a software architect may find that the support for
those perspectives found in UML only partially satisfies his/her needs.

For example, in modeling the collaboration among C2 components
shown in Figure 7, we were forced to assign a relative ordering to messages
in the architecture. In effect, since all C2 components and connectors can
execute in their own thread(s) of control, such an ordering cannot always be
determined. Indeed, it is possible that message 4 would be sent before
message 3.

6.3 Problem domain modeling

UML supports modeling a problem domain, as we have briefly shown in
this paper. A C2 architectural model, however, often hides some of the
information present in a domain model. For example, meeting, equipment,
and location information is present in Figure 3, but is missing from the C2
architecture specified in Section 4 and its corresponding UML diagram in
Figure 6. Modeling all the relevant information early in the development
lifecycle is crucial to the success of a software project. Therefore, a domain
model should be considered a separate and useful architectural perspective
(Medvidovic and Rosenblum, 1997; Tracz, 1995).

6.4 Architectural abstractions

Some concepts of C2, and software architectures in general, are very
different from those of UML and object-oriented design in general.
Connectors are first-class entities in C2. While the functionality of a
connector can typically be abstracted by a class/component (Luckham and
Vera, 1995; Magee and Kramer, 1996), C2 connectors have the added
property that their interfaces are context-reflective. This property is designed
into C2SADEL and C2's implementation infrastructure (Medvidovic, et al.,
1997) for all connectors, whereas the approach described in this paper
requires specialized modeling of application-specific connector classes in
UML.

www.manaraa.com

Assessing the Suitability of a Standard Design Method 179

The underlying problem is even deeper. Although UML may provide
modeling power equivalent to or surpassing that of an ADL, the abstractions
it provides may not match an architect's mental model of the system as
faithfully as the architect's ADL of choice. If the primary purpose of a
language is to provide a vehicle of expression that matches the intuitions and
practices of users, then that language should aspire to reflect those intentions
and practices (Shaw and Garlan, 1995). We believe this to be a key issue and
one that argues against considering a notation like UML to be a
"mainstream" ADL: a given language (e.g., UML) offers a set of
abstractions that an architect uses as design tools; if certain abstractions
(e.g., components and connectors) are buried in others (e.g., classes), the
architect's job is made more (and unnecessarily) difficult; separating
components from connectors, raising them both to visibility as top-level
abstractions, and endowing them with certain features and limitations also
raises them in the consciousness of the designer.

6.5 Architectural styles

Architecture is the appropriate level of abstraction at which rules of a
compositional style (i.e., an architectural style) can be exploited and should
be elaborated. Doing so results in a set of heuristics that, if followed, will
guarantee a resulting system certain desirable properties.

Standard UML provides no support for architectural styles. The rules of
different styles have to be built into UML by constraining its meta-model, as
we have done previously (Robbins, et al., 1998)]. Therefore, in choosing to
use UML "as is", we have removed one shortcoming of our previous
approach, only to introduce another. In particular, every C2 architecture
designed in the manner we described in this paper adheres to the UML meta
model and, as such, can be understood by a typical UML user and
manipulated with standardized UML tools. On the other hand, the process of
modeling a C2 architecture in UML is heuristic- rather than constraint
driven. Therefore, there is no guarantee that the designer will always adhere
to the rules of C2. For this reason, it may also be more difficult to provide
support for automated translation of "C2-style" UML designs into C2SADEL
for C2-specific manipulations.

7. CONCLUSIONS

We found this initial attempt at modeling a C2-style architecture in UML
useful. It highlighted those UML characteristics that show potential for
aiding architectural modeling, but also pointed out some of UML's

www.manaraa.com

180 Nenad Medvidovic and David Rosenblum

shortcomings in this regard. This experience can also serve as a solid basis
for further study, both with other C2 architectures, as well as with other
ADLs, e.g., Wright (Allen and Garlan, 1997), and architectural styles, e.g. ,
client -server.

Before we can draw definitive conclusions about the relative merits of
this approach and the approach described in our previous work (Robbins, et
al., 1998), further research into the techniques described in the two papers is
needed. One necessary step to integrate UML with other ADLs discussed in
(Robbins, et al., 1998): Wright (Allen and Garlan, 1997), Darwin (Magee
and Kramer, 1996), and Rapide (Luckham and Vera, 1995). Each of these
ADLs has certain aspects in common with UML; these were expressed with
UML's extension mechanisms. We intend to investigate whether they can
also be expressed in UML without extensions.

Our experience to date indicates that adapting UML to address
architectural concerns requires reasonable effort, has the potential to be a
useful complement to ADLs and their analysis tools, and may be a practical
step toward mainstream architectural modeling. Using UML has the benefits
of leveraging mainstream tools, skills, and processes. It may also aid in the
comparison of ADLs because it forces some implicit assumptions to be
explicitly stated in common terms.

ACKNOWLEDGEMENTS

We wish to thank J. Robbins and D. Redmiles for their insights into the
issues in integrating UML with architectures and their collaboration on other
aspects of this work.

Effort sponsored by the Defense Advanced Research Projects Agency,
and Air Force Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-97-2-0021 and by the Air Force Office of
Scientific Research, Air Force Materiel Command, USAF, under grant
number F49620-98-l-0061 . This material is also partially based on work
supported by the National Science Foundation under Grant No. CCR-
9701973. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
annotation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency, Air Force Research Laboratory, Air Force Office
of Scientific Research or the U.S. Government.

www.manaraa.com

Assessing the Suitability of a Standard Design Method 181

REFERENCES

Abowd, G.; Allen, R. and Garlan, D. (1995), Formalizing style to understand descriptions of
software architecture. ACM Transactions on Software Engineering and Methodology, pp.
319-364 (October).

Allen, R. and Garlan, D. (1997), A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, pp. 213-249 (July).

Gar!an, D.; editor (1995). Proceedings of the First International Workshop on Architectures
for Software Systems, Seattle, WA (April).

Garlan, D.; Allen, R. and Ockerbloom, J. (1994), Exploiting Style in Architectural Design
Environments. In Proceedings of SIGSOFT'94: Foundations of Software Engineering, pp.
175-188, New Orleans, Louisiana, USA (December).

Garlan, D.; Paulisch, F. N. and Tichy, W. F.; editors (1995), Summary of the Dagstuhl
Workshop on Software Architecture, February 1995. Reprinted in ACM Software
Engineering Notes, pp. 63-83 (July).

Garlan, D. and Shaw, M. (1993), An introduction to software architecture: Advances in
software engineering and knowledge engineering, volume I. World Scientific Publishing.

Kruchten, P. B. The 4+ I view model of architecture. IEEE Software, pp. 42-50, November
1995.

van Lamsweerde, A.; Darimont, R. and Massonet, P. (1992), The Meeting Scheduler System:
Preliminary Definition. University of Lou vain, Unite d'informatique, B-1348 Louvain-la
Neuve, Belgium (October).

Luckham, D. C. and Vera, J. (1995), An event-based architecture definition language./£££
Transactions on Software Engineering, pp. 717-734 (September).

Magee, J. and Kramer, J. (1996), Dynamic structures in software architecture. In Proceedings
of ACM S/GSOFT'96: Fourth Symposium on the Foundations of Software Engineering
(FSE4), pp. 3-14, San Francisco, CA (October).

Medvidovic, N. (1996), ADLs and Dynamic Architecture Changes. In A. L. Wolf, ed.,
Proceedings of the Second International Software Architecture Workshop (/SA W-2), pp.
24-27, San Francisco, CA (October).

Medvidovic, N.; Taylor, R. N. and Whitehead, E. J., Jr. (1996), Formal Modeling of Software
Architectures at Multiple Levels of Abstraction. In Proceedings of the California Software
Symposium 1996, pp. 28-40, Los Angeles, CA (April).

Medvidovic, N. and Rosenblum, D. S. (1997), Domains of Concern in Software Architectures
and Architecture Description Languages. In Proceedings of the USENIX Conference on
Domain Specific Languages, pp. 199-212, Santa Barbara, CA (October).

Medvidovic, N. and Taylor, R.N. (1997), A Framework for Classifying and Comparing
Architecture Description Languages. In Proceedings of the Sixth European Software
Engineering Conference tog,ether with Fifth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 60-76, Zurich, Switzerland (September).

Medvidovic, N.; Oreizy, P.; Robbins, J. E. and Taylor, R. N. (1996), Using object-oriented
typing to support architectural design in the C2 style. In Proceedings of ACM S/GSOFT'96:
Fourth Symposium on the Foundations of Software Engineering (FSE4), pp. 24-32, San
Francisco, CA (October).

Medvidovic, N.; Oreizy, P. and Taylor, R.N. (1997), Reuse of Off-the-Shelf Components in
C2-Style Architectures. In Proceedings of the 1997 Symposium on Software Reusability
(SSR'97), pp. 190-198, Boston, MA (May). Also in Proceedings of the 1997/nternational
Conference on Software Engineering (ICSE'97), pp. 692-700, Boston, MA (May).

Moriconi, M.; Qian, X. and Riemenschneider, R. A. (1995), Correct Architecture Refinement.
IEEE Transactions on Software Engineering, pp. 356-372 (April).

www.manaraa.com

182 Nenad Medvidovic and David Rosenblum

Object Management Group (1996), Object analysis and design RFP-1. Object Management
Group document ad/96-05-01 (June). Available from
http://www.omg.org/docs/ad/96-05-0 l.pdf.

Perry, D. E. and Wolf, A. L. (1992), Foundations for the Study of Software Architectures.
ACM S/GSOFT Software Engineering Notes, pp. 40-52 (October) .

Rational Partners (Rational, IBM, HP, Unisys, MCI, Microsoft, ObjecTime, Oracle, i-Logix,
etc.) (1997a), Proposal to the OMG in response to OA&D RFP-1. Object Management
Group document ad/97-07-03 (July). Available from http://www.omg.org/docs/ad/.

Rational Partners (1997b), UML Semantics. Object Management Group document ad/97-08-
04 (September). Available from http://www.omg.org/docs/ad/97-08-04.pdf.

Rational Partners (1997c), UML Notation Guide. Object Management Group document
ad/97-08-05 (September). Available from http://www.omg.org/docs/ad/97-08-05.pdf.

Rational Software Corporation and IBM (1997), Object constraint language specification.
Object Management Group document ad/97-08-08 (September). Available from
http://www.omg.org/docs/ad/.

Robbins, J. E.; Medvidovic, N.; Redmiles, D. F. and Rosenblum, D. S. (1998), Integrating
Architecture Description Languages with a Standard Design Method. In Proceedings of
the 20th International Conference on Software Engineering (ICSE'98), pp. 209-218,
Kyoto, Japan (April).

Shaw, M.; DeLine, R.; Klein, D. V.; Ross, T. L.; Young, D. M. and Zelesnik, G. (1995),
Abstractions for Software Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, pp. 314-335 (April).

Shaw M. and GarlanD. (1995), Formulations and Formalisms in Software Architecture. Jan
van Leeuwen, editor, Computer Science Today: Recent Trends and Developments,
Springer-Verlag Lecture Notes in Computer Science, Volume 1000.

Shaw, M.; Garlan, D.; Allen, R. ; Klein, D.; Ockerbloom, J. ; Scott, C. and Schumacher, M.
(1995), Candidate Model Problems in Software Architecture. Unpublished manuscript
(November). Available from
http://www.cs.cmu.edu/afs/cs/project/composelwww/html/ModProb/.

Soni, D.; Nord, R. and Hofmeister, C. (1995), Software Architecture in Industrial
Applications. In Proceedings of the 17th International Conference on Software
Engineering, pp. 196-207, Seattle, WA (April).

Taylor, R.N.; Medvidovic, N.; Anderson, K. M.; Whitehead, E. J. , Jr.; Robbins, J. E. ; Nies,
K. A.; Oreizy, P. and Dubrow, D. L. (1996), A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on Software Engineering, pp.
390-406 (June).

Tracz, W. (1995), DSSA (Domain-Specific Software Architecture) Pedagogical Example.
ACM SIGSOFT Software Engineering Notes (July).

Vestal, S. (1996), MetaH Programmer's Manual, Version 1.09. Technical Report, Honeywell
Technology Center (April).

Wolf, A. L. ; editor (1996), Proceedings of the Second International Software Architecture
Workshop (/SA W-2), San Francisco, CA (October).

www.manaraa.com

Software Architecture and Java Beans

Sylvia Stuurman
Delft University of Technology
Department of Computer Science,
P.O. Box 356, 2600AJ The Netherlands
S.Stuurman@twi.tudelft.nl

Key words: Java Beans, software architecture, component based development

Abstract: In theory, software architecture and component-based development make an
ideal match: the concerns of software architecture are high level design,
interaction, and configuration of components, while component-based
development is centered on the implementation and specification of reusable
components.
Together, these concerns seem to be the yin and yang for the development of
complex systems out of existing components. However, several authors have
already explained that in reality, there is a gap between the two areas. In this
paper, we investigate the relation between Java Beans and a software
architecture description: may Java Beans simply be used as ready-to-use
implementations of a software architecture? What restrictions do they impose
on the software architecture? Where are the mismatches?

1. INTRODUCTION

As has been argued many times, today's complex large-scale software
systems ask for a different kind of software engineering than small and
simple programs. On the one hand, there is a need for very high-level design.
The level of abstraction should be higher than that of objects, or procedures.
Moreover, such a design should be a model of the system-in-use, not just a
model of the implementation (Allen and Garlan, 1994). Software
architecture is an answer for this need (we use "software architecture" in the
sense of the definition of Garlan and Shaw (Garlan and Shaw, 1993):

www.manaraa.com

184 Sylvia Stuurman

"Structural issues include gross organisation and global control structure;
protocols for communication, synchronization, and data access; assignment
of functionality to design elements; physical distribution; composition of
design elements; scaling and performance; and selection among design
alternatives.").

On the other hand, there need for the reuse of components. The
ideal here is, for a developer, to be able to shop among different component
providers, and build a system in the same way as building a vehicle out of
Lego bricks and pieces. Several standards, both commercial and non
commercial, for component models have arisen, such as CORBA, ActiveX,
and Java Beans.

Software architecture seems a natural complement for reusable
software components: existing component middleware technologies are
component-centric, and they standardize external component properties.
Software architectures are system-centric, with more emphasis on the
connections, and the properties of the system as a whole.

One of the problems of building systems out of existing components is
the possibility of an "architectural mismatch" between components (Garlan
et al., 1995). Components make implicit assumptions about the nature of the
components (infrastructure, control model, data model), the nature of the
connections (protocols and data model) and about the global architectural
structure (for instance about the presence or absence of particular
components or connections). As part of a solution for this problem, it has
been suggested (Garlan et al., 1995) that these architectural assumptions
could be made explicit using an Architecture Description Language (or
ADL). Architectural descriptions could be used to understand the concepts
embodied in component libraries (Perry and Wolf, 1992).

However, there are problems to overcome. ADLs are created for the
specification of software architectures, and software architectural styles.
They have not been created with component standards like CORBA,
ActiveX or Java Beans in mind. The two domains use similar, but
incompatible models of components and component bindings, revealed when
comparing the Interface Description Languages for components, with the
possibilities of the ADL used for software architecture. Moreover, while the
mapping of components at the software architectural level to components at
the implementation level might be feasible, how other architectural elements
should be mapped is unclear.

Furthermore, an architecture describes the system as a whole, while
reusable components make use of services provided by the middleware
infrastructure and the operating system. In fact, these services should be
modeled at the architectural level, to get a real mapping between both levels
(Oreizy et al., 1998).

www.manaraa.com

Software Architecture and Java Beans 185

Another question is how software architecture and component-based
development can be combined. One way of combining these domains is to
start with the design of the system's architecture. The architecture should be
refined until one is able to choose or build existing components, based upon
the architectural specification. These components should be connected
according to the architecture. Designing the system's architecture is, in this
case, the specification; "filling in" the components is the implementation.
However, when one first completes the software architecture without the
components at hand in mind, the chance that one can really reuse them is
very low. The "inevitable intertwining of specification and implementation"
(Swartout and Balzer, 1982) is especially valid when reusable components
are involved.

Another way of combining software architecture and component-based
development is to build a system using existing components, and describe
the architecture of such a system in an Architecture Description Language.
The description can be used for analysis.

In this paper, we explore the possibilities of both ways of combining
component-based development and software architecture, for the component
model of Java Beans. On the one hand, we investigate how we can map a
software architecture onto an application of connected Java Beans. We use
the framework for classifying ADLs by Medvidovic and Taylor (Medvidovic
and Taylor, 1997) to cover the different aspects that might or should be
included in an architectural description of a system. On the other hand, we
summarize the requirements for an ADL to be able to describe the
architecture of an application built by connecting beans.

In section 2, we will give a short overview of the features and concepts
of Java Beans. In section 3, we discuss the (im)possibilities of mapping
architectural elements onto Java Beans. In section 4, we do the same
mapping in reverse. Related work is mentioned in section 5, and in section 6,
we discuss how to carry on.

2. JAVA BEANS IN SHORT

Java Beans are pieces of software, written in Java, in such a way that it is
possible to build applications by connecting beans, in a "bean-aware"
application builder. Such an application builder is able to get information of
the bean about its properties, methods, and the events it fires. The user of the
application builder may change properties, and connect different beans
through events, thus building an application. Everything is done through
dragging and dropping, or by filling in property sheets.

www.manaraa.com

186 Sylvia Stuurman

In a bean's lifetime, one may discern three different stages. In the first
place, a bean should be created. In this paper, we are not concerned with
beans programming, and we will just assume the existence of a library of
ready-to-use beans. In the second place, a bean is used during the design of
an application. The application builder tool discovers its properties, methods
and events, the user or developer instantiates the bean, customizes the
instances, and connects instances of (the same or different) beans. Of course,
a bean may be used multiple times during the design of different
applications. The third stage is the existence (as an instance) in a running
application. We will refer to the second stage described above as 'design
time." A bean in a running application is referred to as "run time."

According to the Java Bean specification (Hamilton, 1997), a Java bean
is a reusable software component with at least
- support for introspection. Beans are constructed in such a way that an

application builder may discover a bean's properties, methods, and
events by introspection.

- support for properties to be inspected or changed: customization.
Properties are a bean's appearance and behavior attributes that can be
changed at design time.

- support for events, for communication between beans. A bean that wants
to receive events (a listener bean) registers its interest with the bean that
fires the event (a source bean). Builder tools can examine a bean and
determine which events that bean can fire (send) and which it can handle
(receive).

- support for persistence. Persistence enables beans to save their state and
restore that state later.
A bean interacts with its environment through its set of properties, its set

of methods, and the set of events it fires. Properties are attributes that can be
read and written. Methods are normal Java methods that can be called from
outside the bean. Events that are fired by beans invoke methods in beans that
have subscribed on the particular class of events. These beans adhere to the
EventListener interface. An event-firing bean and an EventListener bean
may be decoupled by placing an EventAdapter bean in between them.

Some properties of event delivery for Java Beans are:
- Event delivery is multicast: one event that is fired invokes an associated

method in every bean that has subscribed on the event.
- Event delivery is synchronous with respect to the event source: the

associated method in the EventListener bean is executed in the thread of
the event-firing bean.

- The set of EventListeners for a certain event may be changed
dynamically.

www.manaraa.com

Software Architecture and Java Beans 187

2.1 Example

2.1.1 Connections with events

Imagine a BallThrowing Bean. Throwing a ball is implemented using an
event, for which a BallEventObject class is created. When one uses such a
Bean in a bean-aware application builder, one may instantiate instances of
the BallThrowing bean, and connect them through the BallEvent. A bean (a
BallThrowing bean or any other that can handle BallEvents) is connected by
stating that the bean listens to BallEvents sent by the BallThrowing bean,
and by specifying what action should be taken when receiving a BallEvent.

A BallThrowing bean class should have a list of BallEventListeners, and
methods to add and remove objects to and from that list. These methods are
used in the application builder, when connections are made and undone.

A BallEventListener bean should have an action method that has a
BallEventObject as an argument.

public class BallThrower {
private Vector ballCatchers =new vector();

public synchronized void addBallEventListener(BallEventListener c) {
ballCatchers.addElement(c) ;

}

public synchronized void removeBallEventListener(BallEventListener c)
{

ballCatchers.removeElement(c);

public interface BallEventListener {
void catchBall(BallEventObject ball);

public class BallEventObject extends EventObject {
}

2.1.2 Properties

A bean-aware application builder simply searches for set- and get
methods to find the properties of a bean. The BallThrower bean, for instance,
could have the number of balls it possesses, as a property:

www.manaraa.com

188

public void setNumber(Integer number) {
this.number = number;

}

public Integer getNumber() {
return number;

}

Sylvia Stuurman

Changes to properties may be notified to other beans. Such a property is
called bounded. A bean with a bounded property maintains a list of
PropertyChangeListeners (beans implementing the PropertyCangeListener
interface), and it sends a PropertyChangeEvent to those listeneres when the
bounded property has been changed.

A property may be constrained as well. In this case, the bean maintains a
list of VetoableChangeListeners, which are able to check whether a value of
the constrained property is within the constraints. The setProperty method of
such a bean raises an exception when one of the listeners uses its veto.

A bean-aware application builder recognizes that a property is bounded
or constrained, and offers the user of the application builder the possibility to
indicate which other beans will act as listeners.

2.1.3 Introspection

In the samples of a bean shown above, we have used conventional names
and type signatures of methods and interfaces as a means for introspection.
Bean-aware application builders look for set- and get-methods, and
addeventlisteners and removeeventlisteners methods, to find the properties
of a bean and the events with which it can be connected. A Java Bean may
also explicitly specify its properties, events and methods, using a class
implementing the Beanlnfo class.

2.2 Status and Environment

Because communication between beans consists of event notification
and direct method invocation, it is necessary that beans run in the same
address space, in this case in the same Java Virtual Machine. Another
environmental aspect of beans is that they should assume that they are
running in a multithreaded environment: several different threads may
simultaneously deliver events, or call methods directly.

Several extensions have been proposed:
- InfoBus (Colan, 1998) from Lotus Development is already available.

This extension offers a new type of connection between beans: data

www.manaraa.com

Software Architecture and Java Beans 189

flows . Beans may subscribe to certain kinds of data (based on a name).
Other beans produce the data. Application builder tools are able to extract
from a bean the names of the data it is able to produce. This
communication mechanism is known as subscription-based
communication (Boasson, 1996). This type of connection is attractive
with respect to the introduction of on-line changes (Stuurman and van
Katwijk, 1998).

- JavaSpaces (Sun, 1998) is available as a beta version at the moment.
JavaSpaces provides a distributed persistence and object exchange
mechanism. It is comparable with InfoBus for communication between
beans in different Java Virtual Machines.

- An extensible run-time containment and services protocol has been
proposed (Cable, 1998). This protocol supports extensible mechanisms
that introduce an abstraction for the environment of a bean, enable the
dynamic addition of arbitrary services to a bean' s environment, provide a
mechanism through which a bean may interrogate its environment, and
provide a mechanism to propagate an environment to a bean. In short, the
notion of the context of a bean is introduced in this extension.

- Another extension is the Java Beans Activation Framework (Calder and
Shannon, 1998). This framework supplies the services of determining the
type of arbitrary data, encapsulating access to data, discovering the
available operations on a particular type of data, and instantiating a
software component that corresponds to the desired operation.

3. USING BEANS TO IMPLEMENT AN
ARCHITECTURE

The idea of using beans to implement a given software architecture looks
promising and desirable: beans are components in the architectural sense of
loci of computation and data storage. One has the multi-platform benefits of
the Java language; and there is the possibility to have a visual image of the
application, consisting of connected components, as a mirror of the software
architecture it implements. The idea would be to look for (or build) beans
that match the specification of the components of the given architecture, and
connect them according to the given configuration.

Which aspects of an architecture are specified depends on the ADL that
is used. We will not adhere to one specific ADL, but check the aspects used
in the classification framework for ADLs by (Medvidovic and Taylor, 1997).
These aspects are: interface, types, semantics, constraints, and evolution of
components and connections; composability, heterogeneity, constraints,
refinement, scalability, evolution and dynamism of configurations.

www.manaraa.com

190 Sylvia Stuurman

When examining the possibility of a mapping between Java Beans and an
ADL, we will mainly look at those aspects that are specific to Beans (as
opposed to the general aspects of the Java language). Those aspects are the
most interesting because they have been specified for the convenience of
tool-builders. Next to bean-aware application builders, one may just as easily
construct bean-aware software architecture tools .

3.1 Components

The interface of a component in the software architectural sense is the
set of interaction points between the component and the external world. An
interface specifies the services a component provides, and it might specify
the needs of a component. The interface of a Java Bean is its set of
properties, its methods, and the events it fires. This information may be
extracted from a bean at design time, so one may use an application builder
tool to expose the interface. Mapping the interface of a component, specified
in an ADL, to the interface of a Java Bean seems rather straightforward,
though, of course, not every aspect of an interface that one can specify in an
ADL has a counterpart in Java Beans.

ADLs may model abstract components as types, and instantiate them
multiple times. Some ADLs allow abstract component types to be
parameterized. A Java Bean may be regarded as a parameterized component
type insofar as it can be customized. A bean may be instantiated as often as
one needs. So, parameterized types are directly supported by Java Beans but
not every imaginable component type can be implemented using a Java
Bean.

A software architecture specification may contain a model of the
component semantics. In a Java Bean, however, semantics are not exposed.
When using beans in an application builder, the user is obliged to rely on the
documentation supplied with the beans.

An ADL may specify constraints on the abstract state of a component,
the implementation, or non-functional properties. With respect to the abstract
state of a component, Java Beans have the notion of constrained properties.
When such a property is changed another bean validates the change. A
mapping between constraints on the abstract state of a component and
constrained properties of a bean seems possible.

ADLs may support design evolution through subtyping and refinement.
A mapping between such a support and an implementation using Java Beans
might be useful for prototyping. However, subtyping and refinement of Java
Beans in an application builder is not supported.

www.manaraa.com

Software Architecture and Java Beans 191

In table 1, we summarize which aspects of components, described in an
ADL, may be mapped to those aspects of Java Beans that are visible for
bean-aware tools.

Table 1 · Mapping components in a software architecture description to Java Beans

ASPECT MAPPING

interface Possible, beans support a subset

types Possible, beans support a subset

semantics Not possible

constraints Possible, beans support a small subset

evolution Not possible

3.2 Connections

In an application builder using Java Beans, one glues beans together by
connecting them using event notification. An event of an event-firing bean is
associated with a method of an event-listening bean. A special case is the
notion of constrained properties. A bean with constrained properties is
associated with a validator bean. Each time (at run-time) that a property is
changed, the change is validated.

InfoBus and JavaSpaces extend this type of connection with the
possibility of asynchronous, anonymous data communication. Beans may
produce data, and may subscribe to certain kind of data. Producers don't
have to wait until every consumer has seen the produced data. Producers and
consumers are unaware of each other. Other kinds of connections (create
connections for instance) are possible, but cannot be made visible in an
application builder, and are "hidden" in the code of the bean.

The interface of a connection in a software architecture is a set of
interaction points between the connection and the components attached to it.
Each kind of connection that can be used for Java Beans has its own
interface: events are of a certain class and should be connected to an
eventsource and a set of eventlisteners; InfoBus connections are associated
with a name and should be connected to a set of data producers and a set of
data consumers. Of course, not every interface that one can specify in an
architecture has a counterpart in a Java Beans application.

www.manaraa.com

192 Sylvia Stuurman

Some ADLs distinguish connection types from connection instances.
Events in Java Beans are always of a certain class, that can be subclassed.
So, for event-based connections, one may map the idea of a connection type
to an event connection.

Some ADLs provide means to express the semantics of connections. For
the connections possible in a Java Beans application, one should specify the
semantics of these connections once. Of course, in an architecture, one can
specify connections with semantics that have no counterpart in a Java Beans
application.

Connection constraints may consist of adherence to interaction protocols,
intra-connection dependencies, or usage boundaries. In general, Java Beans
give no support to translate these kind of constraints.

Some ADLs provide support for connection evolution, through subtyping
or refinement. Again, Java Beans give no support.

Table 2: Mapping connections in a software architecture description to Java Beans

ASPECT MAPPING

interface Possible, beans support a subset

types Possible, beans support a subset

semantics Not possible (one should first specify beans connections)

constraints Not possible

evolution Not possible

3.3 Configurations

With respect to composability, some ADLs support situations where an
architecture becomes a component in a bigger architecture. Such a
composition can be mirrored in Java Beans, where a composition of
interconnected beans may be transformed into one new bean.

Many ADLs offer the possibility to specify global constraints. In general,
it will not be possible to map these constraints to visible properties of a Java
Beans application.

Darwin, Rapide, and C2 allow specification of dynamism in
architectures. Insertion and removal of both components and connections is
possible in Java applications, but one cannot extract information about this
behaviour by introspection.

www.manaraa.com

Software Architecture and Java Beans

Table 3: Mapping configurations in a software architecture description to Java Beans

ASPECT MAPPING

composition Possible

constraints Not possible

evolution Not possible

4. USING AN ADL TO DESCRIBE A BEANS
CONFIGURATION

193

The previous section showed that not every software architecture can be
mapped onto a configuration of Java Beans. Not every part of an architecture
description is translatable into either a Java Bean or a connection between
beans. When using beans to construct a system based on a certain software
architecture, one should check the types of components and the types of
connections.

Automating such a process is only attractive when one conforms to the
subset of architectures that can be implemented using beans. On the other
hand, it seems to be the case that an application built by connecting Java
Beans may be translated relatively easily into an architectural description.
One should choose an ADL based on how much of the information,
available in a beans application, can be described. In the remainder of the
section, we make use of the classification of (Medvidovic and Taylor, 1997),
for ADLs, and we take only those ADLs into account that are part of the
survey : Aesop, MetaH, LILEANNA, ArTek, C2, Rapide, Wright, UniCon,
Darwin, SADL and ACME.

4.1 Beans

The properties, methods and the events a bean can fire, should be
translated into an interface specification. All ADLs support specification of
component interfaces.

The language should provide the means to specify parameterized types,
with the properties that can be changed at design time as parameters. Only
ACME, Darwin and Rapide make explicit use of parameterization.

Bounded properties may be translated into constraints on the abstract
state of a component. Rapide uses an algebraic language to specify
constraints on the abstract state of a component.

www.manaraa.com

194 Sylvia Stuurman

I< bl 4 M a e : appmg aspects o fb eans to an ADL
ADL IN1ERFACE PROPERTIES AS BOUNDED

SPECIFICATION PARAMETER PROPERTIES
Aesop yes no no
MetaH yes no no
LILEANNA yes no no
ArTek yes no no
C2 yes no no
Rapide yes yes yes
Wright yes no no
UniCon yes no no
Darwin yes yes no
SADL yes no no
ACME yes yes no

4.2 Connections

Connections between an event source and an event listener should be
translated into a specification of a connection with the appropriate interface.
The same applies for the dataflow connections of the InfoBus and
JavaSpaces extension. This is possible in all of the surveyed ADLs.

The semantics for the Java Beans-style event-based and dataflow
connections should be expressed in the ADL. It should be possible to express
other kind of connections too, when future extensions introduce new types of
connections. Rapide, Wright, and UniCon support such specifications.

T. bl 5 M a e : f appmg aspects o connectiOns o fB eans to an ADL
ADL EVENTS DATAFLOW SEMANTICS
Aesop yes yes no
MetaH yes yes no
LILEANNA yes yes no
ArTek yes yes no
C2 yes yes no
Rapide yes yes yes
Wright yes yes yes
UniCon yes yes yes
Darwin yes yes no
SADL yes yes no
ACME yes yes no

www.manaraa.com

Software Architecture and Java Beans 195

4.3 Configurations

Since it is possible to compose beans into one bigger bean, an ADL used
to describe a bean-based application should support such kind of
composition. Most ADLs do support it.

Because Java Beans is still developing, and more extensions are to be
expected, an ADL should allow for such extensions.

Table 6: Mapping aspects of configurations of Beans to an ADL

ADL COMPOSITION
Aesop no
MetaH yes
LILEANNA no
ArTek no
C2 yes
Rap ide yes
Wright yes
UniCon yes
Darwin yes
SADL yes
ACME yes

4.4 Implicit Aspects

Above, we described the possibilities of different ADLs to describe those
aspects of Java Bean-based applications that are visible for "bean-aware"
tools. However, some implicit aspects of Java Beans should be described
too, when distilling the architecture of an application. To name a few:
- Threads. Every Java Bean may run in its own thread. At the same time,

its methods may be called by other beans, and executed in the thread of
the caller. A software architecture description of a beans application
should specify this aspect, though it is not available through
introspection.

- Create-connections. A bean may instantiate other beans at run-time. Such
a connection should certainly be described, but again, information about
these relationships is not available through introspection.

- Run-time change of the configuration. Apart from the possibility to
create new instances of beans at run-time, beans are also able to change
the connections at run-time. This will especially be seen very often in
applications based on the Activation Framework extension.
At this moment, information about these possibilities is not available for

application builder tools. However, because the run-time flexibility of the

www.manaraa.com

196 Sylvia Stuurman

Java system is one of its advantages, an ADL for the description of beans
applications should preferably support the specification of dynamism in the
configuration. These ADLs are Darwin, Rapide and C2.

Table 7· Mapping implicit aspects of Beans to an ADL
ADL RUN-TIME

CHANGE
Aesop no
MetaH no
LILEANNA no
ArTek no
C2 yes
Rap ide yes
Wright no
UniCon no
Darwin yes
SADL no
ACME no

5. RELATED WORK

Reuse of Off-The-Shelf components in combination with the C2 style has
been explored in (Medvidovic et al., 1997). They constructed a Class
Framework of reusable classes that can be used to implement C2 style
architectures, and integrated several OTS components with the C2 style.
This integration was done by wrapping OTS objects in C2 components, and
mapping events into C2 messages and vice-versa. In this work, the C2 style
is the point of departure, and reusable components are adapted in such a way
that they can be used to implement C2 style architectures.

A tool to detect architectural mismatches during design has been
constructed by Abd-Allah (Abd-Allah, 1996). His method is based on the
notion of "conceptual features", which can be used to detect architectural
mismatches. The goal of this work is to enhance the possibilities of reusing
components, by scanning them on assumptions with respect to these
features.

6. DISCUSSION

In this paper, we have made a start on combining Java Beans and
software architecture.

www.manaraa.com

Software Architecture and Java Beans 197

6.1 Combining Software Architecture and Beans

As we have seen, it is highly improbable that a certain software
architecture can be mapped to an application built by connecting existing
beans unless the designer of the architecture has taken such an
implementation into account. A more feasible approach to combine beans
and software architecture is to build a system using beans, and describe the
system's architecture using an ADL. In that case, by choosing beans as
components, one restricts oneself to a certain subset of architectural
elements.

However, as we have seen, not all the necessary information to describe
an architecture can be extracted from beans and their connections. Certain
aspects are implicit, and can only been revealed by inspecting the code of the
beans in use. Automating such a process is only feasible when beans adhere
to standard conventions for the implementation of these aspects. In fact, this
would be an extension to the Java Beans specification.

One can imagine an intermediate approach: using beans, especially
developed for this purpose, to construct the system's architecture, and
implementing the system using beans that are specialized versions of the
"design" beans. Such an approach would benefit of an extension where one
can classify beans as being a specialization of another bean.

Neither of these approaches comes for free: we have to extend the
standard for Java Beans to achieve a tight relationship between the software
architecture description of a system and its implementation using beans. On
the other hand, the Java Beans specification already offers substantial
support for extracting an architectural description: the property of
introspection, meant for application builder tools, can be used for a
translation into an ADL of the exposed features of a bean.

6.2 Design for Change

An attractive property of both approaches is that changes in the software
are automatically handled at the architectural level. On-line change
capabilities are needed in several domains (see for instance (Stankovic,
1996)), and the ideal situation would be that such changes can be applied at
the architectural level.

Prerequisites for a system with on-line change capacities at the
architectural level are:
- The software architecture is reflected in the executable. Parts of the

executable from which components can be instantiated are traceable and
replaceable.

- Components may be added, deleted or replaced, at execution time.

www.manaraa.com

198 Sylvia Stuurman

Bindings of components through connections occur dynamically. In other
words, connections may be added, deleted or replaced at execution time.
Instantiation of components and connections is possible from outside the
system.
The functionality of components is not directly dependent on other
components.
It is possible to analyze properties of the system at the architectural level.
Before a change is applied, the architecture should be analyzed to
guarantee that the changed system will meet the changed requirements.
Obviously, using a method based on the combination of a software

architecture description and a Java Beans application, it is relatively easy to
build systems with on-line change capacities on the architectural level.

REFERENCES

Abd-Allah, A. (1996) Composing Heterogeneous Software Architectures, PhD Dissertation,
Center for Software Engineering, University of Southern California.
http://sunset.usc.edu/-aabdallalaaadefps.

Allen, R. and Garlan, D. (1994) Beyond Definition/Use: Architectural Interconnection, in
Proceedings of the Workshop on lnteiface Definition Languages, Portland, Oregon,
January.

Boasson, M. (1996) Subscription as a Model for the Architecture of Embedded Systems, in
Proceedings of the 2"d IEEE Conference on Engineering of Complex Computer Systems,
Montreal, Canada.

Cable, L. (1998) A Draft Proposal to define an Extensible Runtime Containment and Services
Protocol for JavaBeans (Version 0.98). Sun Microsystems.

Calder, B. and Shannon, B. (1998) JavaBeans Activation Framework Specification (Version
1.0). Sun Microsystems.

Colan, M. (1998) InfoBus 1.1 Specification. Sun Microsystems.
Garlan, D. and Allen, R. and Ockerbloom, J. (1995) Architectural Mismatch or Why it's hard

to build systems out of existing parts, in Proceedings of the International Conference on
Software Engineering, Seattle, April.

Garlan, D. and Shaw, M. (1993) An Introduction to Software Architecture, in Advances in
Software Engineering and Knowledge Engineering, volume 1 (ed. V. Ambriola and G.
Tortora), World Scientific Publishing Company, New Yersey.

Hamilton, G. (Editor) (1997) JavaBeans 1.01 API Specification. Sun Microsystems.
Medvidovic, M. and Oreizy, P. and Taylor, R.N. (1997) Reuse of Off-The-Shelf Components

in C2-Style Architectures, in Proceedings of the 1997 Symposium on Software Reusability,
Boston, pp 190-198.

Medvidovic, M. and Taylor, R.N. (1997) A Framework for Classifying and Comparing
Architecture Secription Languages, in Proceedings of the 6'h European Software
Engineering Conference, Lecture Notes in Computer Science, 1301, 60-76.

Oreizy, P. and Medvidovic, N. and Taylor, R.N. and Rosenblum, D.S. (1998) Software
Architecture and Component Technologies: Bridging the Gap, in Proceedings of the
OMG-DARPA Workshop on Compositional Software Architectures, Montery, CA, January
6-8.

www.manaraa.com

Software Architecture and Java Beans 199

Perry, D.E. and Wolf, A.L. (1992) Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, voll7, nr 4, 40-52.

Shaw, M. and DeLine, R. and Klein, D.V. and Ross, Th.L. and Young, D.M. and Zelesnik, G.
(1995) Abstractions for Software Architecture and Tools to Support them. IEEE
Transactions on Software Engineering, April, 314-335.

Stankovic, J.A. (1996) Real-time and Embedded Systems. Group Report of the Real-Time
Working Group of the IEEE Technical Committee on Real-Time Systems. http:llwww
ccs.cs.umass.edulsdcrlrt.ps

Stuurman, S. and van Katwijk, J. (1998) On-line Change Mechanisms, the Software
Architectural Level, to appear in Proceedings of the the 6th International Symposium on
the Foundations of Software Engineering, Orlando.

Sun Microsystems Inc. (1998) JavaSpaces Specification, Revision 1.0 Beta.
http://www.javasoft.comlproducts!jinilspecs/javaspaces.pdf

Swartout, W. and Balzer, R. (1982) On the Inevitable Intertwining of Specification and
Implementation. Communications of the ACM, vol25, nr 7, 438-440.

www.manaraa.com

ARCHITECTURAL PATTERNS AND STYLES

www.manaraa.com

Architectural Styles as Adaptors1

Don Batory i, Yannis Smaragdakis; & Lou Coglianese;;

Department of Computer Sciences, The University of Texas, Austin, TX 78712 i &

LGA, /nc. , /2500 Fair Lakes Circle, Suite 130, Fairfax, Virginia ii

{batory, smaragdj@cs.utexas.edu, lou@lga-inc.com

Keywords: architectural styles, product-line architectures, GenVoca model , adaptors, soft
ware refinements, program transformations.

Abstract: The essence of architectural styles is component communication. In this paper, we
relate architectural styles to adaptors in the Gen Voca model of software construction. Gen
Voca components are refinements that have a wide range of implementations, from binaries
to rule-sets of program transformation systems. We explain that architectural styles can (I)
be understood as refinements (like other GenVoca components) and (2) that they are general
izations of the 00 concept of adaptors. By implementing adaptors as program transforma
tions, complex architectural styles can be realized in GenVoca that simply could not be
expressed using less powerful implementation techniques (e.g., object adaptors). Examples
from avionics are given.

1 INTRODUCTION

Mcilroy and Pamas observed almost thirty years ago that software prod
ucts are rarely created in isolation; over time a family of related products
eventually emerges (Mcilroy, 1968 and Pamas, 1976). Software design and
development techniques then were aimed at one-of-a-kind products. While
software design methodologies have improved significantly both in quality
and sophistication, one-of-a-kind products are still the norm. However, it is

I. This paper is derived from two ADAGE technical reports (Batory and Coglianese, 1993;
Batory and Smaragdakis, 1995) that were sponsored by U.S. D.o.D. A.R.P.A. in cooperation
with the U.S. Wright Laboratory Avionics Directorate under contract F33615-91C-1788.
This research is sponsored in part by Microsoft, Schlumberger, the University of Texas
Applied Research Labs, and U.S. D.o.D. A.R.P.A. under contract F30602-96-2-0226.

www.manaraa.com

204 Don Batory, Yannis Smaragdakis, and Lou Coglianese

becoming increasingly apparent that product families are indeed very com
mon and methodologies are needed to accommodate their economical
design and construction.

A product-line architecture (PLA) is a blue print for building a family of
related applications. A number of different approaches for designing PLAs
have been under development for some time, each proffering many suc
cesses (Weiss, 1990; Cohen et al., 1995; Harrison and Ossher, 1993; Batory
and O'Malley, 1992). Of these approaches, the GenVoca approach is distin
guished by components that export and import standardized interfaces
(Batory and O'Malley, 1992; Smaragdakis and Batory, 1998). Applications
of a product-line are assembled purely through component composition.
Components themselves can encapsulate domain-specific "intelligence"
that can, for example, automate domain-specific optimizations that are criti
cal to application performance.

A fundamental issue in composing applications from components has to
do with the way components communicate their needs and results. This is
what we consider the essence of architectural styles: the separation of a
component's computations from the means by which it communicates. As
no single architectural style suffices for all applications, there needs to be a
way in which styles can evolve (or be replaced) within or across application
instances.

In this paper, we explore the relationship of architectural styles and Gen
Voca. Gen Voca components are refinements that have a wide range of
implementations, from binaries to rule-sets of program transformation sys
tems. Architectural styles can also be understood as refinements and treated
just like other GenVoca components. Furthermore, style refinements are
actually generalizations of the 00 concept of adaptors. By implementing
adaptors as program transformations, complex architectural styles can be
realized in Gen Voca that simply could not be expressed using less powerful
implementation techniques (e.g., object adaptors). Examples from avionics
are given to partially support this claim.

2 COMPONENTS, ARCHITECTURAL STYLES, AND
REFINEMENTS

The term software architecture refers to an abstract model of an applica
tion that is expressed in terms of intercommunicating components. Compo
nents communicate via abstract conduits whose implementations are

www.manaraa.com

Architectural Styles as Adaptors 205

initially unspecified. An architectural style is an implementation of a con
duit; the original vision of Garlan and Shaw allowed software architects to
select different styles (conduit implementations), such as pipes, RPC, etc.,
that would satisfy application performance or functionality constraints.
Some architectural styles could reveal lower-level components and con
duits, thereby allowing conduit implementations to be expressed in a pro
gressive or "layered" manner (Gorlick and Razouk, 1991).

Mapping an abstract concept or declaration to a concrete (or less
abstract) realization is a refinement. Just as architectural styles are refine
ments of communication conduits, component implementations can also be
revealed as a progression of refinements. Such progressions are sometimes,
but not always, equivalent to "layered" implementations.

Refinements expose the implementations of components and conduits in
a uniform way (which seems reasonable, since both are expressed as soft
ware). It is evident that a powerful model of software architectures can be
created around the concept of refinements as primitive building blocks of
applications. This is one of several basic ideas that underly the Gen Voca
model of software construction.

3 A MODEL OF PRODUCT-LINE ARCHITECTURES

A premise of Gen Voca is that plug-compatible and interchangeable soft
ware "building blocks" can be created by standardizing both the fundamen
tal abstractions of a mature software domain and their implementations.
The number of abstractions in a domain is typically small, whereas a huge
number of potential implementations exist for every abstraction. Gen Voca
advocates a layered decomposition of implementations, where each layer or
component encapsulates the implementation of a primitive feature shared
by many applications. The advantage is scalability (Batory, et al., 1993;
Biggerstaff, 1994): libraries have few components, while the number of
possible combinations of components (i.e., distinct applications in the
domain that can be defined) is exponential. Gen Voca has been used to cre
ate product line architectures for diverse domains including avionics, file
systems, compilers, and network protocols (Coglianese and Szymanski,
1993; Heidemann and Popek, 1993; Hutchinson and Peterson, 1991).

Components and realms. A hierarchical application is defined by a
series of progressively more abstract virtual machines (Dijkstra, 1968). (A
virtual machine is a set of classes, their objects, and methods that work
cooperatively to implement some functionality. Clients of a virtual machine

www.manaraa.com

206 Don Batory, Yannis Smaragdakis, and Lou Coglianese

do not know how this functionality is implemented). A component or layer
is an implementation of a virtual machine. The set of all components that
implement the same virtual machine is a realm; effectively, a realm is a
library of interchangeable components. In Figure la, realms S and T have
three components, whereas realm w has four.

(a) S={a,b,c} (b) S:= a b c

T={d[S),e[S),f[S)} T:= d s I e s I f s ;

W={n[W),m[W),p,q[T,S)} W:= n WI m W I p I q T S;

Figure 1: Realms, components, and grammars

Parameters and refinements. A component has a (realm) parameter
for every realm interface that it imports. All components of realm T, for
example, have a single parameter of realm s.2 This means that every com
ponent ofT exports the virtual machine ofT (because it belongs to realm T)
and imports the virtual machine interface of s (because it has a parameter of
realms). Each T component encapsulates a refinement between the virtual
machines T and s. Such refinements can be simple or they can involve
domain-specific optimizations and the automated selection of algorithms.

Applications and type equations. An application is a named compo
sition of components called a type equation. Consider the following two
equations:

Al d[b];

A2 f[a);

Application Al composes component d with b; A2 composes f with a.
Both applications are equations of type T (because the outermost compo
nents of both are of type T). This means that Aland A2 implement the same
virtual machine and are interchangeable implementations of T. Note that
composing components is equivalent to stacking layers. For this reason, we
use the terms component and layer interchangeably.

Grammars, product lines, and scalability. Realms and their compo
nents define a grammar whose sentences are applications. Figure la enu
merated realms s, T, and w; the corresponding grammar is shown in Figure
1 b. Just as the set of all sentences defines a language, the set of all compo-

2. Components may have many other parameters in addition to realm parameters. In this
paper, we focus only on realm parameters.

www.manaraa.com

Architectural Styles as Adaptors 207

nent compositions defines a product-line. Adding a new component to a
realm is equivalent to adding a new rule to a grammar; the family of prod
ucts that can be created enlarges automatically. Because huge families of
products can be built using few components, Gen Voca is a scalable model
of software construction.

Symmetry. Just as recursion is fundamental to grammars, recursion in
the form of symmetric components is fundamental to Gen Voca. More spe
cifically, a component is symmetric if it exports the same interface that it
imports (i.e., a symmetric component of realm w has at least one parameter
of type w). Symmetric components have the unusual property that they can
be composed in arbitrary ways. In realm w of Figure 1, components n and m

are symmetric whereas p and q are not. This means that compositions
n[m[p]], m[n[p]], n[n[p]], and m[m[p]] are possible, the latter two show
ing that a component can be composed with itself. Symmetric components
allow applications to have an open-ended set of features (because an arbi
trary number of symmetric components can appear in a type equation).3

Design rules, domain models, and generators. In principle, any
component of realm s can instantiate the parameter of any component of
realm T. Although the resulting equations would be type correct, the equa
tion may not be semantically correct. That is, there are often domain-spe
cific constraints that instantiating components must satisfy in addition to
implementing a particular virtual machine. These additional constraints are
called design rules. Design rule checking (DRC) is the process of applying
design rules to validate type equations (Batory and Geraci, 1997). A Gen
Voca domain model or product-line architecture (PLA) consists of realms of
components and design rules that govern component composition. A gener
ator is an implementation of a domain model ; it is a tool that translates a
type equation into an executable application.

Implementations. A Gen Voca model is an abstract description of a
product-line architecture. It expresses the primitive building blocks of a
PLA as composable refinements (components). The model itself does not
specify when refinements are composed or how they are to be implemented.
Refinements may be composed statically at application-compile time or
dynamically at application run-time. Refinements themselves may be
implemented compositionally (e.g., COM binaries, Java packages, C++

3. We refer to virtual machines as "standardized interfaces". However, these interfaces are
not immutable; they can change with the addition or removal of a component (Batory and
Geraci, 1997; Smaragdakis and Batory, 1998). Thus, symmetric components can add new
functionalities that are reflected in application interfaces.

www.manaraa.com

208 Don Batory, Yannis Smaragdakis, and Lou Coglianese

templates), as metaprograms (i.e., programs that generate other programs
by composing prewritten code fragments), or as rule-sets of program trans
formation systems (PTSs). Compositional implementations offer no possi
bilities of static optimizations; metaprogramming implementations
automate a wide range of common and simple domain-specific optimiza
tions at application synthesis time; PTSs offer unlimited optimization possi
bilities. Choosing between dynamic and static compositions, and alternative
implementation strategies is largely determined by the performance and
behavior that is desired for synthesized applications.

Separating PLA design from implementation provides a significant con
ceptual economy: Gen Voca offers a single way in which to conceptualize
building-block PLAs and many ways in which to realize this model (each
with known trade-offs).

4 ARCHITECTURAL STYLES AS ADAPTORS

4.1 Motivation

An architectural style refers to the means by which components com
municate their needs and results, as well as a set of constraints that govern
the overall constellation of an application's components. For example, com
ponents can communicate through pipes in the pipe-and-filter style; constel
lations are largely limited to linear chains of components. Our focus on
architectural styles lies exclusively with component communication. Note
that this definition of a "style" is not as broad as that in the treatment of
architectures by Perry and Wolf (Perry and Wolf, 1992) (where a style can
be any abstract architectural element and may cover as many aspects as an
entire architecture), but follows a more constrained view taken by other
researchers (Shaw and Clements, 1997; DeLine, 1996).

The obvious first question is, why use different architectural styles?
There are many reasons, some of which are:

• Compatibility reasons. Most often, a style is fixed by convention or
because the need to distinguish between computation and communica
tion had not become apparent at component implementation time. Thus,
components need to adopt a special style to communicate with existing
software. The scale of both components and interfaces may vary
widely. Many standard protocols (interprocess communication, win
dowing application conventions, COM for ActiveX controls) can be
viewed as alternative styles for connectors to some unit of functionality.

www.manaraa.com

Architectural Styles as Adaptors 209

• Performance/portability reasons. Even simple decisions at the imple
mentation level can constitute stylistic dependencies: a piece of code
could be inlined or made into a procedure. A set of parameters may be
passed through global variables or procedure arguments. A service can
be implemented as a static or dynamic library, or even a stand-alone
server. Such decisions fundamentally affect the performance and porta
bility of a component. Distributed applications are a good example.
Deciding whether a piece of functionality is local or accessed over a
network can be viewed as a simple stylistic choice, albeit one that fun
damentally affects performance. Ideally the same component could
adopt different styles and be used in vastly different applications. For
instance, the same piece of functionality may be in the core of both an
embedded system (with a primitive OS, small memory, and slow pro
cessor) and a high-end server system. The component should not have
to be rewritten but should automatically adapt (through a style adaptor)
to the capabilities of either runtime environment.

4.2 Gen Voca and adaptors

GenVoca components are designed a priori to communicate with their
clients in one style. For example, application Al of Section 3 has compo
nent d communicating with component b via the s interface. What exactly
the mechanisms and protocols are (e.g., local procedure calls, marshalled
arguments, global-variables, etc.) is governed by the definition of the virtual
machine s. But suppose we would like component d to communicate with b

via another style - remote procedure calls - which we would encode as
some interface G. Furthermore, we would like components d and b to
remain unchanged, so that d's calls to interface s are translated (refined)
into calls to interface G; similarly, invocations of G methods are translated
(refined) into invocations of s methods forb to process, and vice versa.

This can be accomplished using adaptors (Gamma, eta!., 1994). For our
example, we need to add two components and one realm to Figure 1. Com
ponent s2g[Gl would translate (refine, adapt) s method invocations to G

method invocations; s2g[Gl would be a new member of realms. Compo
nent g2s [Sl would do the opposite: it would translate (refine, adapt) calls to
G into calls to s; g2s [Sl would be the (lone) component of a newly-created
realm G. Figure 2 graphically illustrates the modification of Al to Al',

where d indirectly communicates (via interface G) with b.

Note the following. First, the essence of replacing one architectural style
with another should not alter the semantics of the target application. We
have indeed not altered the computations of Al in any way by rewriting it as

www.manaraa.com

210 Don Batory, Yannis Smaragdakis, and Lou Coglianese

Al'/,--- -,, f$1' I :d'
: 1 (a) d' imports an
\, _ V G-style S interlace /_a; ____ _
1 g2s \ (b) b' exports an
: :b• G-style S interlace

\ b I
' ... ___ _

Figure 2: Changing architectural styles Figure 3: Stylized component interfaces

Al'; the only thing that has changed is the means by which components d

and b communicate. The architectural style equation G-Style [x] =
s2g [g2s [xll is the identity mapping, and algebraically Al = Al'. In gen
eral, we postulate that architectural styles are algebraic identity elements.
Given the type equation of an application, it is possible to rewrite the equa
tion in many different ways using 'style' identities. Each equation would
describe a different implementation of that application -i.e., the same fun
damental computations are performed in the same order, the only difference
is the means by which components communicate.

Second, one of the goals of component-based design is to avoid compo
nent replication in library development. Replication occurs, for example,
when the computations of a component are fused with its communication
style. Different encodings of a computation exist when multiple styles need
to be supported. Unfortunately, this approach doesn' t scale. If there are n
computations and s styles, then potentially n*s different components may
be needed. Adding a new style may introduce n components; adding a new
computation might introduce s components.

Our model suggests a way to avoid such replication. Components and
adaptors are designed to be orthogonal to each other; this gives them a mix
and-match quality that avoids the fusing of component computations with
communication styles. In Figure 3, we can view application A' as a compo
sition of components d' and b', where d' communicates with b' via inter
face G (i.e., the computations of d and bare communicating via a "G" style).
Algebraically, d' [x] = d [s2g [xll and b' = g2s [b].

This view of architectural styles as adaptors is not novel. Nevertheless,
standard compositional implementations of adaptors (e.g., as objects, pro
cedures, or templates) have not always been up to the task. The use of adap
tors makes interface translations look conceptually trivial but the
implementations of such translations may be very sophisticated. Composi-

www.manaraa.com

Architectural Styles as Adaptors 211

tional implementations (e.g., 00 object adaptors) are inadequate to equate
architectural styles with adaptors. There are many architectural styles that
cannot be implemented (or implemented efficiently) in this manner. (Con
sider the example given earlier, of a single component being used in both a
high-end server and an embedded system.) This is not surprising: the use of
a compositional mechanism (e.g., procedures or objects) is itself a stylistic
dependency!

In contrast, our approach focuses on conceptualizing building-blocks of
product-line architectures as refinements. The advantage of refinements is
that they are not limited to compositional implementations. In fact, many of
the useful expressions of styles as adaptors employ metaprogramming tools
(software generators) . Generators have control over components that
exceeds the limits of languages. For instance, code fragments can be fused
together (Smaragdakis and Batory, 1997) or specialization hooks can be
eliminated from the generated code if they are not used. Even very simple
"generators" (like the Microsoft MFC and ATL wizards for adapting soft
ware to the style of Windows applications, ActiveX controls, etc.) are much
more powerful than a simple collection of compositional components. It is
this flexibility of generators that allows us to equate architectural styles with
("intelligent") adaptors.

A significant consequence of using software generators is that the struc
ture of the generated program may look nothing like the structure of its
specification. Hence, even though Gen Voca is a layered model, it is not con
strained to building layered implementations. GenVoca just offers the
"vocabulary" for specifying product-lines. Generators are compilers that
translate such specifications into their concrete realizations. A layered spec
ification may well be describing programs with non-layered architectural
styles (e.g., client-server, blackboard, etc.).

5 AN EXAMPLE FROM AVIONICS

ADAGE was a project to realize a GenVoca-based product-line architec
ture for avionics (in particular, navigation) software (Coglianese and Szy
manski, 1993; Batory and Smaragdakis, 1995). While the details of the
model are not germane to this paper, the central idea is that navigation com
ponents communicate by exchanging state vectors - i.e., run-time objects
that encode information about the position of an aircraft at a particular point
in time. Different components perform common computations on state vec
tors (e.g., filtering, integration, etc.). This section overviews an approach
that was prototyped for ADAGE.

www.manaraa.com

212 Don Batory, Yannis Smaragdakis, and Lou Coglianese

For the purposes of our paper, we will study a very simple type equation,
E = Main[A[B[Clll, that is a linear chain of components. The Main compo
nent encapsulates the application that is periodically executed; the remain
ing components perform computations on state vectors. Computations
proceed bottom-up; that is, component c outputs a vector that is processed
by B; B's vector is processed by A; Main displays the contents of AS vector.
The specific computations will be abstracted into a set of uninterpreted
algorithms that will allow us to explore the impact of using different archi
tectural styles. Each component exports a read-vector method that a higher
level component can call. Although there are many other methods, the cen
tral idea of architectural styles can be conveyed with the rewriting/packag
ing of this one method; other methods can be treated in a similar manner.
Note that our examples are deliberately idealized with complicating details
omitted.

We will denote the read-vector computation of component c to be algo
rithm c (>; that is, whenever the read-vector computation of c is called (no
matter how the read-vector method is expressed), algorithm c < > is invoked.
Similarly, the read-vector computation of component B is algorithm
b(x:TYPE_C), where TYPE_c is the type of vector output by component c.
The read-vector computation of A is algorithm a(x:TYPE_B), where TYPE_B
is the type of vector output by component B.

5.1 Example styles

There are many ways of encoding the computations of E as one or more
Ada tasks. Many reflect minor differences in programming styles. In this
section, we present three very different implementations of E - executive,
layered, and task - each with its own unique architectural style. Every
implementation executes exactly the same domain-specific computations in
the same order; the only difference is how the components of E communi
cate with each other (and hence are encoded). Later, we will explain how
each of these implementations could be "derived" or "generated" using
Gen Voca architectural-style adaptors.

Executive implementation. The most common way in which the com
putations of E are realized in avionics software is as an executive (also com
monly known as time-line executive). The state vector that is output by each
component is stored in a global variable; read-vector methods are encoded
as procedures that read and write global state vectors. The Main task exe
cutes read-vector methods in an order that reflects a bottom-up evaluation
of E. An Ada representation of an executive encoding of E is depicted in
Figure 4.

www.manaraa.com

Architectural Styles as Adaptors

-- global state vectors

vec_a 'l'YPE_A;
vec_b 'l'YPE_B;
vec_c TYPE_C;

-- read-vector for component C

procedure READ_C is
begin

vec_c • c();
end;

-- read-vector for component B

procedure READ_B is
begin

invec : TYPE_A;
invec • vec_c;
vec_b • b(invec);

end;

-- read-vector for component A

procedure READ_A is
begin

invec : TYPZ_B;
invec • vec_b;
vec_a • a(invec);

end;

-- main task

task body MAIN is
begin

x : integer;
loop
bottom-up evaluation of E

READ_C;
READ_B;
READ_A;

compute x till next cycle
delay x;

end loop
end;

Figure 4: The "Executive" Style

-- component read functions

function READ_C return TYPE_C is
begin

return c();

end;

function READ_B return TYPE_B is
begin

invec : TYPE_ B;

invec • READ_C;
return b(invec);

end;

function READ_A return TYPE_A is
begin

invec : 'l'YPE_ B;

invec • READ_B;
return a(invec);

end;

-- main task

task body MAIN is
begin

x : integer;
vec_a : TYPE_A;
loop

vec_a • R!!AD_A;

213

-- compute time x till next cycle
delay x;

end loop
end;

Figure 5: The "Layered" Style

Layered implementation. A typical layered implementation of Main

would permit Main to call only the methods of component A; As methods, in
tum, would call methods of component B, and B's methods would call those
of c . State vectors are returned as method results; there are no global vari
ables. An Ada representation of a layered encoding of E is depicted in Fig
ureS.

Task implementation. A third and very different implementation of E

would be to realize each component as an Ada task; state vectors would be
exchanged between tasks. Figure 6 depicts a task encoding of E .

www.manaraa.com

214 Don Batory, Yannis Smaragdakis, and Lou Coglianese

-- components aa tasks task TASX_A ia

task TAS!t_C is
entry READ_C(vec_c : out TYPZ_C);

end;
task body TAS!t_C is
begin

loop
accept READ_C(vec_c out TYPZ_C) do

vec_c • c() ;
end;

end loop
end

task TASX_B is
entry READ_B(vec_b out TYPZ_B);

end;
task body TASX_B
use TASX_C is
begin

loop
accept READ_B(vec_b : out TYPZ_B) do

invec : TYPZ_C;

-- read vector from TASX_C
TASX_C.READ_C(invec)
vec_b • b(invec);

end;

end loop
end;

entry READ_A(vec_a : out TYPZ_A) ;

end;
task body TAS!t_A
begin

loop
accept READ_A(vec_a:out TYPZ_A)
do

invec : TYPZ_B;

-- read vector from TASX_B
TASX_B.READ_B(invec);
vec_a • a(invec);

end;

end loop
end

--main task

task body MAJ:N
use TASX_A is
begin

x : integer1
invec : TYPE_A;
loop

- - read vector from TASX_A
TASX_A.READ_A(invec);

-- compute time x till next cycle;
delay x;

end loop
end;

Figure 6: A transducer/task style

Note that all three of the above examples are semantically equivalent
(i.e., they each perform exactly the same computations in the same order),
and are syntactic transformations of each other. The only code that is
shared among all three are the algorithms c <> , b < x: TYPE_ c) , and
a(x : TYPE_Bl ; the differences are simply in the packaging of these algo
rithms in a particular architectural style.

There are several trade-offs involved in choosing one of the above
styles. Not all of them are apparent in our presentation of these styles as
Ada code fragments . Nevertheless, we will try to outline here the trade-offs
between the "executive" and "task" implementations.

Time-line executive is the easiest runtime implementation to write. The
programmer needs to set a timer interrupt for the basic system cycle. When
the timer goes off, a predefined set of procedures that implement the appli
cation functions get called. The main advantage of this style is its predict
ability. Application functions will run in a fixed pattern. Adding the
maximum time for each function yields the maximum time for the cycle.

www.manaraa.com

Architectural Styles as Adaptors 215

The simplicity of the dispatcher (no scheduler is needed) results in a low
overhead, quite predictable OS when no real-time alternative exists. The
down side to the executive style is that it is too simplistic. The data used by
the system is fundamentally produced at different rates. Computations need
to run at a variety of rates. Data consumers need information with another
set of rates and latencies. If some unit needs to operate at a rate different
than the basic cycle, the system will become more complex. Adding and
deleting functions or changing the timing requirements forces one to mod
ify code throughout the system. In all, the code is partitioned more to satisfy
timing than based on objects or functional cohesion. A second problem
arises from the linear nature of the executive's calling sequence. Data is not
passed from one part of the cycle to the next. Rather the majority of state
information is stored in global data. Without formal data-flow analysis, it is
easy to use data in global variables that have not yet been updated for the
current cycle.

Tasking architectures have been designed to overcome the brittle, error
prone nature of time-line executives. Modem schedulers permit analysis to
prove that all processing deadlines will be met. Thus data can be produced
at the required rates. Tasks can be added and the effects of their load on the
system can be calculated. The disadvantage of the task style is that it is dif
ficult to implement and generally has a higher overhead.

In the next section, we explain how computations and "style" adaptors
can be packaged as Gen Voca components.

5.2 Packaging adaptors as components

As mentioned earlier, both components and adaptors that represent
architectural styles can be unified by the concept of consistent refinements.
An implementation of refinements that can synthesize the examples of
Section 5.1 are metaprograms and rule-sets of program transformation sys
tems (PTS). A metaprogram is a program that generates another program
by composing code fragments; a rule-set of a PTS is a set of tree rewrite
rules that, when applied, progressively transform one program into another.
For both metaprograms and PTS, programs are manipulated as data. We
will explain our implementation using a metaprogramming approach. Later
in Section 5.3.2, we motivate the generalization to rule-sets of PTSs.

Our model assumes that components communicate in a predetermined
"standard" style. Any other style would be obtained through the use of
adaptors. For this to be possible, each avionics component will be repre
sented as a metaprogramrning protocol - each component can query the

www.manaraa.com

216 Don Batory, Yannis Smaragdakis, and Lou Coglianese

capabilities and properties of adjacent components to determine what code
should be generated. In particular, this allows each component to determine
(a) the global variables that are to be used, (b) the protocol on how a com
ponent's current state vector is to be obtained, (c) when component methods
are to be executed, and (d) what interface "wrapper" should surround the
source code of domain-specific computations. Each of these capabilities
will be expressed as methods that return code fragments.

5.2.1 An executive component

Let's look at how component A might be represented as a metaprogram.
Let's assume that the "standard" style in our model is executive (any style
will do). So our implementation of component A will encapsulate both A's
fundamental computations as well as its executive encoding. The following
explains a set of methods that A (as well as Band c) would implement:

• global-variable method: This method outputs the declaration of any
global variable of a component. Component A would output "A_ vee :
TYPE_A; ". That is, it would output a standard name for its global vari
able (A_vec) and its declaration. In addition, the global-variable method
of the component beneath A would be invoked, thereby generating a
chain of global variable declarations originating from multiple compo
nents. Consider equation E. When the global-variable method for A is
called, the following declarations would be generated:

vec_a TYPE_A;
vec_b TYPE_B;
vec_c TYPE_C;

• get-current-vector method: This method outputs a statement that
assigns local variable invec to the current vector of the given compo
nent. For component A, the statement "invec = vec_a;" is produced,
meaning that the current vector of A is in global variable vec_a.

• interface-generation method: This method generates a component's
read-vector method in executive style. Component A produces a param
eterless procedure where the body of the procedure invokes algorithm
a(x:TYPE_B):

procedure READ_A is
begin

invec : TYPE_B;
--- set invec to appropriate value
vec_a a(invec);

end

www.manaraa.com

Architectural Styles as Adaptors 217

Note that the above procedure is incomplete, because invec has yet to be ini
tialized. The assignment statement that initializes invec is produced by invok
ing the get-current-vector method of the component that lies
immediately beneath A. Again consider equation E . The read procedure that is
generated by calling interface-generation for component A is:

procedure READ_A is
begin

invec TYPE_B;
invec vec_b;
vec_a a(invec);

end

• compute-vector method: The computation of a new state vector in
executive style is distinct from returning its result. To compute A's new
vector, we must first compute the state vector of the layer immediately
below A (by calling its compute-vector method). We then generate the
call "READ_A; ". For equation E, the calls that would be produced by
invoking the compute-vector method of A is :

READ_C;
READ_B;
READ_A;

This sequence of calls is included in the task-loop of Main of Figure 4.

Note when the type equation E is created, one is actually composing
metaprogramming implementations for each of E's components. When the
generator executes E, it produces/generates the executive source code of
Figure 4. In the next section, we will show how a layer-style adaptor can be
written.

5.3 A layer-style adaptor

A metaprogramming adaptor intercepts method calls for code genera
tion and replaces them with different calls. Here are the refinements for a
layer-style adaptor called layer:4

• global-variable method: To make component A appear to be in a lay
ered architectural style, A will have no global variables. When the glo
bal-variable method of the layer adaptor is called, a dispatch to the
global-variable method of the component immediately below A is

4. Note that x = layer [x] is an architectural style identity.

www.manaraa.com

218 Don Batory, Yannis Smaragdakis, and Lou Coglianese

called (thereby skipping the call of AS global-variable method). So, the
variable declarations generated for the equation E' = layer[A[B[C]]]

would be:

vec_b : TYPE_B;
vec_c : TYPE_C;

That is, components B and c are still in executive style (and thus have global
variables), but A is not.

• get-current-vector method: To obtain the current vector in layered
style, A would output the assignment statement "invec = READ_A; " ,

where READ_A is a function that returns AS current state vector.

• compute-vector method: The computation of a new state vector in lay
ered style occurs whenever its READ_A function is called. Thus, the
compute-vector method of a layer adaptor generates no code and has a
null body. An example of this method will be given shortly.

• interface-generation method: AS read-vector method in layered style
involves the generation of a parameterless function that returns AS state
vector:

function READ_A return TYPE_A is
begin

invec : TYPE_B;
--- invoke compute-vector
- - - set invec to appropriate value

return a(invec);
end

The above function is incomplete, because the computation of the state vector
from the component beneath A must be performed and local variable invec
must be initialized. The code for the latter is produced by calling the com
pute-vector method, and the code for the latter is produced by calling the
get-current-vector method of the component beneath A. As an example, the
code generated for the equation E' = Main [layer [A [B [C]]] would be:

function READ_A return TYPE_A is
begin

invec TYPE_B;
READ_C;
READ_B;

end

invec = vec_b;
return a(invec);

compute-vector before referencing

variable invec equals vec_b

www.manaraa.com

Architectural Styles as Adaptors 219

5.3.1 A task-style adaptor

A task-style adaptor (called task) would have the following methods:

• global-variable method: There are no global variables in task archi
tectural styles. The global-variable method of a task adaptor simply
returns the result of the global-variable method of the component
beneath A.

• get-current-vector method: To obtain the current vector in task-style,
A would output the assignment statement "TASK_A . READ_A(invec); " ,

which assigns variable invec a value via a task call.

• compute-vector method: As with the layer-style adaptor, the computa
tion of a new state vector in task-style occurs whenever its task read
vector method is called. Thus, the compute-vector method of a layer
adaptor has a null body. An example will be given shortly.

• interface-generation method: AS read-vector method in task style
generates an Ada task:5

task TASK_A is
entry READ_A (vec_a out TYPE_A) ;

end;
task body TASK_A
begin

end

loop
accept READ_A(vec_a : out TYPE_A) do

i nvec : TYPE_B;
--- invoke compute- vector
--- set invec to appropriate value

vec_a = a(invec);
end;

end loop

As an example, the code generated for the equation E'

Main[task[A[B[C]]] l would be:

task TASK_A is
entry READ_A(vec_a out TYPE_A);

end;

5. Readers may note that the Ada uses clause specifies tasks that can be called from within
a task. The list of such tasks could be produced by an additional method -uses-tasks

method - that all components would need to implement.

www.manaraa.com

220 Don Batory, Yannis Smaragdakis, and Lou Coglianese

task body TA
begin

loop
accept READ_A(vec_a out TYPE_A) do

invec : TYPE_B;
READ_C;
READ_B;
invec vec_b;
vec_a a(invec);

end;

end loop
end

5.3.2 Recap

Given the above model of components and adaptors, the type equations
for Figures 4-6, which are equivalent to equation E, are:

Figure4 = Main[A[B[C]]];
FigureS = Main[layer[A[layer[B[layer[C]]]]]];
Figure6 = Main[task[A[task[B[task[C]]]]]];

It is not difficult to imagine that metaprogramming adaptors for other
architectural styles - such as table dispatching, file filters, and Weaves
(Gorlick and Razouk, 1991) - can be created by following the above
approach. It is also not difficult to see that different architectural styles can
be intermixed within the same type equation. Thus, a version of E that
implements A as a task, Bin layered style, and c in executive style would be
E* = Main[task[A[layered[B[Clllll . The source that would be gener
ated from this equation is shown in the Appendix.

Readers may have noticed that more compact code could be generated
in our examples. For example, the invec variable could easily be removed
from many of our generated procedures. While this is a trivial optimization,
it is symptomatic of inefficiencies that can arise in metaprogramming
implementations of components and adaptors. Optimizations requiring code
movement and variable elimination are extremely difficult to express in
metaprograms. If such optimizations are crucial for producing efficient
code, then rather than implementing components and adaptors as metapro
grams, a better way would be to implement them as rule-sets of program
transformation systems (where such optimizations are possible and can be
expressed easily). Again, this is possible in a GenVoca model because the
basic model remains unchanged; it is only the implementation the generator
(and the domain model components) that are affected.

www.manaraa.com

Architectural Styles as Adaptors 221

6 CONCLUSIONS

Product-line architectures are becoming progressively more important.
Isolated designs of individual software products are being replaced with
designs for product-lines that amortize the cost of both building and design
ing families of related products. A critical aspect of product-line designs
involves architectural styles. Different applications of a product family may
require the use of different styles as the basis of component communication.
Simple and comprehensible models of product lines demand the inter
changeability of architectural styles.

In this paper, we have explored the relationship of architectural styles
and Gen Voca models . Our approach outlined first steps towards viewing
architectural styles as adaptors (Gamma, et al., 1994). Since GenVoca rep
resents applications as equations (i.e., compositions of components), adap
tors have a particularly appealing representation as algebraic identities.
That is, the ability to replace one architectural style with another is ele
gantly expressed by rewriting an equation using an algebraic identity. More
over, the central concept of Gen Voca- namely building blocks of product
line architectures are refinements - was unaffected. Both components and
adaptors are examples of refinements.

We presented deliberately simplified examples of avionics software that
were coded in different architectural styles. We explained how metapro
gramming implementations of components and adaptors could achieve the
effect of synthesizing these examples through component composition.
This demonstrated the important effect that adaptors and components could
be designed to be orthogonal to each other, thereby admitting a mix-and
match capability that is both desirable and characteristic of Gen Voca
designs.

Most approaches to architectural styles do not adopt the wholistic view
that we have taken, namely that one designs components and adaptors to
work together to achieve a mix-and-match capability. Typically approaches
begin with pre-existing components; the task is to develop tools that will
alter the architectural styles by means of component unwrapping and/or
rewrapping. While this approach will achieve success, we believe that an
approach that integrates component and adaptor designs will yield stronger
results and less fragile tools in developing product line architectures of the
future.

www.manaraa.com

222 Don Batory, Yannis Smaragdakis, and Lou Coglianese

REFERENCES

Batory, D. and O'Malley, S. (1992), "The Design and Implementation of Hierarchical
Software Systems with Reusable Components", ACM TOSEM, pp.355-398.

Batory, D. and Coglianese, L. (1993), "Techniques for Software System Synthesis in
ADAGE", ADAGE-UT-93-05, Lora! Federal Systems Division.

Batory, D., et al. (1993), "Scalable Software Libraries", Proc. ACM SIGSOFT.

Batory, D. and Smaragdakis, Y. (1995), "Architectural Styles and Adage" , UT-ADAGE-95-
02, Lora! Federal Systems Division.

Batory, D. and Geraci, B.J. (1997), "Composition Validation and Subjectivity in GenVoca
Generators", IEEE Transactions on Software Engineering, pp.67-82.

Biggerstaff, T. (1994), "The Library Scaling Problem and the Limits of Concrete Component
Reuse", International Conference on Software Reuse, pp.l02-109.

Blaine, L. and Goldberg, A. (1991), "DTRE- A Semi-Automatic Transformation System",
in Constructing Programs from Specifications, Elsevier Science Publishers.

Coglianese, L. and Szymanski, R. (1993), "DSSA-ADAGE: An Environment for
Architecture-based Avionics Development", Proc. AGARD.

Cohen, S. , et a!. (1995), "Models for Domains and Architectures: A Prescription for
Systematic Software Reuse", AIAA Computing in Aerospace.

DeLine, R. (1996) , 'Toward User-Defined Element Types and Architectural styles", position
paper in Second International Software Architecture Workshop, pp.47-49.

Dijkstra, E.W. (1968), 'The Structure ofT.HE Multiprogramming System", Communications
of ACM, pp.341-346.

Gamma, E.; Helm, R. ; Johnson, R. and Vlissides, J. (1994), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

Garlan, D., et al. (1994), "Exploiting Style in Architectural Design Environments", ACM
SIGSOFT. pp.l75-188.

Garlan, D., et a! (1995), "Architectural Mismatch or Why It's Hard to Build Systems out of
Existing Parts", Int. Conf on Softw. Eng.

Gorlick, M.M. and Razouk, R.R. (1991), "Using Weaves for Software Construction and
Analysis", Int. Conf Softw. Eng. , 23-34.

Harrison, W. and Ossher, H. (1993), "Subject-Oriented Programming (A Critique of Pure
Objects)", OOPSLA, pp.411-427 .

Heidemann, J. and Popek, G. (1993), "File System Development with Stackable Layers",
ACMTOCS.

Hutchinson, N. and Peterson, L. (1991), "The x-kemel: An Architecture for Implementing
Network Protocols", IEEE TSE, pp.64-76.

do Prado Leite, J.C.S. , et al. (1994), "Draco-PUC: A Technology Assembly for Domain
Oriented Software Development", International Conference on Software Reuse, 94-1 0 I.

Mcilroy, M. D. (1968), "Mass-Produced Software Components", In Proceedings of the
NATO Conference on Software Engineering.

Neighbors, J. (1980), "Software Construction Using Components", Ph.D. Thesis, ICS-TR-
160, University of California at Irvine.

www.manaraa.com

Architectural Styles as Adaptors 223

Pamas, D. L. (1976), "On the Design and Development of Program Families", IEEE
Transactions on Software Engineering.

Perry, D. E. and Wolf, A. L. (1992), "Foundations for the Study of Software Architecture",
Software Engineering Notes, 17(4).

Shaw, M. and Clements, P. (1997), "A Field Guide to Boxology: Preliminary Classification
of Architectural Styles for Software Systems", Proc. COMPSAC97, 21st International
Computer Software and Applications Conference, pp. 6-13.

Smaragdakis, Y. and Batory, D. (1997), "DiSTiL: a Transformation Library for Data
Structures", Conference on Domain Specific Languages (DSL '97).

Smaragdakis, Y. and Batory, D. (1998), "Implementing Layered Designs with Mixin
Layers", European Conference on Object-Oriented Programming.

Weiss, D.M. (1990), Synthesis Operational Scenarios, Technical Report 90038-N. Version
1.00.0 I, Software Productivity Consortium.

www.manaraa.com

224 Don Batory, Yannis Smaragdakis, and Lou Coglianese

APPENDIX - SOURCE FOR
Main[task[A[layered[B[C]]]]]

-- global state vectors
vec_c : TYPE_C;

procedure READ_C is
begin

vec_c = c();
end;

function READ_B return TYPE_B is
begin

invec TYPE_B;
READ_C;
invec = vec_c;
return b(invec);

end;

task TASK_A is
entry READ_A (vec_a out TYPE_A) ;

end;
task body TASK_A
begin

loop
accept READ_A(vec_a

end

invec
invec
vec_a

end;

end loop

- - main task

task body MAIN
use TASK_A is
begin

TYPE_B;
READ_B();
a(invec);

x : integer ;
invec : TYPE_A;
loop

TASK_A.READ_A(invec);

out TYPE_A) do

-- compute time x till next cycle;
delay x;

end loop
end;

www.manaraa.com

Attribute-Based Architecture Styles

Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, Mario Barbacci, and
Howard Lipson
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213
{mk, rkazman, ljb, sjc, mrb, hjlj@sei.cmu.edu

Key words: Architecture, architecture styles, quality attributes

Abstract: Architectural styles have enjoyed widespread popularity in the past
few years, and for good reason: they represent the distilled wisdom of
many experienced architects and guide less experienced architects in
designing their architectures. However, architectural styles employ
qualitative reasoning to motivate when and under what conditions they
should be used. In this paper we present the concept of an ABAS
(Attribute-Based Architectural Style) which includes a set of
components and connectors along with their topology, but which adds
to this a quality attribute specific model that provides a method of
reasoning about the behavior of component types that interact in the
defined pattern. We will define ABASs in this paper, show how they
are used, and argue for why this extension to the notion of architectural
style is an important step toward creating a true engineering discipline
of architectural design.

1. INTRODUCTION

An architectural style (as defined by Shaw and Garlan (Shaw and Garlan,
1996) and elaborated on by others (Buschmann, et al., 1996)) includes a de
scription of component types and their topology, a description of the pattern
of data and control interaction among the components and an informal
description of the benefits and drawbacks of using that style. Architectural
styles are important since they differentiate classes of designs by offering
experiential evidence of how each class has been used along with qualitative

www.manaraa.com

226 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

reasoning to explain why each class has certain properties."Use the pipe and
filter style when reuse is desired and performance is not a top priority" is an
example of the type of description that is a portion of the definition of the
pipe and filter style. The purpose of this paper is to move the notion of
architectural styles toward having the reasoning (whether qualitative or
quantitative) based on quality attribute-specific models. We call these
enhanced architectural styles, Attribute-Based Architecture Styles (ABASs)
and we view them as the next generation in the development of architectural
styles.

We define an ABAS as a triple
1. the topology of component types and a description of the pattern of data

and control interaction among the components (as in the standard
definition),

2. a quality attribute specific model that provides a method of reasoning
about the behavior of component types that interact in the defined
pattern, and

3. the reasoning that results from applying the attribute specific model to
the interacting component types.
Thus, to further use the pipe-and-filter example, a pipe-and-filter

performance ABAS would be one that has a description of what it means to
be a pipe or a filter and how they would legally be connected, a queuing
model of the pipe-and-filter topology together with rules to instantiate the
model, and the results of solving the resulting queuing model under varying
sets of assumptions.

Software architecture styles are useful during both design and analysis.
Styles are useful during design because the software architect can choose a
style based on an understanding of the desired quality goals of the system
under construction. The goal of those cataloguing architectural styles
(Buschmann, et al., 1996) is to provide a handbook that the software
architect can use as a reference to have design options with known qualities
from which to choose.

In this paper, we make two points. The first (rather obvious) point is that
architectural styles are also useful in analysis. When analyzing a system, the
recognition of the use of pipe and filter, for example, leads to questions
about how performance is handled and about the assumptions that the filters
make that might impact their reuse. The second point (somewhat less
obvious) is that when considering architectural styles as analysis tools,
focussing on particular quality attributes (McCall, 1994) leads to the ability
to attach known analytic models for these attributes to the architecture being
analyzed. This in tum leads to the ability to predict the effect of particular
architectural decisions and changes to the architecture. Thus, instead of the
designer having vague guidance about a particular style's effect on

www.manaraa.com

Attribute-Based Architecture Styles 227

performance, the designer is given a model, its analysis, and its explicit
connection to aspects of the architectural style so that the designer can
answer questions such as "What is the effect on performance of moving a
particular piece of functionality from one component to another within a
pipe and file based architectural design?"

In the remainder of this paper, we discuss the roots of the ABAS concept,
the pieces of an ABAS, the types of attribute models that exist and how they
would be used in constructing an ABAS, an extended pedagogical example,
and an example drawn from our experience using ABASs in architectural
analysis that shows how ABASs work in practice.

2. MOTIVATIONS

The motivation for ABASs comes from three different sources:
l. architectural styles, such as those catalogued by Shaw and Garlan in

(Shaw and Garlan, 1996) and by Buschmann et al in (Buschmann, et al.,
1996)

2. analytic models of quality attributes, such as rate monotonic analysis for
performance (Klein, et al., 1993) or Markov models for availability

3. architecture evaluation questionnaires, such as those used by AT&T
(Maranzano, 1993)
ABASs are a kind of architectural style, and hence they build squarely

upon the foundational work of Shaw and Garlan, as well as the similar work
of the design patterns community (Gamma, et al., 1994). However, in each
of these cases, the kinds of reasoning that the architectural styles support is
heuristic. For example, in describing the layered style, Shaw and Garlan
write "if a system can logically be structured in layers, considerations of per
formance may require closer coupling between logically high-level functions
and their lower-level implementations". While this is important information
for the designer who is considering using this style, it does not give the
designer a principled way of understanding when a specific number and
organization of layers will cause a performance problem. The answer to this
dilemma lies in our second influence, analytic models of quality attributes.

Mature analytic models exist for several quality attributes that are of
central concern to complex software systems, such as performance,
reliability and, to a lesser extent, security. These models not only provide a
way to establish a more precise understanding of, for example,
"considerations of performance", but also can allow the analyst to associate
particular measurable performance criteria with architectural choices. This
gives the designer a way to rigorously experiment with, and plan for,
architectural quality requirements.

www.manaraa.com

228 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

However, analytic models are typically quite general and it requires a
substantial amount of training to be able to use them effectively. Frequently,
when we perform architectural evaluations, we need to be able to assess a
design's effectiveness and risk within a 2 or 3 day period. This leads to the
our third motivation. A proven technique for aiding in risk assessments of
architectures, first used widely by AT&T' s software architecture validation
exercises (Maranzano, 1993), is a questionnaire or checklist. A proven set of
questions can help organize the line of reasoning and investigation into an
architecture, and can provide a first insight into problem areas. These
questions can be a first approximation for an analysis, and can lead the
analyst in probing the architecture.

3. MODELING ARCHITECTURAL DECISIONS
USING AN ABAS

One of the reasons for focusing attention on an architecture is to highlight
and analyze critical early design decisions. Translating these decisions into
some modelling framework that supports predictive reasoning at the
architecture level is key for attaining the potential benefits of focusing on the
architecture. The structure of an ABAS reflects this goal of mapping an
architecture style onto an attribute-modelling framework. This notion is
represented by Figure 1.

Architectural decisions * Attribute Model Parameters
Architectural properties I

Stimuli t
Actual behaviors Quality Attribute Models

l
Predicted behaviors

?

?
Desired behaviors ========

Figure 1. Mapping architectural models to attribute models

The left side of the figure says that architectural decisions directly and/or
indirectly affect the behavior ultimately manifested by the architecture. That
is obvious, but what is less clear is how to characterize those behaviors and
to understand how they compare with the desired behaviors. For example,
allocating functionality to a collection of processes (a subset of the

www.manaraa.com

Attribute-Based Architecture Styles 229

architectural decisions that a designer will make) that are in tum allocated to
processors (more architectural decisions) result in a set of process execution
times (that is, architectural properties). Architectural properties in
conjunction with stimuli such as message arrival rates ultimately lead to the
performance behavior that will be exhibited. The actual behavior of the
system is unknowable without constructing the system and so we use models
of the behavior as a method of characterizing the actual behaviors.

We can, of course, "hope" that the actual behavior will satisfy the desired
behavior, but there is no way to know unless some type of model is used.
The architecture abstraction needs to be mapped to some other abstraction
that is more supportive of reasoning. For example, if the goal is to reason
about reliability, the salient features of the architecture (such as redundancy)
need to be mapped onto reliability models (such as Markov models). At this
point the behaviors predicted by the models can be compared with the
desired behaviors. Such reasoning can become the basis for comparing
architectures and for making decisions regarding the form of the final
software architecture.

3.1 The Structure of an ABAS

We define an ABAS to have five parts:
1. Problem description - describes the design problem that the ABAS is

intended to solve, including the quality attribute of interest, the context of
use, constraints, and relevant attribute-specific requirements.

2. Quality attribute measures - a condensation of what was discussed in
the problem description, but in specific terms pertinent to the measurable
aspects of the quality attribute model. This includes a discussion of
stimuli: events that cause the architecture to respond or change.

3. Architectural style - a description of the architectural style in terms of
component, connections, properties of the components and connections,
and patterns of data and control interactions.

4. Quality attribute parameters - a condensation of what was discussed in
the architectural style section but in specific terms relevant to the
parameters of the quality attribute model.

5. Analysis - a description of how the quality attribute models are formally
related to the elements of the architectural style and the conclusions
about architectural behavior that are drawn via the models.
Note that these parts rely on a description of the architectural style and on

a description of a quality attribute. Describing quality attributes is discussed
in the next section.

www.manaraa.com

230 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

4. QUALITY ATTRIBUTE MODELS PARAMETERS

To assess an architecture for adherence to quality requirements, those
requirements need to be expressed in terms that are measurable or at least
observable. We call these the quality attribute measures. These parameters
depend on properties of the architecture, called quality attribute parameters,
and on the stimuli. The quality attribute parameters are the adjustable
parameters of the architecture that determine whether the dependent
parameters will satisfy the quality requirements. Stimuli are the events to
which the architecture will have to respond.

Consider performance: performance is concerned with timeliness, usually
measured as either latency or throughput. Therefore two quality attribute
measures are:
- Latency - time from the occurrence of an event until the response to that

event is complete; expressed in units of time.
- Throughput - the rate at which the system can respond to events;

expressed in terms of transactions (or responses) per unit time.
The stimuli are changes of state to which the architecture must respond.

For performance the arrival pattern of an event is important. It can be one of:
- Periodic - there is a fixed interval between event arrivals.
- Sporadic - there is a bound on how short the interval between arrivals

can be.
- Stochastic- arrivals can be described probabilistically.

When a stimulus occurs, the system responds to it by using its resources
to carry out computations or transmit data. Multiple concurrent stimulus
responses require an arbitration or scheduling policy to resolve conflicting
requests. Thus we think of performance-related architectural parameters in
terms of the resources that are needed, the policies for allocating resources,
and properties of how the resources are requested and used. Therefore
quality attribute parameters include:
- Resource characteristics - include the type of resource such as CPU or

network and characteristics such as processor speed or network
bandwidth.

- Resource scheduling policy - includes CPU scheduling, CPU allocation,
and bus and network arbitration; and queuing policies.

- Resource usage - includes the priority of processes and messages,
preemptability of response and magnitude of use such as execution time.
ABASs map a characterization of architectural properties onto quality

attribute parameters, and then map (via modelling) quality attribute
parameters and stimuli onto predicted behaviors. Models such as those for
scheduling and queuing provide the basis for relating quality attribute
parameters (such as queuing policies and execution time estimates) to

www.manaraa.com

Attribute-Based Architecture Styles 231

quality attribute measures (such as latency and throughput). Some
parameters such as execution time might not be easily quantifiable at the
architecture level. In this case execution time budgets can be assigned, which
then become derived requirements for fleshing out the details of the
component. This is further illustrated in the next section in which we discuss
a sample ABAS for reliability.

For other attributes such as reusability or modifiability, where there are
no universal quality attribute measures, scenarios can used to provide
context dependent measures. (Kazman, et al., 1996)

5. ABASs

We will illustrate the notion of an ABAS by an example. We are
currently collecting, documenting, and testing many such examples in the
hope of creating an engineering handbook of ABASs. The example given
here uses a form of redundancy known as analytic redundancy as a means of
achieving high levels of availability. First, we will lay out a portion of the
relevant attribute model1•

5.1 Reliability/ Availability Attribute Model

Reliability is usually measured in terms of mean time to failure (MTTF).
Availability is usually measured in terms of the long-run fraction of time that
a system is working. Component failures (and faults)2, and repair (or
recovery) are the stimuli of concern. Architecture parameters include fault
detection and fault containment and recovery strategies. An attribute model
for reliability/availability looks as follows3:

Quality attribute measures
- Steady state availability - fraction of time that the system is working

(that is, not in a failed state)
- Reliability- usually measured in terms of mean time to failure
- Faults detectable- passive failures (detectable via time-out

mechanisms), active failures , timing failures, semantic failures

1 An attribute model does not have to be developed for every ABAS. Only one attribute model
is needed per attribute and it is then applied to all ABASs for which that specific attribute
is relevant.

2In this paper we do not distinguish between failures and faults.
3This is not meant to be a complete attribute model, but rather one that focuses attention on

architectural decisions.

www.manaraa.com

232 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

Stimuli •• characterized in terms of the types of failures and repairs and
their rates.

Quality attribute parameters
- Detection- mechanisms for detection of failures such as voting, post

condition checking, and deadline detection
- Recovery - mechanisms for recovering from failure including forward

and backward recovery mechanism
- Modes - A system can operate in various degraded modes and the

availability/reliability of each mode of operation have to be calculated
separately.

5.2 Simplex ABAS

We will now describe the documentation that accompanies an ABAS by
means of an example of a particular ABAS, called Simplex.

5.2.1 Problem Description

The purpose of this section is to describe the architectural design
problem being addressed or in other words the goals of the architecture. 4

The Simplex (Sha, et al.) ABAS focuses on the problem of software
reliability in control systems. In particular, Simplex addresses the problem of
tolerating software faults introduced as a consequence of upgrading control
algorithms. Simplex also addresses the problem how to take advantage of
redundancy to increase reliability while avoiding "common mode" software
failures.

To illustrate the problem consider, "the update paradox", as described in
(Sha, eta!., 1996). Consider the case in which a component is replicated to
ensure its reliability. Each replica performs its calculations and sends its
results to a voter. If the results do not agree (to within a specified tolerance),
the voter "votes for the majority".

Let's say that a key algorithm is updated which will yield a different
output value than the older algorithm. Here's the paradox: if the new
algorithm is placed in a minority of the replicated components then it will be
voted out and have no effect; if it's placed into a majority of the replicated
components and is faulty, the bad output will used.

There are two problems highlighted by the upgrade paradox. First of all,
even components that have been implemented by different groups and hence
have different implementations can suffer from common mode failures .
Hence the first problem is, how to introduce redundancy to ensure the proper

"7he text in italics in this section is commentary for the reader, and is not part of the ABAS.

www.manaraa.com

Attribute-Based Architecture Styles 233

level of reliability/availability without introducing common mode failures?
The second problem is, how do you upgrade a system without compromising
its reliability/availability?

5.2.2 Quality Attribute measures and Stimuli

Based on the desired architectural behavior, the stimuli of the
reliability/availability attribute model, and the problem description there are
set of specific issues that should be highlighted. These issues are raised in
this section. A checklist of such issues would include those that follow.

The availability/reliability issues of concern for this ABAS are:
- What types of faults need to be tolerated by the architecture
- What the levels of (degraded) service are
- What the reliability/availability is for each level of service

Types of faults: the goal of this architecture is to handle timing faults
(e.g., timing overruns), semantic faults (wrong output values) and system
faults (such as memory overruns due to bad pointers).

Reliability of service levels: There is a specified desired level of
availability for the upgraded or higher performance level of service and
specified level of reliability for the baseline level of service.

5.2.3 Architectural Style

This section starts by identifying the relationship between this ABAS and
other similar ABASs. In this case the Simplex ABAS is an instance of a more
general pattern.

Simplex is an architectural style which belongs to a general family of
reliability styles that could be called redundancy styles. The general pattern
for a redundancy style is shown in Figure 2 below. The pattern, from a
reliability point of view, consists of multiple redundant components. Data
flows into one or more redundant components, which then send their output
to another component (or possibly components) responsible for detecting
failures, switching to a working component and possibly initiating recovery
of the failed component.

The Simplex style, as shown in Figure 3, is an instance of the redundancy
style in which the redundant components are processes. The components
don't necessarily receive the same input or generate the same output.
Moreover, the components are not all peers. The components are
analytically redundant, meaning they are redundant with respect to the

www.manaraa.com

234 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

general effect their output has in controlling their environment, but not
necessarily redundant in the algorithms used or the output produced. 5

input

(oetector)

(Switcher) ___. output

Figure 2: A redundancy-specific architectural style

--•• output

y Safety/

Figure 3: The Simplex architectural style

The "leader" component, the other redundant components (Rl and R2)
and the "safety" component are analytically redundant. The "leader" is
typically the upgraded version of a critical component. All components
execute concurrently. The leader's output is used if it passes the acceptance
test applied by the decision and switch unit. The acceptance test is based on
a model of the controlled environment and the ability of the safety

5You can think of the relationship between power steering and mechanical steering as analytic
redundant. Both mechanisms have the same effect on the environment, that is, they change
the direction of the wheels, but the mechanisms used, the output produced, and their
performance are all different.

www.manaraa.com

Attribute-Based Architecture Styles 235

component to recover from actions of the other components. If the leader
doesn't pass this test a new leader is picked (either Rl or R2). The "safety"
component is a simple, highly reliable analytically redundant component that
is used as a last resort. The safety might be used to affect a recovery to the
point where one of the other (more able) components can once again take
over. Note that the decision and switch component receives a copy of the
input and uses it as a basis for performing its acceptance test.

The Simplex style assumes that mechanisms exist to bound the execution
time of the components, thereby preventing timing overruns. Another
(related) style would address performance issues. The Simplex style also
assumes that the concurrent units are processes with address space protection
thereby preventing the propagation of system faults such as memory
overruns.

5.2.4 Quality attribute parameters

Based on the architecture parameters of the reliability/availability
attribute model and on the pattern of interactions, there are set of specific
issues that should be raised to refine the pattern.

The quality attribute parameters of concern for this ABAS are:
- Analytic redundancy (possibly different input; different implementation;

possibly different output) is the form of redundancy
- A leadership based "voting" mechanism is used.
- Estimates are needed for failure rates and repair rates of the various

components. We assume that the failure rates for the decision unit and
the safety component are very low in comparison to the failures rates of
the other components.

5.2.5 Analysis

This section ties together the preceding sections. It discusses how to use
the architectural decisions and properties and the stimuli to model the
architectural behavior.

To model the availability of this style you have to make estimates of the
failure rates and repair rates of the components to calculate the availability
of the system. Reliability growth models can be used for obtaining estimates.
In addition, it can be very illustrative to compare one architecture style to
another simply by making assumptions about the various failure and repair
rates. This is the approach we will use.

The first step in this section is to map the architectural decisions and
properties into a quantitative or qualitative model that helps you to predict
the architectural behavior.

www.manaraa.com

236 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

Modelling a Simpler Problem
Before discussing the analysis of the Simplex style we'll first take a look

at a similar style, the majority voting style.6 This is the style that we used in
the problem description to illustrate the update paradox. For this style there
are three redundant components7• At least 2 or the 3 components must
produce results that agree, otherwise the system has failed. When the system
is working (in this case controlling some aspect of its environment, for
example, the trajectory of a missile or the temperature and pressure of a
chemical process) it is performing at a constant level of service. The system
can be in one of three states: 3 working components, 2 working components,
or failed. If F failures per year occur and a component repair takes on the
average 1/R years then the Markov model shown in Figure 4 can be used to
calculate the availability (that is, the proportion of time that the system is not
in the failed state).

Figure 4: A Markov model for majority voting

The representation of a Markov model in Figure 4 can be viewed as a
state diagram. State "3" represents the state in which 3 components are
working, state "2" represents the state in which 2 components are working
and the grey state is the failed state. The transition arrows are labelled with
failure (F) and repair (R) rates. Since each component fails independently
with an average rate of F, 3 components fail with an average fail rate of 3F
and hence the label for the transition from state "3" to state "2".

The steady state solution of the Markov model yields the long-term
proportion of time that the system is in each state. Therefore the availability
of the majority voting case is the proportion of time in which the system is in
state "3" or state "2", and hence not in the failure state.

More information about Markov models can be found in standard texts
on probability. Our goal is to illustrate the mapping from architectural
parameters to a predictive model and to show how the model provides the
motivation for the characterization of the ABAS. In this case the predictive

6 The majority voting style would probably have its own entry in a handbook of ABASs and
be referenced in the Simplex ABAS.

7This is known as Trimodular redundancy (TMR). However, majority voting is not restricted
to 3 components.

www.manaraa.com

Attribute-Based Architecture Styles 237

model is a mathematical model. In other ABASs qualitative reasoning
techniques might also be used. For this case we use the model to gain an
understanding of how the availability varies as a function of the assumed
failure and repair rates, not to get absolute availability estimates. The trends
of the majority voting style will then be compared with Simplex style.

Modeling Simplex
The Simplex style achieves relatively high levels of availability of the

high performance (e.g., a very precise algorithm) variant by using a highly
reliable but lower performing (e.g., a less accurate algorithm) variant to
recover from faults. To illustrate the concept consider a system with two
redundant controllers (R 1 and R2), a safety controller, and a monitoring and
decision unit. The Simplex style preserves the total number of active
components, but allocates functions to components differently depending on
their states, and hence the components have different failure properties. The
Markov model for this style is shown in Figure 5.

Figure 5: Markov model for Simplex

The system starts in state "2" with two high performance controllers, the
outputs of which are compared. If they agree we assume that they're correct
(that is, we assume no common mode failure, but rather random failures). If
they disagree, one is picked. If the right one is picked the model transitions
from state "2" to state "1 ". If the wrong one is picked the model transitions
from state "2" to state "Kl ", where Kl stands for the a state in which the
safety component becomes active. Since one of the high performance
controllers continues to work, the transition from "K1" to "1" is relatively
quick and thus has a quick repair (QR) rate. We assume that QR=n*R, for
some n greater than 1. If a failure occurs while in state "1", the system also
transitions to the safety controller, but in this case the repair rate is that of a
"normal" repair (i.e. a software or hardware fix).

The final objective is to gain insight into the architecture by using the
model as a basis of reasoning.

www.manaraa.com

238 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

A key to the availability properties of this style is the relatively quick
repair rate (QR) from state "K1" to state "1". To see this imagine that QR is
so quick that virtually no time is spent in state "K1". In this case the model
in Figure 5 closely approximates the model in Figure 6, below. The
availability properties of the model shown in Figure 6 are better than for
majority voting (shown in Figure 4) due to the higher transition rates for ma
jority voting. The higher transition rates for majority voting are a
consequence of needing a majority of the redundant components to agree in
order to detect a failure, whereas this style uses a semantic check of the
output for failure detection.

14-:--0
Figure 6: An approximate Markov model for Simplex

6. USING ABASs

We have applied ABASs on a real-world system during an enactment of
the Architecture Tradeoff Analysis Method (ATAM) (Kazman, et al., 1998).
During the course of the architectural analysis, ABASs relevant to several
properties (availability, performance, and modifiability) were applied to aid
in the understanding of the system and the consideration of design
alternatives.

The system being evaluated-which we will call LAOB (Leader And
One Backup) here8-comprises a collection of independently operating
nodes (computers), communicating via a radio network, with a single node
acting as leader. The leader has the responsibility to plan the activities of the
other nodes. To perform this planning, it must accumulate and maintain data
concerning the states of the other nodes.

Because the availability of the system is critical, we used a reliability
ABAS to map the quality attribute parameters (i.e. the architectural
decisions, such as the mechanisms for detection and recovery) and the pre
dicted stimuli (e.g. failure of a node) onto the quality attribute measures (i.e.
the predicted behavior) of the system via a reliability model. The resulting
analysis was used to understand how well the system will meet its

Bne actual name, developing organization, and details of this application are proprietary, but
their suppression does not affect the analysis.

www.manaraa.com

Attribute-Based Architecture Styles 239

availability goals and to inform decisions for refining the architecture. In
particular, by looking at the system via ABASs, we were able to detennine
that its reliability had not been adequately addressed in either requirements
or implementation.

Quality Attribute Measures: Based on the reliability/availability
attribute model presented in Section 5.1, the quality attribute measure of
interest for this ABAS is its steady-state availability.

Stimuli: The stimuli of interest for this ABAS are hardware or software
failures of the nodes.

Structure: The structure of the ABAS is shown in Figure 7.
Communication takes place exclusively between the leader and the other
nodes (i.e. the nodes do not communicate with each other). If the leader fails,
a node pre-designated as a backup must reconfigure to take on the planning
responsibilities of the leader and must acquire any additional data it needs to
begin perfonning the leadership responsibilities. Also, another node must be
identified to act as the new backup.

/
8

• • •

\
E)

Figure 7: The ABAS-relevant structure of the LAOB system

Quality Attribute Parameters: The quality attribute parameters of
interest in this style are:
- The mechanism used for detecting the failure of the leader: In the LAOB

system, the lack of communication between the backup and the leader
signals that the leader has failed.

www.manaraa.com

240 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

- The mechanism for recovering system operation: When the leader fails, a
designated backup takes over. The backup must acquire whatever data it
requires to begin acting as leader and reconfigure itself.

- The failure and repair rates for the leader and the other nodes: The failure
rates for the leader and the other nodes may be different as the leader has
different responsibilities and is executing different software. The repair
rates will need to include the time required for a node to take over as
leader and the time required for a node to take over as backup. When we
speak of repair, we are referring to the repair of the system, returning it to
a functioning state from a non-functioning one. Individual nodes that
have failed do not get repaired during the execution of the system.
Analysis: From our generic reliability ABAS we know that we can

model this system using a Markov model. Figure 8 shows the Markov model
for a three node system (it is easily generalized to more nodes). Each state in
the model is labelled with a triple: (number of leaders active/number of
backups active/total number of nodes active). F1 is the failure rate of a leader,
Fb is the failure rate for the backup node, F0 is the failure rate for another
node, R1 is the repair rate for the leader (i.e. the reciprocal of the time taken
to transform a backup into the leader) and Rb is the repair rate for a backup
(i.e . the reciprocal of the time taken to transform another node into a
backup). The model makes the assumption that the transformation of the
backup into leader and the transformation of another node into backup are
sequential.

The steady-state availability can now be computed as the probability of
the system being in a state in which a leader is active (four of the eight
states). Based on expected failure and repair rates, the model can be used to
understand how well the system will meet its availability goal.

Figure 8: A Markov model for a reliability ABAS

www.manaraa.com

Attribute-Based Architecture Styles 241

Reasoning about the system in the context of the reliability ABAS led us
to a consideration of other architectural alternatives for the LAOB system.
The primary alternative considered was the use of multiple backups to tum
the LAOB into a LAMB (Leader And Many Backups), where each of the
backups would maintain the state necessary to quickly take over upon failure
of the leader.

This alternative will result in better availability due to a reduced repair
time, but at a cost of higher utilization of the radio network. Since the radio
network had a relatively low bandwidth, this was not a trivial consideration:
keeping additional backups informed of the state of the leader meant
additional transmissions and retransmissions. The performance issues for the
LAOB/LAMB system alternatives were considered using a separate ABAS,
one for communicating processes, and the confluence of these two ABASs
identified an architectural tradeoff, since higher levels of availability meant
higher utilization of the network.

The purpose of this example is not to present the design decisions made
for this system, or even the details of the analysis, for they are not the point
of this paper. The point is that a consideration of ABASs led us to ask
questions of the system: reliability ABASs made us ask questions about
failures and recovery of components and their effects on the predicted level
of system availability; performance ABASs made us ask questions about
resource characteristics and resource utilization and their effects on the
predicted level of system response times. Using these models, we could play
with different architectural alternatives, constantly gauging the performance
of these alternatives against the system's requirements. For example, we
could explore versions of the LAMB system with varying numbers of
backups and with different strategies for keeping them synchronized with the
leader. Strategies include:
1. The backups could be passive recipients of updates, not worrying about

any missed information until they are called upon to become the leader.
In this case they would not be guaranteed of being true functional
replicas of the leader.

2. They could be active recipients, requesting re-sends of any missed
packets (they could identify missed packets via noting holes in the packet
number sequence, for example). In this case they will be functional
replicas of the leader most of the time, but at the cost of additional
communication with the leader.

3. A single backup could be an active recipient and all other backups could
be passive recipients. When the primary backup was called upon to
become the leader, it would designate a new primary backup and
negotiate with it to provide it with any missed packets, at the cost of
additional communication at switchover time.

www.manaraa.com

242 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al.

The various strategies each have different availability and performance
implications-<lifferent bandwidth requirements, different time to repair,
different probabilities of failure-and these can be modelled analytically
before committing to one strategy for prototyping or implementation.
Perhaps more importantly, these analyses can be used to find architectural
tradeoff points-critical areas of the design with respect to some qualities of
interest-and these can become the focus of additional analysis or
prototyping as a means of mitigating the risk of building a large, complex
software-intensive system.

7. CONCLUSIONS

An ABAS is an extension of the notion of an architectural style. To make
architectural styles more rigorous, we associate analytic models of quality
attributes with them, in much the same way that Allen and Garlan associate
formal semantics with architectural elements to better describe the
correctness of a design (Allen and Garlan, 1994). So, an ABAS has
associated with it a set of analytic models (such as performance or reliability
models) that allow a designer to predict its behavior with respect to some
desired quality attributes . ABASs provide to the designer a pre-analyzed
structural framework, an analysis, and a mapping between the structure and
the analysis.

Associated with the mapping from architectural style to analytic model
are two related processes:
1. from a design perspective, there are a set of decisions that accompany

turning a style into an implementable design. For example, when
decomposing a system's functionality into a set of processes, there is an
allocation of functionality to each process, and an allocation of processes
to processors. For a performance style we might also make decisions such
as choosing the priorities of the processes.

2. from an analysis perspective, there are a set of questions that accompany
an architectural style that aid in understanding the style. These questions
will ask about the allocation, for example, of processes to processors, their
communication mechanisms, the speeds of their connections.
If these questions relate to designs that are repeated over and over again

within an organization, then they are often organized into checklists
(Maranzano) that are employed during architectural reviews. The answers to
the questions form the input to the attribute models. This is the key linkage
that comprises the reasoning behind an ABAS: architectural parameters-the
things that you can change when you do architectural design-are explicitly
related to parameters in an analytic model. In solving the model, we are then

www.manaraa.com

Attribute-Based Architecture Styles 243

modeling the expected behavior of the architecture. The results of this model
solving can then be compare back to the expected behavior.

We envision, and are actively working on, a handbook with many
ABASs that can be looked to for pre-packaged design and/or analysis
wisdom. This is the start of an attempt to make architectural design more of
an engineering discipline; one where design decisions are made upon the
basis of known properties and well-understood analyses, rather than the
currently popular practice of "patch-and-pray".

REFERENCES

R. Allen, D. Garlan, "Formalizing Architectural Connection", Proceedings of /CSE /6,
(Sorrento, Italy), May 1994, 71-80.

L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison Wesley, 1998.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software

Architecture, Wiley, 1996.
E. Gamma, R. Helm, R. Johnson, J. V1issides, Design Pattems-Microarchitectures for

Reusable Object-Oriented Software, Addison-Wesley, 1994.
R. Kazman, G. Abowd, L. Bass, P. Clements, Scenario-Based Analysis of Software

Architectures, IEEE Software, November 1996.
R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, 'The Architecture
Tradeoff Analysis Method", Proceedings of ICECCS '98, (Monterey, CA), August 1998, to
appear.
M. Klein, T. Ralya, B. Pollak, R. Obenza, M. Gonzales Harbour, A Practitioner's Handbook

for Real-Time Analysis, Kluwer Academic, 1993.
J. Maranzano, Best Current Practices: Software Architecture Validation, AT&T, 1993.
J. McCall, "Quality Factors", Encyclopedia of Software Engineering (Marciniak, J., ed.). Vol.

2. Wiley, 1994,958-969.
L. Sha, R. Rajkumar, M. Gagliardi, "A Software Architecture for Dependable and Evolvable

Industrial Computing Systems", CMU/SEI-95-TR-005, Pittsburgh, PA: Software
Engineering Institute, 1996.

M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,
Prentice-Hall, 1996.

www.manaraa.com

A Framework for Describing Software Architectures
for Reuse·

Ezra Kaahwa Mugisa1 and TomS. E. Maibaum2

1 Department of Mathematics and Computer Science; University of the West Indies (Mona);
Kingston 7, Jamaica; phone/fax: +876 977 1810; e-mail: ekmugisa@uwimona.edu.jm:
2 Department of Computing; Imperial College of Science, Technology and Medicine; /80
Queen's Gate, London SW7 2BZ, UK; phone: +44171 594 8274;fa.x : +44 171 5818024;
e-mail: tsem@doc.ic.ac.uk

Key words: Systematic softwate reuse, softwate atchitectures, object calculus, category
theory, component, interconnection, objects, patterns

Abstract: We present a formal description of softwate atchitectures for softwate reuse to
support a view of systematic softwate reuse as the plugging of components
into an architecture. The components ate object descriptions in the object
calculus. Interconnection between the components is defined via
synchronisation morphisms within a framework based on category theory.
Component composition is defined via the pushout construction, giving the
atchitecture as a "calculated" component, from which the atchitecture's
properties may be derived. We show that the architectures described ate
reusable in our Reuse Triplet that forms the motivation for our on-going work
on systematic softwate reuse. This work provides further support for the
suggestion that category theory provides the appropriate level of mathematical
abstraction to describe softwate atchitectures.

' The work in this paper was supported by various grants from EPSRC and was pattially

sponsored by the project ARTS (formal Approach to Real-Time Systems development) being

carried out by The Laboratory of Formal Methods, Depattment of Informatics, Pontificia

Universidade Catolica do Rio de Janeiro, Brazil, and its reseatch associates, under contract to

Equitel SA Equipamentos e Sistemas de Telecomunicacoes. The first author, while on study

leave at Imperial College, London, was supported by the University of the West Indies

(Mona), Kingston, Jamaica, under the UWIIIDB staff development programme.

www.manaraa.com

246 Ezra Kaahwa Mugisa and TomS. E. Maibaum

1. INTRODUCTION

This work is motivated by a view of reuse-in-the-large that emphasises
the reuse of software architectures. The importance of high-level abstraction
to the success of reuse has been highlighted in the literature (Krueger, 1992;
Biggerstaff and Richter, 1987). That the highest payoffs are to be expected
from reusing high-level artefacts such as architectures has been well
articulated by some authors e.g., (Krueger, 1992). The systematic reuse of
analysis and design knowledge (encapsulated in software architectures) with
potentially very high payoffs could help move reuse practice up towards the
highest levels on a reuse maturity model.

In order to make reuse-in-the-large a reality, however, we need to have
suitable ways of representing and reusing these large-grain software
artefacts. Efforts have been made to find suitable ways of representing
software architectures for reuse (Terry, et al., 1994; Gamma, et al. , 1995;
Tracz, 1995). However, one important problem still remains, namely how to
find a good formal basis for component composition and interconnection in
software architectures.

There are a number of formalisms in the literature for describing software
architectures e.g., Darwin (Magee, et a!., 1993) and Wright (Allen and
Garlan, 1995). In the Darwin model a software architecture is described by a
collection of Darwin components, each of which provides services to or
requests services from its environment. Darwin components interact by
having their service requests connected to appropriate service provisions.
This is done by binding their corresponding ports. To instantiate a Darwin
architecture, one simply instantiates its components.

In the Wright model an architecture is a collection of computational
components together with a collection of connectors, that describe the
interactions between the components. The Wright model differs from the
Darwin model in that in the former, a connector is an explicit semantic
entity. To instantiate a Wright architecture one instantiates the components
and the connectors.

Fiadeiro and Maibaum (Fiadeiro and Maibaum, 1996) suggest that
category theory provides the right level of mathematical abstraction to
describe software architectures. Indeed they show that the category theory
approach subsumes the Wright model of architectural description. It could be
shown too that much of the Darwin model is similarly subsumed. We thus
have a level of abstraction that appears to subsume other known architectural

www.manaraa.com

A Frameworkfor Describing Software Architectures for Reuse 247

models, and appears to be suitable for performing formal analyses of
software architectures in. Here we limit ourselves to issues of reusability.

We view systematic software reuse (SSR) as the process of identifying an
appropriate reuse software architecture (RSA) and reuse software
components (RSCs) and plugging the latter into the former. The RSA is a
template with slots into which RSCs may be plugged. The template may be
viewed as an abstraction of a family of systems with slots to be
appropriately filled in for each specific system. We may express this view of
reuse as the expression SSR = RSA (f) RSCs relating the Reuse Triplet
(RSA, plugging, RSCs) or diagrammatically as in Figure 1. The plugging
operator (<fl) takes a collection of reuse components and plugs them into the
reuse architecture. The relationship between the RSA, RSCs and the target
systems determines whether we are emphasising the reuse of RSAs or RSCs.
In (Mugisa, 1997) we apply this view of reuse to well-known examples of
reuse.

Slots for reuse components

Reuse architectul viewed as an
abstraction of a family of systems

Reuse component to be pi ugged
into a slot in the reuse architecture

Figure 1. A view of reuse: SSR = RSA $ RSCs

In this paper we present a framework for a formal description of RSAs
and RSCs. We have used the framework to describe the pattern-oriented
software architectures of (Buschmann, et al., 1996). Here we will have space
enough for presenting only one (simple) architecture. However, we have
treated plugging and many of the more sophisticated examples discussed in
the literature (Mugisa, 1998). We re-package the architectural patterns of
(Buschmann, et al., 1996) at a level of abstraction that is consistent with our
Reuse Triplet view. These architectural patterns interest us because the
concept of a software pattern is deeply rooted in software reuse. After all a
pattern recurs in several different applications from which it is abstracted. In
describing architectural design patterns we are describing software
architectures that have a high level of reusability.

www.manaraa.com

248 Ezra Kaahwa Mugisa and TomS. E. Maibaum

One simple popular definition of a pattern is "a solution to a problem in a
context." In (Gamma, et al., 1995) design patterns have been presented as
"descriptions of communicating objects and classes that are customised to
solve a general design problem in a particular context." Alexander, who
initiated the pattern concept, has this to say about the patterns that he used to
describe architectures of buildings (Alexander, et al., 1977) "Each pattern
describes a problem that occurs over and over again in our environment, and
then describes the core solution to that problem, in such a way that you can
use this solution a million times over, without ever doing the same thing
twice." Alexander's concept of a pattern is what we are interested in for
systematic software reuse. The other two views tell us how to express
patterns.

There are three parts to a pattern: context, problem, solution. We present
the context as a domain theory in the object calculus. The problem is a
specification in this domain theory; effectively as an extension of the domain
theory. The solution takes components of the context domain theory and
refines them to an appropriate level of detail. The underlying formal
framework is provided by the object calculus : an appropriate temporal logic
to express the properties of the basic components and category theory for
interconnecting them and synchronising behaviours.

As an illustrative example, we apply our framework to the pipeline
pattern from (Buschmann, et al., 1996). This and other architectures also
appear in Mary Shaw's "popular architectural styles" (Shaw, 1995) and in
Shaw and Garlan's "an emerging taxonomy of architectural styles" (Shaw
and Garlan, 1996). It is difficult to present a more difficult example because
of limitations of space, but the example used is examined in various
versions, with the formalism helping to pinpoint the architectural differences
and their resulting consequences/properties.

We would like to describe architectural styles in a way that enables us to
reason about them so that we can determine interesting properties about
them. Our motivation in doing this is well expressed by Mary Shaw (Shaw,
1995b): " ... although many design idioms are available, they are not clearly
described or distinguished, and the consequences of choosing a style are not
well understood."

Each software architecture will consist of roles for processing
components and in some cases connecting components (connectors) to
interconnect the processing components. We shall see how the type of
processing and connecting components used affects the resulting

www.manaraa.com

A Framework for Describing Software Architectures for Reuse 249

architectural style. In all cases the interconnection between the components
(either between processing components or between a processing component
and a connector) will be described within a category of these components as
suggested in (Fiadeiro and Maibaum, 1996). The instantiation of roles by
reusable components is also expressed via morphisms in the underlying
category (Fiadeiro and Lopez, 1997). A role is essentially a place holder for
a processing component as seen from the connector. This is the view from a
Wright connector (Allen and Garlan, 1995), for example.

We present each component as a theory description in the object calculus.
Each of these theories is encapsulated as an object in the sense of (Fiadeiro
and Maibaum, 1992). Each component then becomes an object description
and at the same time a theory presentation following the spirit (if not the
style) of (Fiadeiro and Maibaum, 1991, 1996).

2. INTERCONNECTING COMPONENTS

We present our architectures as interconnections of computational and
connecting components. These components are viewed as theory
descriptions represented as objects in Fiadeiro and Maibaum's object
calculus (Fiadeiro and Maibaum, 1992). The interconnections are presented
as diagrams in a category of these theory descriptions. Let us begin with
some basic definitions and propositions.

DEFINITION 2.1 : a-comp

The components that are the basic building blocks of our architectures
are object descriptions as defined in (Fiadeiro and Maibaum, 1992) and we
call each of them an a-comp (abstract component). An a-comp is a (• , F)
pair, where • is the component signature and F are the axioms of the
component description.

A typical a-comp has the structure given in Figure 2, but there are
variations. • = (<data_ types>, <action_list>, <attribute_list>) and F =
(<axioms>). An a-comp is treated as an object.

www.manaraa.com

250 Ezra Kaahwa Mugisa and TomS. E. Maibaum

Component a_comp_name
data types <data_types>
actions <action_list>
attributes <attribute_list>
Axioms <axioms>

End

Figure 2. Structure of an a-comp specification

DEFINITION 2.2 : sub-object

Given two objects objt = (• Ft) and objz = (• 2, F2), obj1 is a sub-object
of obj2 iff the behaviour described by object obj2 is an extension of the
behaviour described by object objt. in the sense that the principle of
substitutability holds between them. The behaviour of an a-comp (which is
an object) is constrained by the axioms F of the (• , F) pair. "The principle of
substitutability says that if we have two classes, A and B, such that class B is
a subclass of class A (perhaps several times removed), it should be possible
to substitute instances of class B for instances of class A in any situation
with no observable effect" (Bud, 1997). The term subtype is also used to
describe this relationship. This sub-object relation is a form of inheritance
for extension, possibly after renaming. It is the inverse of the sub-class
relation. This definition should make subsequent discussion of
synchronisation based on sharing a common sub-object more intuitive and
less confusing. We have the following:

- the signature of obj2 (• 2) extends a signature isomorphic to the signature
of objt (• t)

- F2 is an extension of Ft. taking into account any renaming that may have
been introduced

- obj2 is a sub-type of obj1 , possibly after renaming

These concepts are expressed through the morphisms of the underlying
category.

PROPOSITION 2.3 : Category a-COMP

The a-comps and sub-object morphisms between them constitute a
category a-COMP. A sub-object morphism transforms the source object into
a sub-object of the target object.

- sub-object morphisms compose, as does inheritance

www.manaraa.com

A Framework/or Describing Software Architectures for Reuse 251

- there is an identity sub-object morphism - each a-comp is a sub-object of
itself

- the sub-object relation is associative, as is inheritance for extension

The morphisms may use renaming and so the sub-objects may only be so
identified after reverse renaming. We model component composition as a
pushout construction within category a-COMP. In Figure 3 component
COMP3 is the result of synchronising components COMP1 and COMP2 on
their common sub-object SUB, through sub-object morphisms f, g, h and k.
SUB is shared by both COMP1 and COMP2, which coalesce around it to
formCOMP3.

SUB

COMPI COMP2

k

PUSHOUT

Figure 3. Pushout construction in category a-COMP

DEFINITION 2.4 : Interconnection

The style of interconnection that we present here was motivated by the
one used in (Fiadeiro and maibaum, 1992). The interconnection of a-comps
is governed by the following :
- two components interconnect on a shared sub-object
- the shared sub-object has complementary (or dual) behaviour, e.g a plug

and a socket, and it is this duality that makes the interconnection intuitive

This style of interconnection is used elsewhere, e.g., in binding
requirements to provisions in the Darwin component abstraction (Magee, et
al., 1993). We can view the Provide and Request ports in a Darwin
component interconnection as manifestations of a shared sub-object - a
provide/request port.

www.manaraa.com

252 Ezra Kaahwa Mugisa and TomS. E. Maibaum

PROPOSITION 2.5 : Communication via Ports

All communication between a component and its environment will be
channelled through its communication ports. This is a common model. We
use two kinds of ports : ports for message passing (e.g., purely for data
transfer) and (possibly implicit) ports for object invocation (see below). A
port's put and get actions transfer data to and from the port ' s channel,
respectively, as defined in Object Port below. The port may be viewed as a
wrapper around the ubiquitous channel. Channel of T is a channel type
capable of transferring data of type T.

Object Port
data types Data, channel of Data
actions get(Data), put(Data)
attributes d : Data; ch : channel of Data
axioms

get(d) => Xd = ch
put(d) => Xch = d

End

This port abstraction enables synchronous communication as in CSP
(Hoare, 1985) , Occam (INMOS, 1988) and Manna and Pnueli ' s ("no
buffering") channels (Manna and Pnueli, 1992). Asynchronous
communication is via a buffer between the communicating components.

DEFINITION 2.6 : Object Invocation

Object invocation here follows the CORBA request semantics (OMG,
1996) which states that "when a client issues a request, a method of the
target object is called. The input parameters passed by the requester are
passed to the method and the output parameters and return value (or
exception and its parameters) are passed back to the requester." We use
action request(service-request) for the action of the source (client) object.
The argument (service-request) contains the requested service (or method)
and parameters. In response, the target object will provide the requested
service (if it can) and return results via its arguments. We use action invoke
for the entire operation covering the request and the response.

Each invocation can in fact be adequately modelled by DMS
synchronisation (definition 2.8), with service requests going from DMS-C1 's

www.manaraa.com

A Frameworkfor Describing Software Architectures for Reuse 253

output port to DMS-C2's input port and results going in the opposite
direction (see the OMS synchronisation diagram in Figure 5). However,
when there are several concurrent service requests, the model becomes
messy and the invoke abstraction clears away the details. The result is MIS
synchronisation as defined elsewhere (Mugisa, 1998).

2.1 We have three sub-objects

We use three types of sub-objects to interconnect the a-comps in our
architectures. They correspond to the three ways in which we bind the
components. These are Single Port Message-Passing Synchronisation
(SMS), Double Port Message-Passing Synchronisation (OMS) and Multi
Port Invocation Synchronisation (MIS). SMS-Sub, DMS-Sub and MIS-Sub
are such minimal sub-objects that can represent a component's ports.

Object SMS_Sub
data types Port
attributes p : Port

End

Object DMS_Sub
data types Port
attributes p b P2 : Port

End

SMS-Sub has one port. When used as a synchronising sub-object it takes
on both input and output roles in the interconnected components in order to
effect message passing from one component to the other. See SMS
synchronisation morphisms for details.

DMS-Sub is the 2-port (input/output) version of SMS-Sub. It encapsulates
two SMS-Sub sub-objects.

Object MIS_Sub
data types Service
attributes qb ... , qn: Service

End

Sub-object MIS-Sub contains services that are mapped to service-requests
or to service-provisions. The requests are serviced by the provisions after
synchronisation. This sub-object synchronises those components that are
linked by object invocation.

www.manaraa.com

254 Ezra Kaahwa Mugisa and TomS. E. Maibaum

2.2 Synchronisation morphisms

The pushout construction synchronises the components on their common
sub-object around which they coalesce to form the pushout. There are
several structures that the pushout of two a-comps in category a-COMP may
have including the structure shown in the component <pushout_name>
below. Here we discuss SMS and DMS synchronisation morphisms.

DEFINITION 2.7 : SMS Synchronisation Morphisms

These define the interconnection of two SMS a-comps by synchronising
them on their common SMS sub-object as shown in Figure 4. The sub-object
morphisms /J : {p0 - out} and !2 : {p0 - in} identify in and out as
synchronisation points for the two components, while morphisms g1 and g2

are synchronisation morphisms on the sub-objects identified by f 1 andf2. The
synchronisation may be expressed by identifying (or coalescing) the two
sub-objects as follows:f1 : [out - p'} andf2: [in - p'}. Here is the structure
of an SMS a-comp (SMS_COMP).

Component SMS_COMP Component pushout_name
data types Data, Port Inherit a_compl, a_comp2
actions Synchronisation Axioms
attributes in, out : Port; d : Data Set of Synchronisation
Axiom Axioms

Relevant behavioural axioms End
End

Figure 4 is the interconnection diagram for SMS a-comps SMS-Cl and
SMS-C2 yielding pushout SMS-C3. (In SMS-Cl, the get action on port out is
suppressed, i.e., axiom -,(SMS.Cl.out.get) holds. Similarly, axiom -,
(SMS.C2.in.put) holds for SMS-C2 to make in an input port.) So we actually
use a specialisation of SMS_Sub in SMS-Cl (and SMS-C2); this is an
example of a different form of reuse through inheritance, well known in
object-oriented programming and design. This disabling property is
maintained by the morphism g1 (and g2) as a property of the resulting
system. The two components will synchronise on their respective ports, i.e.,
SMS-Cl.out.put = SMS-C2.in.get. This means that SMS-Cl's output action
and SMS-C2's input action become synchronised, thus effecting data flow
between the two components. This is what interconnecting these two
components is supposed to achieve. Synchronisation is expressed, in push-

www.manaraa.com

A Frameworkfor Describing Software Architectures for Reuse 255

out component SMS_C3, by action sync on the relevant ports and by
appropriately unifying actions on these ports.

We have introduced the colon notation as an alternative to qualification
by the dot notation. We write A : Exp to mean that symbols in expression
Exp are qualified by object A. Therefore we may write SMS_Cl : out.put(d)
as shorthand for SMS_Cl.out.put(SMS_CJ.d).

Figure 4. SMS synchronisation diagram

DEFINITION 2.8 : DMS Synchronisation Morphisms

These define the interconnection of two OMS a-comps by synchronising
them on their common OMS sub-object as shown in Figure 5. A OMS a
comp is the double port version of an SMS a-comp. Sub-object morphisms
f1 : {p1 - out1 ; p2 - inJ} and fz: {p1 - in2 ; P2- out2 } identify in2) and
(inl> out2) as pairs of synchronisation points for the two components, while
morphisms g1 and g2 are once again synchronisation morphisms in the sense

Component SMS_C3
Inherit SMS_Cl, SMS_C2
Synchronisation Axiom

sync(SMS_Cl.out, SMS_C2.in)
SMS_CI : out.put(d) SMS_C2 : in.get(d)

End

described in definition 2.7.

In the diagram of Figure 5, a-comps DMS-Cl and DMS-C2 are
interconnected to yield pushout DMS-C3. Action suppression applies as for
SMS ports.

www.manaraa.com

256 Ezra Kaahwa Mugisa and TomS. E. Maibaum

The synchronisation diagrams here (in Figures 4 and 5) are interpreted as
follows:
- morphisms f1 and f2 are sub-object morphisms
- morphisms g1 and g2 are sub-object and synchronisation morphisms,

coalescing the components on the sub-objects identified by f1 and f2•

- the pushout (X-C3) (where X is SMS or DMS) inherits both X-Cl and X
C2 and then coalesces them around their common sub-object. It adds
synchronisation axioms that translate the synchronisation morphisms (g1

and g2) into "equivalence" axioms relating the synchronised attributes
and actions.

In both cases the pushout is calculated as an a-comp that extends the
inherited theories as discussed above.

Component DMS_C3
Inherit DMS_Cl, DMS_C2
Synchronisation Axiom

sync(DMS_Cl.outh DMS_C2.in2)

sync(DMS_Cl.inh DMS_C2.out2)

DMS_Cl : out1.put(d1) <=> DMS_C2 : in2.get(d1)

DMS_Cl : in1.get(d2) = DMS_C2 : out2.put(d2)

End

Figure 5. OMS synchronisation diagram

www.manaraa.com

A Framework for Describing Software Architectures for Reuse 257

2.3 Asynchronous interconnection of components

In the SMS and DMS Synchronisation diagrams presented above the
interconnection between X-C1 and X-C2 is synchronous, requiring the two
components to rendezvous in order to communicate. In order to decouple
them we interconnect them asynchronously through a buffer, for example as
Manna and Pnueli have done in (Manna and Pnueli, 1992). We may use the
same synchronisation diagrams to depict asynchronous binding if either X
Cl or X-C2 is a buffered connector. This is how we get the asynchronous
connection of Filter] to Filter2 via Pipe] in Figure 6.

For asynchronous DMS inter-connection we have the equivalent of two
pipes going in opposite directions. The details are in (Mugisa, 1998).

2.4 A comparison between synchronous and
asynchronous inter-connection of components

It has been stated by C.A.R. Hoare (Hoare, 1978) and others that
synchronous communication is the more basic form of communication on
top of which asynchronous communication may be implemented as buffered
synchronous communication. The trade-off between synchronous and
asynchronous inter-connection of components is in decoupling the connected
components which must nevertheless separately rendezvous with their
buffered connector. We have to depend on the properties of the connector to
guarantee that we get the desired asynchronous behaviour from the same
components that give us the desired synchronous behaviour.

Manna and Pnueli (Manna and Pnueli, 1992) point out that synchronous
communication offers some advantages over the asynchronous version
because the execution of a synchronous communication immediately
provides the sender with an acknowledgement that the communication has
taken place, whereas in the asynchronous case such an acknowledgement has
to be explicitly "programmed". The liveness axioms in our buffered
connectors give us the same guarantees as the synchronous case except for
the delay. On the other hand the asynchronous connection with unbounded
buffering gives the decoupled components freedom to exercise independent
behaviour without giving up the general properties of the synchronous case
except for the introduction of the delay as mentioned above.

www.manaraa.com

258 Ezra Kaahwa Mugisa and TomS. E. Maibaum

3. THE PIPELINE ARCHITECTURE

The "ball of mud" class of architectures is one of those covered in
(Buschmann et al., 1996). The ball-of-mud is to be transformed into an
organised structure (or a system) by decomposing it into interacting and co
operating sub-systems. The mode of interaction is strongly linked to the
chosen architecture. In our setting, a system is defined by an architecture and
a set of sub-systems that are instances of more abstract sub-tasks. The ball
of-mud general context is presented below as a domain theory (object
B_O_M_Context) that states that a system is constructed by plugging a set of
sub-tasks into an architecture. The plug action replaces an abstract
architectural sub-task by a concrete system sub-task.

Object B_O_M_Context
data types Sub_ Task, System, Architecture
actions plug(Architecture, set ofSub_Task
attributes arch : Architecture
Axioms

'V sys: System . 3subs : set of Sub_Task. sys =plug(arch, subs)
End

In this paper we examine only one ball-of-mud architecture known as the
pipeline (or pipe-and-filter) architecture. Shaw and Garlan in (Shaw and
Garlan, 1996) have this to say about pipes and filters :

"In a pipe-and-filter style each component has a set of inputs and a set of
outputs. A component reads streams of data on its inputs and produces
streams of data on its outputs. This is usually accomplished by applying a
local transformation to the input streams and computing incrementally, so
that output begins before input is consumed. Hence components are
termed filters. The connectors of this style serve as conduits for the
streams, transmitting outputs of one filter to inputs of another. Hence the
connectors are termed pipes."

Buschmann et al. in (Buschman et al. , 1996) distinguish between active
and passive filters and present four pipeline scenarios depending on whether
the filters are passive-push (triggered by an active data source), passive-pull
(triggered by an active data sink), passive/active-pull/push (triggered by an
active filter pulling and pushing) or the more typical all active-pull-compute
push. The passive filters are triggered into a push/pull by direct calls or by

www.manaraa.com

A Framework/or Describing Software Architectures for Reuse 259

data from neighbouring components. This removes the need for pipes and
makes the resulting pipelines less interesting for reuse. We shall stick to the
more reuse-friendly UNIX-like pipelines of active filters connected by pipes.

In the pipeline architecture the sub-tasks (filters) are arranged
sequentially; the output of one sub-task is the input of the next one in the
sequence. A pipe component asynchronously connects neighbouring filter
components. This system may be specified by the diagram of Figure 6.
Specifications for all the components of this architecture are presented in the
next few sections. The pipeline context given by object Pipeline_Context
below, simply states that all sub-tasks are filters and that all connectors are
pipes.

Object Pipeline_ Context
Inherit B _ 0 _M_ Context
data types Filter, Pipe
Axioms

Sub_Task Filter
Architecture. Connector _type ;::; Pipe

End

Figure 6. Specification of a system as a pipeline of filters and pipes (asynchronous)

www.manaraa.com

260 Ezra Kaahwa Mugisa and TomS. E. Maibaum

3.1 The components

Component Filter below encapsulates our filter a-comp. The liveness
axiom guarantees the desired get-process-put sequence of actions.
Component Pipe, the connector, contains a buffer defined as a queue with
actions getq and putq. The safety axioms respectively initialise the buffer,
guarantee the absence of an unsolicited response from the buffer and protect
buffer update. The second has been included only for emphasis. In our
setting it is redundant because it is a consequence of the locality principle
(Fiadeiro and Maibaum, 1991, 1992), that states that only the actions
declared for an object can change the values of its attributes. For Pipe , this
may be stated as (getq v putq) v ((Xq = q)" (Xin = in)" (Xout =out)"
(Xd =d)). The liveness axiom promises a guaranteed response from the non
empty buffer.

Component Filter
data types Data, Port
actions process(Data)
attributes in, out : Port; d : Data
Axioms

process(d) => Xd =processed(d)
liveness

in.get(d) => F(process(d) A XFout .put(processed(d)))
End

Component Pipe
data types Buffer, Data, Port
actions getq, putq
attributes in, out : Port; q: Buffer; d: Data
Axioms

getq =>in.get(d) 1\ Xq = q@ Xd
putq => q * [] 1\ q = Xd :: Xq 1\

Xd = hd(q) 1\ XFout.put(Xd)}}
safety

beg=> q = []
-.getq 1\ -. putq => Xq = q
-.(getq 1\ putq)

live ness
q * []=> F(out.put(first(q)))

End

www.manaraa.com

A Framework/or Describing Software Architectures for Reuse 261

Instead of a buffered pipe we could have a single item mailbox thus
allowing the consumer filter to lag behind its producer filter by at most one
data item. This is discussed in section 3.2.2.

Yet another alternative is to have a synchronous pipeline with no pipe
connecting the filters. The filters would then be synchronised directly, thus
having to rendezvous in order to communicate. Section 3.2.3 has the details.

3.2 Interconnection diagrams

There are three versions of the interconnection diagram corresponding to
the three ways of connecting the filters discussed above. We discuss in full
the asynchronous version with a buffered pipe and then show how the other
two differ from it.

3.2.1 Asynchronous interconnection diagram

To interconnect a Filter a-comp with a Pipe we use SMS synchronisation
of definition 2.7. Figure 6 is the categorical diagram that shows how two
Filter components are connected by a Pipe in this way.

Components Filpipe and Pipefil are the local pushouts of the left-hand
side and the right-hand side of the interconnection, respectively. They are
instantiations of component SMS-C3 specified earlier.

Component Filpipe
data types Filter, Pipe
attributes Filter] :Filter; Pipe] :Pipe
Synchronisation Axioms

sync(Filterl.out, Pipel .in)
Filter] : out.put(d) getq

End

Component FPF is the pushout of the diagram in which Pipe] is the
common sub-object of Filpipe and Pipefil. This component is a pushout of
two other pushouts and not of simple components. This difference is
reflected in the structure of its specification as a component that coalesces
two structured components (pushouts) around a connector component as
sub-object. The synchronisation axiom reflects this. FPF is also the colimit
of the larger (Filterl, Pipel, Filter2) diagram. All FPF components are

www.manaraa.com

262 Ezra Kaahwa Mugisa and TomS. E. Maibaum

similarly connected as suggested in Figure 6 to define a final colimit (not
shown) for the entire diagram.

Component FP F
Instances Filpipe, Pipefil
Synchronisation Axioms

Filpipe.Pipel = Pipefil.Pipel
End

3.2.2 Asynchronous interconnection via a single item mailbox

We take a single item mailbox to be equivalent to a buffer of size 1. We
define component Mailbox_Pipe similar to component Pipe with buffer
replaced by mbox, the single item mailbox type. This connector enables the
source filter to lag behind the target filter by only one item, i.e., no new item
may be delivered until the previous item has been collected by the target
filter.

Component Mailbox_Pipe
data types mbox, Port
actions getm, putm
attributes in, out : Port; m : mbox
Axioms

getm => m = [] 1\ in.get(m)
putm => m * []/\ out.put(m) 1\ Xm = []

safety
beg=> m = []
-.getm 1\ -.putm => Xm = m

liveness
m * []=> F(out.put(m))

End

3.2.3 Synchronous interconnection

A synchronous interconnection of two filter a-comps is a direct
synchronisation of the a-comps. For a transfer of data to take place the two
a-comps must rendezvous directly. This would be an instance of SMS
synchronisation and is described by Figure 7. This is really like composing

www.manaraa.com

A Frameworkfor Describing Software Architectures for Reuse 263

two functions directly. The tight coupling between the two filter components
is evident from the second binding axiom of component FF.

Component FF
data types Filter
attributes Filter 1, Filter2 : Filter
Synchronisation Axioms

sync(Filter].out, Filter2.in)
Filterl : out.put(d) Filter2: in.get(d)

End

Figure 7. Synchronous pipeline connection diagram

3.3 The pipeline architecture has the pipeline property

In a pipeline connection, if a data item appears at the input port of the
first (left) processing component it will eventually appear at the output port
of the second (right) processing component. We would like to prove that
equation (1) below holds in component FPF. We use the shorthand colon
notation introduced earlier as an aid to readability. We get the definitions of
get and put from proposition 2.5. From the definition of get we get (1) and
from Filter's liveness axiom we get (2). From (1), (2), the synchronisation
axioms of Filpipe and getq for Pipe, the value at port Filter J.in through
attributed and port Filterl.out has been added to buffer Pipe.q. From Pipe's

www.manaraa.com

264 Ezra Kaahwa Mugisa and TomS. E. Maibaum

liveness axiom we shall get (3). From Pipefil's synchronisation axiom and
Filter2's liveness axiom we shall eventually get (4) which is what we are
required to prove.

Filterl : in.get(d) Fout.put(processed(Filterl :processed(d))) (1)

Filter! : Xd = in.ch (2)

Filterl : F(process(d) 1\ XF(out.put(processed(d)))) (3)

Pipe : Fout.put(first(q)) (4)

Filter2 : Fout.put(processed(Filterl :processed(d))) (5)

Furthermore, it can be proved (using queue operations getq, putq) that
because we have used a queue to buffer incoming data in the connector,
incoming data will be in the order in which it is output by the previous filter
in the pipeline.

Since component FPF can be reduced to the structure of Filter, if we
combine the sequence of Filterl.process, the buffer operations and
Filter2.process into one process, thus also hiding the buffer attribute (and of
course its actions) then we get a Filter. So we can extend the pipeline to any
length we want.

3.4 The architecture

Figure 6 represents the pipeline as an object (the colimit) and as an
asynchronous connection of filters. Let us call it component Pipeline_Arch.
Two other similar figures for the mailbox and synchronous connections can
be deduced from Figure 6, giving three versions of the architecture. Let us
call their representative objects Pipeline_Arch_Buffered,
Pipeline_Arch_Mailbox, Pipeline_Arch_Synchronous. We therefore have the
following expression for the pipeline architecture:

Pipeline_Arch ::= Pipeline_Arch_Buffered I Pipeline_Arch_Mailbox
Pipeline_Arch_Synchronous

www.manaraa.com

A Framework/or Describing Software Architectures for Reuse 265

3.5 Is the pipeline architecture reusable?

If the pipeline architecture, Pipeline-Arch, is an RSA in the Reuse Triplet
then it can be reused by plugging in appropriate RSCs. In Figure 8 RSCs
RealFilter1 and RealFilter2 are plugged into the two Filter slots of a pipeline
RSA to produce resultant component RealFP F. The plugging morphisms are
k1 and k2• A similar diagram for the synchronous version, can be deduced
easily.

The plugging operator must satisfy the requirement that important
properties of the RSA are preserved after each slot instantiation. We shall
not go further into this topic here, but it has been covered at length in
(Mugisa, 1998) under plugging. Figure 8 appears to contain objects from
two categories - the category a-COMP and the category of instantiations of
a-comps, ie, programs (Fiadeiro and maibaum, 1995, 1997). The existence of
a functor between the two categories suggests a way forward.

An alternative way of showing that the pipeline architecture is indeed
reusable is to focus on the connector as the central piece in the architecture
and to view the components it connects together as its parameters or roles (as
the roles of (Allen and Garlan, 1995; Fiadeiro et al., 1997)). We may then
show that the connector is reusable by constructing a diagram in which a role
(Filter) is mapped to its instantiation (Rea/Filter) and completing the
diagram with its pushout, component RealFPF. See Figure 8.

In the plugging diagram of Figure 8, morphisms k1 and k2 are the
instantiation morphisms of connector PIPE's roles. Morphisms k11 , h1 and
k12 on the left and k2" h1' and k22 on the right serve to plug the slots in the
RSA using the given instantiations. Of course, there is also a role in the
connector, ie the buffer. An instantiation of this role by an appropriate buffer
implementation would result in an enlarged system (described by a new
colimit extending realFPF). Alternatively, one could regard the buffer as an
already implemented part of the architecture (hence, describing a less
reusable architecture) and represented in the architecture description by the
image of the program under the functor that maps programs to their
corresponding (minimal, canonic) specifications (Fiadeiro and Maibaum,
1995, 1997).

www.manaraa.com

266 Ezra Kaahwa Mugisa and TomS. E. Maibaum

ReolfPF

Figure 8. Instantiating a pipeline connection

3.6 Linking context, problem, and solution

We would like to fit Pipeline_Arch within the Pipeline_Context domain
theory and be reassured that all the pieces fit together consistently.

mapping data types: B_O_M_Context.Sub_Task Pipeline_Context.Filter

defining data types : Pipeline_Context.Filter; ::= Component Filter

problem: System::= plug(subtas1 .. subtask,., Architecture)

www.manaraa.com

A Framework for Describing Software Architectures for Reuse 267

solution: B_O_M_Context.Architecture ::=Object Pipeline_Arch

The result of all this is given below in Object Pipeline_Context_Solution
and in Figure 9.

Odgioru '"""'"' Brui_Of_MOK! Coot<>t(SlT"k·1"''"")

Pip<liO< '""""' Pip<liO<_Coot"t(T"' A"hi1ture)

Pip<lio<_ Coot<xt_SoMioo(F "· Pip<liO<\h)

Solution : lnterConnection{Filter, Pipe, sub-object} = Pipeline_Arch

Figure 9. Linking context, problem and solution

Object Pipeline_Context_Solution
Inherit Pipeline_ Context
data types Filter, Pipeline_Arch
Axioms

Pipeline_Context.Filter Filter
Architecture Pipeline_Arch

End

4. RELATED WORK

Shaw and Garlan in (Shaw and Garlan, 1995) discuss the inadequacy of
present formalisms to deal adequately with important issues of software
architecture. They give examples of Wright and Darwin. We mentioned
these formalisms in our introduction. Whereas Wright (with its CSP base)
permits static checks such as deadlock freedom as Allen and Garlan did in
(Allen and Garlan, 1995), it does not appear to be suitable for issues of
dynamic architecture, component composition and interconnection. On the
other hand much of the strength of Darwin (with its TT-calculus base) is in

www.manaraa.com

268 Ezra Kaahwa Mugisa and TomS. E. Maibaum

being able to deal with issues of dynamic configuration of architectures as
for example Magee and Kramer have done in (Magee and Kramer, 1996).

The work of Abowd, Allen and Garlan (Abowd et a!., 1993) also
attempts to formalise and reason about software architecture. We think that
the chosen formalism, Z (Spivey, 1992), is not appropriate. The notion of
structure in Z (which revolves around the schema) is rather weak and is not
suitable for studying what is, after all, a problem of structure. The notion of
schema is used more to talk about the textual structure of a specification
rather than inherent structure and interconnection as in 'configuring a system
out of components'. Also Z does not allow us to talk about behaviours (of
components), only about input/output specification of individual operations.
To allow us to talk about behaviour, we would need a version of Z that
incorporated a temporal logic.

In an effort to find a formalism that adequately deals with
interconnection and composition of components for software architecture,
Fiadeiro and Maibaum in (Fiadeiro and Maibaum, 1995, 1997) suggested
category theory and showed how it subsumed Wright. The work reported in
this paper builds on that of Fiadeiro and Maibaum. Our categorical
framework also uses as its foundation the work of Joseph Goguen on
interacting objects (Goguen, 1991, 1992), especially the principle that
"interconnecting systems corresponds to taking colimits in the category of
systems, where sharing is indicated by inclusion maps from shared parts
into the systems that share them" (Goguen, 1992). Corresponding to
Goguen's systems and inclusion maps are what we have called components
and sub-object morphisms between them. The general nature of Goguen's
categorical framework (as expressed in (Goguen, 1992)) has made our
successful application of it to issues of software architecture less surprising
than it might have been.

The Kestrel Institute's SpecWare (Srinivas, 1995) is a tool that supports
the modular construction of formal specifications and the stepwise and
componentwise refinement of such specifications into executable code.
Srinivas and McDonald in (Srinivas and McDonald, 1996) report that one of
the formal foundations of SpecWare is category theory. They report that the
language of category theory has produced for SpecWare a highly
parameterised, robust and extensible architecture that can scale to system
level software construction. The colimit operation is their main tool for
composing structures, in particular by "gluing" together parts that have
overlaps. We use the same operation here to define interconnection of
components of an architecture (which are themselves formal specifications)

www.manaraa.com

A Framework/or Describing Software Architectures for Reuse 269

via our sub-object morphism. The operation is the same - "glue" together
components along the sub-component that they share.

Rapide's architecture view of "wired interfaces" (Luckham et al., 1995)
can be given a categorical semantics through our framework. Since Rapide
derives many of its concepts from VHDL (Perry, 1998), we can easily
accommodate VHDL's configurations. Rapide's interface and VHDL's
entity are abstracted to our component (or slot), simple or structured.
Rapide's wired interfaces and VHDL's configurations of connected entities
are models of our interconnected components. Mapping entities to their
implementing architectures in VHDL's configurations and tying modules to
interfaces in Rapide are what we call plugging in our framework. The details
of how our framework relates to Rapide and VHDL (two prototyping
languages for software and hardware, respectively) are covered elsewhere
(Mugisa, 1998).

The work of Moriconi and others (Moriconi et al., 1994, 1995) on
architecture refinement is more closely related to plugging in our framework
and that is presented elsewhere (Mugisa, 1998). However, architecture
composition, which they touch on briefly in (Moriconi and Qian, 1994) is
appropriately handled by our framework since an architecture may act as a
component of a larger architecture.

5. CONCLUSION

We have presented a framework for describing software architectures for
reuse (or RSAs). We present the components of the architectures (or a
comps) as object descriptions in the object calculus. We describe the
interconnections between the a-comps using sub-object morphisms between
them in a category a-COMP of component specifications. An RSA is then
derived as the pushout of a categorical diagram that shows how the a-comps
are interconnected. This gives us a formal technique for composing (or
"calculating") an architecture from its constituent a-comps. We can then
derive architectural properties from the resultant a-comps. We have
presented an example whereby we used this framework to describe the
pipeline architecture and were able to prove one desirable property of this
architecture - we called it the pipeline property. We have used the
framework to describe other RSAs as well but there is no space in this paper
to report on those. In other related work we examine the plugging operator
of the Reuse Triplet.

www.manaraa.com

270 Ezra Kaahwa Mugisa and TomS. E. Maibaum

The mathematical underpinnings for this technique were laid out by
Fiadeiro and Maibaum in (Fiadeiro and Maibaum, 1995, 1997). In this paper
we have applied the mathematics to an engineering problem, namely
composing an architecture from (its) components (and with the same
structure) as long as we can identify common constituent parts on which to
synchronise the components. We can then analyse the resultant architecture
using the same tools used on the components it is derived from.

REFERENCES

Abowd, Gregory; Allen, Robert and Garlan David (1993), Using Style to Understand
Descriptions of Software Architecture, ACM SIGSOFT '93: Foundations of Software
Engineering, Software Engineering Notes, 18(5). ACM Press

Alexander, Christopher; Ishikawa, Sarah; Silverstein Murray; Jacobson Max ; Fiksdahi-King
Ingrid and Angel, Shlomo (1977), A Pattern Language, Oxford University Press.

Allen Robert and Garlan David (1995), Formalizing Architectural Connection, First
International Workshop on Architectures forSoftware Systems.

Biggerstaff, Ted and Charles Richter, Charles (March 1987), Reusability Framework,
Assessment, and Directions, IEEE Software.

Bud, Timothy (1997), An Introduction to Object-Oriented Programming, Second Edition,
Addison Wesley

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter and Stal, Michael
(1996), Pattern-Oriented Software Architecture A system of Patterns, John Wiley & Sons.

Fiadeiro, J and Maibaum, T (1991), Describing, Structuring and Implementing Objects,
LNCS: Foundations of Object-Oriented Languages, Volume 489, (de Bakker, J. W.; W. P.
de Roever, W. P. and Rozenberg, G, editors), Springer-Verlag,

Fiadeiro, J and Maibaum, T (1992), Temporal Theories as Modularisation Units for
Concurrent System Specification, Formal Aspects of Computing, 4(3).

Fiadeiro, J and Maibaum, T (1997), Categorical Semantics of Parallel Program Design,
Science of Computer Programming, North Holland.

Fiadeiro, J. Land Lopez, A.(l997), Semantics of Architectural Connectors, TAP SOFT '97:
Theory and Practice of Software Development, LNCS 1214, (Bidoit, Michel and Dauchet,
Max, editors), pages 505-519, Springer-Verlag.

Fiadeiro, J. L.; Lopez, A. and Maibaum, T. (1997), Synthesising Interconnections, IFIP TC2
Working Conference on Algorithmic Languages and Calculi, (Smith, D. and Finance, J.
P., editors), Chapman and Hall.

Fiadeiro, J and Maibaum, T (1995), Interconnecting Formalisms: Supporting Modularity,
Reuse and Incrementality, Proceedings of the 3rd Symposium on Foundations of Software
Engineering, (Kaiser, G.E., editor), ACM Press.

Fiadeiro, J and Maibaum, T (1996), A Mathematical Toolbox for the Software Architect,
Proceedings of the 8th International Workshop on Software Specification and Design,
IEEE Press.

Gamma,Erich;Helm,Richard;Johnson,Ralph and Vlissides, John (l995),Design
Patterns ,Addison-Wesley.

Goguen, Joseph (1991), A Categorical Manifesto, Mathematical Structures in Computer
Science, 1(1).

www.manaraa.com

A Frameworkfor Describing Software Architectures for Reuse

Goguen, J. A. (1992), Sheaf semantics for concurrent interacting objects, Mathematical
Structures in Computer Science, 2(2), Pages 159- 191.

Hoare, C.A.R.(l985), Communicating Sequential Processes,Prentice Hall.
Hoare, C.A.R.(1978), Communicating Sequential Processes, Communications of the

ACM,21(8),
INMOS-Ltd (1988), Occam 2 Reference Manual, Prentice Hall,
Krueger, Charles (1992), Software Reuse, ACM Computing Surveys, 24(2).
Luckham,David C.; Kenney, John J.; Augustin,Larry M.; Vera, James; Doug, Bryan and

Mann, Walter (1995), Specification and Analysis of System Architecture Using
Rapide,/EEE Transactions on Software Engineering, Special Issue on Software
Architecture, 21(4),

Luckham,David C. and Vera (1995), James, An Event-Based Architecture Definition
Language, IEEE Transactions on Software Engineering, Special Issue on Software
Architecture, 21 (9).

271

Magee,Jeff; Dulay, Naranker and Kramer, Jeff (1993),Structuring Parallel and Distributed
programs,/££ Software Engineering Journal, 8(2).

Magee, Jeff Kramer, Jeff and Sloman, Morris (1989), Constructing Distributed Systems in
Conic, IEEE Transactions on Software Engineering, 15(6),

Manna, Zohar and Pnueli, Amir (1992), Temporal Logic of Reactive and Concurrent Systems
: Specification, Springer-Verlag.

Moriconi, Mark and Qian, Xiao1ei (1994), Correctness and Composition of Software
Architectures, ACM SIGSOFT '94 : Symposium on Foundations of Software Engineering,
Software Engineering Notes (Wile, David (ed.)) .

Moriconi, Mark; Qian, Xiao1ei and Riemenschneider, R. A.(l995), Correct Architecture
Refinement, IEEE Transactions on Software Engineering, 21 (4),

Mugisa, Ezra Kaahwa (1997) , A Reuse Triplet for Systematic Software Reuse, Software
Engineering Notes, 22(2),

Mugisa, Ezra Kaahwa (1998), An Approach to Systematic Software Reuse Based on Plugging
Components into an Architecture, PhD thesis, University of London, in preparation.

Object Management Group (1996), The Common Object Request Broker:Architecture and
Specification, Revision 2.0.
Perry, Douglas L.(I 998), VHDL, Third Edition, McGraw-Hill.
Shaw, Mary (1995), Architectural Issues in Software Reuse: It's Not Just the Functionality,

It's the Packaging, Proceedings of the Symposium on Software Reusability (SSR'95),
(Samadzadeh, Mansur and Zand, Mansour (eds.)), Software Engineering Notes.

Shaw, Mary (1995),Comparing Architectural Design Styles,/EEE Software , 12(6).
Shaw, Mary and Garlan, David (1995), Formulations and Formalisms in Software

Architecture, Computer Science Today: Recent Trends and Developments. Lecture Notes
in Computer Science 1000 (Jan van Leeuwen (ed.)), Springer-Verlag.

Shaw, Mary and Garlan, David (1996), Software Architecture: Perspectives on an emerging
discipline, Prentice Hall.

Spivey, J. M.(l992), The Z Notation: A Reference Manual, Second Edition, Prentice Hall .
Srinivas, Y. V. and Jullig, Richard (1995), Specware(TM): Formal Support for Composing

Software, Kestrel Institute Technical Report KES.U.94.5
Srinivas, Yellarnraju V. and McDonald, James L. (1996), The Architecture ofSpecware, a

Formal Software Development System, Kestrel Institute Technical Report KES.U.96.7
Terry, Allan; Hayes-Roth, Frederick and Erman, Lee (1994), Overview ofTeknowledge's

Domain-Specific Software Architecture Program, Software Engineering Notes, 19(4)
Tracz, Will (1995), Domain Specific Software Architecture, Software Engineering Notes,

20(3)

www.manaraa.com

Modeling Software Architecture Using Domain
Specific Patterns

J. P. Riegel, C. Kaesling, and M. Schiitze
Dep. of Computer Science, University of Kaiserslautem, Germany,
{riegel, kaesling, schuetze}@informatik.uni-kl.de

Keywords: architectural design patterns, domain-specific modeling support, code
generation

Abstract: In this paper we present a domain-specific modeling approach for application
components. We use class diagrams and design patterns as major modeling
notations and utilize code generation techniques to create an application.
Certain architectural aspects of these applications can explicitly be modeled
using concrete versions of architectural patterns. As an example, an
adaptation of the Pipes and Filters pattern (see Buschmann et al ., 1996) is
presented, which can be used as an architectural modeling entity and which is
supported by a code generator for automatic implementation of different data
flow mechanisms.

1. INTRODUCTION

Software components are an important factor in software development.
To successfully use a component, its architecture should match to the
overall application architecture. This implies that the component
architecture must be adaptable with respect to the needs of a specific
application. The need for flexibility leads to the questions: "How can the
architecture of a component be represented and influenced? Which parts of
the software architecture are fixed, which can individually be modeled or
varied? Is code generation for architectural aspects possible?"

We try to give an answer to these questions by capturing architectural
elements with variants of design patterns and by providing modeling and
code generation techniques that allow the user to influence and adapt a
components architecture to specific needs. The work presented in this paper

www.manaraa.com

274 J. P. Riegel, C. Kaesling, and M. Schutze

is integrated into an experimental, domain-specific development method
called PSiGene {pattern-based simulator generator). The goal of PSiGene is
to provide a powerful modeling environment to support the creation and
integration of customized components. Our initial application domain is
building simulation, but support for other domains is possible as well.

In our case, simulators are used in the domain of building automation to
test control algorithms. Building simulators must exist in many variants to
cope with various physical effects, combinations of effects, required
accuracies, and different time advancement schemes (e.g., real-time, time
warp). One complex simulator can not fulfill all possible requirements at the
same time, therefore tailored simulation components are required. PSiGene
provides a pattern based modeling and code generation environment to
support the development of customized building simulators. Section 2 gives
a short introduction to PSiGene. For further readings see Schtitze et al.
(1997) and Heister et al. (1997).

In this paper we present an extension to our initial approach. In order to
become more domain independent and to be able to handle more complex
models, we emphasized the separation of different component aspects; i.e.,
we distinguished between component architecture and component behavior.
The following figure (Figure 1) illustrates the engineering process of
PSi Gene.

domain engineering

architecture __..,. . tyle. --+

domain analysis ______,. domain- pecific
patterns

pattern
reference architecture (see fig. 3) "=' catalog

libraries
Tools

\
application engineering

domain specific

application
specific

simulator model
code

Figure 1. Domain- and application-specific tasks

Some parts of PSiGene, in particular the pattern catalog, the reference
architecture, and the libraries are results of a domain engineering step. We
tried to capture architectural styles for some component aspects in patterns.

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 275

They are designed to work together with domain-specific (behavioral)
patterns. All patterns from the catalog form a system of patterns
(Buschmann et al. 1996). In addition to the catalog, a reference architecture
(see Figure 3) was set up, and supporting libraries have been implemented.
To design a simulation component (application engineering), appropriate
patterns have to be selected from the catalog, instantiated, and bound to
class diagrams. Executable code is automatically generated for this
application model and can be extended with manually written code if
needed.

The following section gives a brief introduction to PSiGene. An analysis
of this approach considering software architecture is found in chapter 3.
After that, chapter 4 describes two of our architectural patterns (Pipe and
Filter) and gives a short example of their use. A discussion of the approach
and an outlook on future work conclude this paper.

2. PSIGENE

PSiGene is a component-based, domain-specific software development
approach (for details see Schiitze et al. 1997). It's purpose is the creation of
tailored, application specific components: in contrast to many component
based development methods, where components are provided "as is",
PSiGene represents a flexible meta component. The user of PSiGene
specifies the concrete component with a model, a generator implements the
component automatically from this specification. This results in the creation
of components that exactly match the applications needs without introducing
any overhead in runtime or memory consumption caused by generic code or
interpretation of runtime parameters.

PSiGene combines object-oriented modeling of the static aspects of a
component (class diagrams) with pattern-based modeling of the dynamic
aspects like component behavior or functionality (pattern instance models),
and with code generation techniques for the implementation. The initial
application domain of PSi Gene is real-time simulation of large buildings.

PSiGene does not work stand-alone, but is integrated into a larger
software development environment called MOOSE (model-based, object
oriented software generation environment). Within MOOSE, every
application consists of a set of components each implementing one aspect of
the overall application features . An application is defined by an application
model, which in turn consists of several component models. A set of
domain-specific generators is used to transform the models into software
components. A certain type of generator, the so-called cross-component
generator, is capable of interpreting more than one component model at a

www.manaraa.com

276 J. P. Riegel, C. Kaesling, and M. Schutze

time and of generating glue logic and application interface code from the
interrelations (which we call the "glue") between different component
models. PSiGene's generator is implemented as a cross-component
generator within MOOSE. More details about MOOSE can be found in
Altmeyer et al. (1997).

2.1 System Overview

Figure 2 gives an overview of the implementation of PsiGene. An
application, in this case a building simulator, is defined with an application
model. Among the different component models we find a structure model
(expressed as a class diagram by using editors from MOOSE) that defines
the simulation objects. Other class models define structures for other aspects
of the simulation or represent run time libraries.

component
model (structure):
simulation objects

I I
I I

comP<>nent
model (behavior):
simulat ion behavior

I I .
________ Simulator

Figure 2. PSi Gene overview

PEdit

pattern
catalog

The behavior of the simulator is defined with a pattern instance model.
Patterns, which are taken from a catalog (see below), are used to define the
behavior of the simulation objects, to define the overall functionality of the
component, or to define the interface between the simulation component and
other components expressed by other models. These pattern instances not

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 277

only specify local component properties, but also the glue to other
components. This means that component integration is also performed on
the modeling level. The pattern instances are created using a graphical
editor, PEdit, that displays class models and lets the user select and
instantiate patterns from a catalog. These instances are then bound to the
class model, which means that each instance is connected to elements
(classes, relations, attributes, methods) of the class model.

Once the application model is set up, it is fed into PSiGene's generator.
The generator reads the structure model, the pattern instances, and it knows
the patterns of the catalog. From this information, it creates optimized,
tailored component code. For variants of the application, we will simply
generate a variant of the component code. Details of pattern-based code
generation can be found in Heister et al. (1997).

2.2 Pattern Formalization and Pattern Catalog

As explained before, patterns used for modeling are taken from a
domain-specific pattern catalog. The intention of the catalog is pretty much
the same as with other pattern-based design methods: to capture successful,
"good" design and to provide this knowledge to the catalog user by
presenting solutions for smaller design problems in a certain design context.
One of the first and most famous catalogs has been presented by the "gang
of four"; see Gamma et al. (1995). In contrast to this and most other catalogs
found in the literature, which address general design problems, we focus on
concrete design problems for building simulation such as the calculation of
heat flows in buildings or the scheduling of real-time processes.

Table 1 shows the structure of our catalog. It is partitioned into several
categories dealing with different (orthogonal) aspects. As an example, some
patterns from each category are shown.

Because we set up the catalog for a very narrow application domain, we
are able to state the problems as well as the solution very precisely, enabling
tool support for modeling as well as code generation. At the same time, we
had to formalize the pattern approach with respect to the pattern interface
and the code templates provided as problem solution: In contrast to other
approaches, we have to specify the binding between the class model
(structure model) of the application and the pattern instances formally and
unambiguously. And we need code templates that are suitable for code
generation.

Within PSiGene's catalog, the pattern interface, defining the structure as
well as the participating elements of a pattern, is expressed with name:type
pairs as formal parameters. The name denotes the name of the participating
element, the type shows which parts of other component models are eligible

www.manaraa.com

278 J. P. Riegel, C. Kaesling, and M. Schiitze

for binding, e.g., classes, relations, methods, and so on. Based on the formal
parameters, the (syntactical) correctness and completeness of pattern
bindings can be checked by tools. With that, the formalization builds the
syntactical framework for a pattern language, as the cooperation of patterns
can be expressed with formal bindings. Furthermore, the code generator gets
sufficient information to create component code.

Table 1 Excerpt from the pattern catalog
Category Sub-Category Patterns Description
Framework Primitive Variable Value Access an attribute
Structural
Adaptation

BufferedV alue Attribute buffer that is mainly
used in conjunction with a
Pijl_e

Indirection FollowRelation Delegation along a relation
Traversal Collect connected objects

without specifying a path
Redirection MethodBranch Branch if condition is met
Pipes and Pipe Specify data flow
Filters

Filter Activity when using a Pipe
Distribution AttributeProxy Used for distributed access

Simulation Control Actuator Set attributes with events
Control

ContinuousComput Periodic method invocation
ation

State StateMachine Simple finite state machine
Machines

StateMachineActi ve State machine using
conditions

User Interface Display Display Attribute Display an object's attribute
DisplaySlider Display attribute as a slider

Domain Simulation ThermalMass Calculate temperatures
ThermalJunction Compute heat flows

The code templates are split into smaller fragments . Each fragment
consists of code in a given programming language, enriched with macros
that denote the variable parts of the code. Currently, we support Smalltalk as
the target language, however, provisions have been made to generate code
for other object-oriented languages as well. During code generation, the
generator collects the fragments, "personalizes" them by replacing the
macros, and assembles the resulting code to methods. Macro replacement
can be as simple as string exchange or it can mean to replace a macro with
other, complex code fragments recursively. The definition of replacement

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 279

strategies and code fragments is supported by inheritance and by pattern
aggregation.

2.2.1 Extensions to PSiGene

Components generated by PSiGene do not work in isolation, but are
embedded into a surrounding application with an underlying software
architecture determined by the application domain and other forces . For
earlier versions of PSiGene, this application architecture was fixed, and
consequently, the component architecture was fixed, too. There were
architectural aspects that have been addressed by PSiGene, e.g., the degree
of multithreading in a simulator or the possibility to create distributed
simulators. However, the decision about architectural elements has been
made implicitly, while choosing patterns that determined other simulation
aspects. For example, by using the Sensor and Actuator pattern to simulate
hardware interfaces, the user implicitly enabled distributed simulation and
influenced the component's and application's interface. As we started to
apply PSiGene to other application domains, we realized that our approach
would become more general and the modeling would be significantly easier
if we were able to specify the architecture of applications explicitly. The
following section will illustrate how we adapted the latest version of
PSiGene (in particular the pattern catalog) to capture and model
architectural styles, and how we generate code that implements these styles
automatically from the models.

3. SOFTWARE ARCHITECTURE WITHIN
PSI GENE

The architecture of a software system can be modeled following
architectural styles (see Buschmann et al., 1996, and Bass et al., 1998).
Styles give concrete hints on how to construct and organize a system. For
example, following the Client-Server style leads to a system where several
clients communicate with one or more servers. The exact behavior of a
specific client or server is independent of the architectural style and must be
specified separately. Tracing which style leads to which component
structure makes the software more maintainable and understandable.

Usually several styles can be identified in a component's architecture.
Each style can be seen as a set of constraints on an architecture. These
constraints define a family of architectures that satisfy them (Bass et al.,
1998, p. 25). Some of these constraints can also be expressed with design
patterns (compare Monroe et al., 1997). Such a pattern includes the context

www.manaraa.com

280 J. P. Riegel, C. Kaesling, and M. Schutze

in which a style can be applied, the forces it resolves, the consequences, and
the structure of the style. In addition to this, patterns contain a guide on how
to apply them.

Finding concrete patterns that reflect an architectural style is not easy:
styles are an abstract description of facets of a software architecture,
whereas (PSi Gene-) patterns are usually applied to smaller parts of a
component and reflect concrete design decisions rather than organizational
structures.

We formalized some architectural patterns so that they can be used
within PSiGene. Their binding enforces a certain architecture and code can
automatically be generated. The main drawback of this "formal" description
of architectural styles is that PSiGene patterns cannot capture the whole
bandwidth of possibilities how a style can be implemented: only a limited
number of domain-specific implementation strategies can be included in a
single pattern because otherwise code generation would be impossible and
the binding would become far to complex. This restriction, however, doesn't
count as much, because our patterns don't aim to be universally applicable
but are only used in one domain. When focusing on one domain,
architectural styles occur only in few variants.

As explained before, the previous version of PSiGene used architectural
styles mostly implicitly: the patterns concentrated on solving a certain
(simulation) problem and therefore they contained behavioral aspects as
well as structure and other architectural components. For small models this
was convenient, but when modeling complex simulators or when adapting
PSiGene to other domains it is desirable to be able to model the architecture
more explicitly. To do so, we reengineered some of our patterns and added
new ones to reflect certain properties of architectural styles.

3.1 Architecture in PSiGene

All simulation components that are modeled with PSiGene share a
common basic architecture. Some parts of this architecture are fixed while
other parts can vary from simulator to simulator. Figure 3 gives an
overview.

A set of fixed components builds the framework that houses customized
simulation components. The framework is used by inheriting from or
delegating requests to framework objects or classes. Three major
components are used: a GUI library to display simulated objects and to
stimulate the simulator, an 110 library to communicate with other
applications and to log simulator runs, and the kernel library which is
responsible for scheduling and event-handling. The structure and behavior

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 281

of the simulation components, however, varies for different simulators in
order to match the needs of the applications. Variable aspects are:
- component structure (i.e., class models)
- component functionality and behavior

non-functional requirements (e.g., timeliness, accuracy)
- component integration: glue code to connect to the framework

r----

GUI-Iibrary

YO
library

---,

Figure 3. Architecture of a building simulator

3.1.1 Architectural styles in PSiGene

hbrary

sunulauon

arChne'cture)

()

relations

c]
schema

Several architectural styles are used to model a building simulator. The
following table (Table 2) gives an overview of the styles that occur in
PSi Gene.

Two styles, Repository and Pipes and Filters describe data aspects of the
model. Our components are modeled using class diagrams. Different
components can share parts of these diagrams to have access to the same
data. Methods to access such a data repository are automatically generated.
Data exchange within one component is modeled with the Pipe and Filter
patterns. The communication channels are seen as pipes, and activities to
trigger the data flow are modeled as filters (see next chapter).

The application framework implements the framework style. Framework
components are represented by class diagrams and can be incorporated into
the models using object-orientated mechanisms and patterns.

www.manaraa.com

282 J. P. Riegel, C. Kaesling, and M. Schutze

Since our kernel library is event-driven, all active simulation objects
must be able to receive and evaluate events. Event handling is also modeled
with patterns (such as Actuator or ContinuousComputation).

In this section we have shown how the architecture of a simulation
component looks like and which architectural styles occur implicitly by
using PSiGene. Some styles can also be expressed explicitly with patterns,
as we will illustrate with the example in the next section.

Table 2. Architectural styles in PSiGene

Architectural
Style

Repository
Pipes and Filters

Framework

Layers

Model-View
Controller
Distribution I
Event Systems

Microkernel

Occurrence

Data exchange between components
Specify data flow between simulation
objects and identify active objects
Application framework

Accessing libraries (via delegation)

Used in the GUI library. The 'Model' is
part of the simulation component
Network communication with other
applications (110 library) or distributed
simulation/scheduling (kernel library)
Useful to encapsulate communication
aspects esp. in the kernel library

4. EXAMPLE

Modeling Notation I
Support

Class diagrams
Pipes and Filters patterns

Class diagrams, schemas,
patterns
Indirection, control, and
display patterns
GUI patterns

Patterns and library
parameters

Patterns plus hierarchical
class diagrams (not yet
supported by
PSiGene!MOOSE)

Up to now, the software architecture of our building simulator models
was defined by the framework: the libraries, the structure of our patterns,
and by the way the class diagrams are constructed. Many of the patterns
addressed behavioral aspects as well as other software architectural aspects.

For example, the Therma/Junction Pattern is used to simulate the
junction of two adjoining thermal masses. A thermal mass is a simulation
object that has a relevant heat capacity. Examples are rooms, radiators, or
the environment. A thermal junction is typically a wall or a window. When
two thermal masses are adjacent, they exchange energy through heat flows.
The Therma/Junction pattern can be used to calculate the heat flow between
any two of those masses. The heat flow depends on the difference of
temperatures of the adjoining thermal masses and on the thermal resistance

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 283

of the separating (i.e. , insulating) material. The first version of the
ThermalJunction pattern assumes that it can somehow access the required
temperatures and the thermal resistance by calling a method. Other patterns
like FollowRelation or Traversal must provide this access methods (usually
by delegation to appropriate objects).

Figure 4 shows a part of the model for the simulation of heat flows
through a simple wall. The class diagram describes how rooms are
connected via surfaces and walls. The lower part of Figure 4 shows the
pattern instances. ThermalJunction is bound to the class Suiface and
implements the calculation method. To collect the data for this calculation,
several FollowRelation patterns are required. The temperature of both
neighboring rooms has to be collected and the cumulative thermal resistance
of the wall and both surfaces must be computed.

} diagram

temperature getTemp calculate getThennRes thermalRes } pattern bindings

} pattern instances

Figure 4. Simulating heat flow

ThermalJunction implements an action (calculation of the heat flow) that
is closely related to a data flow (collecting temperatures and thermal
resistances). ThermalJunction concentrates on the action part and also
assumes the required data are present in a certain way. For small object
models this is adequate as data flow is relatively simple. As models grow
more complex, software architecture becomes more and more important. For
the "thermal junction" problem this means, that the data flow aspect
becomes more important (and more difficult to model) and the coupling
between the data flow and the activity view has to be well considered.

Data exchange between simulation objects usually consists of two parts:
a communication channel (object relations or possibly a network
connection) and an activity that triggers the exchange. Such pipelines occur
in many variants: push-driven, pull-driven, synchronized push/pull,
distributed, buffered, and so on. To be able to model such a variety of
different data flow possibilities, it is useful to decouple the data flow aspect
from the functional aspects and model it separately.

www.manaraa.com

284 J. P. Riegel, C. Kaesling, and M. Schiitze

Figure 5. Data flow between two rooms

._____
pull

push

The new version of Thermallunction focuses on the functional view
only. The data to calculate a heat flow must still be present but the pattern
doesn't prescribe how to access this data. Two new patterns, Pipe and
Filter, can be used to model data flow. In our example (Figure 5 and Figure
6), we have a data flow (i.e., a pipe) from the class Room to Wall, and an
activity (i.e., a filter) to calculate the heat flow.

Whether the data flow is pull- or push-driven and/or distributed over
more processes or computers is characterized by configuring parameters of
the Pipe pattern. Thermallunction can be seen as a Filter (from the data
flow view) and bound to our Filter pattern (see Figure 6).

calculate

functionality

Figure 6. Different views for functionality and data flow

4.1.1 A Pipes and Filters pattern

This section describes our Pipe and Filter patterns in more detail. It is
intended as an example of how software architecture can be expressed with
PSiGene-like patterns. We took the pattern Pipes and Filters from
Buschmann et al. (1996), which describes most properties of data flows as
they occur in our domain (transfer, buffering, synchronization) and adapted
it to our needs. The general static structure of a pipeline is shown in the
class diagram of Figure 7. A pipe is used to connect a provider with one or
more consumers. Push or pull methods are used to access data elements in
the pipeline. Additional processing is done using filters .

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 285

Capturing the idea of the Pipes and Filters style in generative patterns is
possible because the underlying structure is not too complex. However,
dealing with the many variants in which pipelines occur is not trivial. We
have realized the Pipes and Filters style as two individual patterns "Pipe"
and "Filter." They both implement a part of the Pipes and Filters structure
(see Figure 7).

To identify pipelines in a class diagram, the patterns structure must be
mapped to elements from that diagram. This structure mapping is done by
assigning values to formal parameters of the Pipe and Filter patterns (see
section 2.2).

Pipe

buffer Pipe
pull
push(data)

read Data

readData

pu hData push(dara)

Figure 7. Object structure of the Pipes and Filters style (and pattern)

The following list shows the formal parameters of the Pipe pattern:
objects:

source
the data source object
(read as formal parameter source:object)

destination
the data destination object (sink)

- attributes:
sourceData (use at source)

the attribute that serves as the source for the data transfer

www.manaraa.com

286 J. P. Riegel, C. Kaesling, and M. Schiitze

destinationData (implement at destination)
the new proxy attribute that is the sink of the transfer

- relations: entry and exit relations for the pipeline
- methods:

read (optional, implement at destination)
reads data from the source and writes it to the sink.

push (optional, implement at source)
triggers a data transfer. The initiator is the source object.

pull (optional, implement at source)
triggers a data transfer. The initiator is the destination object.

notify (optional, use at destination)
this method will be invoked at the destination object, if the data at
the source has changed.

request (optional, use at source)
this method will be called at the data source if the destination
object requires an actual value of the attribute. The source object
has to transfer the current value (if it has changed since the last
time).

- properties:
bufferSize (optional, preset)

if this property is set, a buffer is realized with the specified size.
useProxy (optional, preset)

this property instructs the generators to allow distribution of the
participating objects over host-boundaries. A proxy mechanism is
implemented.

As one can see, some parameters are optional and don't have to be
bound. For example, a push-driven pipe does not need to bind the "pull"
parameter. The Filter pattern is described by similar means. It is bound to
calculation methods with a formal parameter calculate:method(use).

Data flow aspects are modeled independently of other aspects.
Interaction occurs only at well defined points. Functional patterns like
ThermaUunction or ThermalMass are bound at the filter component using
the formal parameter "calculate." Activity patterns like
ContinuousComputation can be bound using the parameters "pull" or
"push" from the pattern Pipe, or using the optional filter parameter
"compute."

A small example demonstrates the pattern bindings for the model in
Figure 6. After binding values to the formal parameters for all pattern
instances, a binding description file is created. It looks as follows :

"ThermalJunction 1 - calculates the heat flow through a thermal junction element"
Therma!Junction

bind: 'target' to: 'Surface';

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 287

bind: 'calculate' to: 'calculateHeatAowForRoom';
bind: 'thermalResistance' to: 'thermalResistance';
bind: 'area' to: 'area'.

"Filter l - calculates the heat flow through a thermal junction element integrating the pattern
instances ThermalJunctionl and Pi pel to PipeS"

Filter
bind: 'target' to: 'Surface';
bind: 'calculate' to: 'calculateHeatAowForRoom';
bind: 'request' to: 'requestHeatAowForRoom';
bind: 'arguments' to: #('temperatureOfRoom' 'temperatureOfSurface' 'resistanceOfRoom'
'resistanceOfSurface');
bind: 'getArguments' to: 'argumentsHeatAowForRoom';
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom';
bind: 'result' to: 'heatAowForRoom';
bind: 'initValue' to: '0.0'.

"Pipe I - provides the thermal resistance of a room at a connected surface"
Pipe

bind: 'source' to: 'Room';
bind: 'destination' to: 'Surface';
bind: 'sourceData' to: 'thermalResistance';
bind: 'read' to: 'readResistanceOfRoom';
bind: 'exit' to: 'radiatorSurfacesOfRoom';
bind: 'entry' to: 'roomOfradiatorSurface';
bind: 'destinationData' to: 'resistanceOfRoom';
bind: 'push' to: 'pushThermalResistanceToSurfaces';
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom'.

"Pipe 5 - provides the calculated heat flow from Surface to Room"
Pipe

bind: 'destination' to: 'Room';
bind: 'source' to: 'Surface' ;
bind: 'exit' to: 'roomOfSurface';
bind: 'entry' to: 'surfacesOfRoom';
bind: 'read' to: 'readHeatAowFromSurface' ;
bind: 'destinationData' to: 'heatFlowFromSurface' ;
bind: 'sourceData' to: 'heatAowForRoom'.
bind: 'pull ' to: 'pul!HeatAowFromSurface';
bind: 'request' to: 'requestHeatAowForRoom'.

There are 3 objects classes in this example: a Room is connected with a
Surface to a Wall . The instances of Room have to recalculate their
temperatures in fixed time intervals. The rooms request the calculation of
the heat flows from the adjoining objects indirectly by reading the local
attribute "heatFlowFromSurface" (the calculating filter for the temperature
at Room calls pullHeatFlowForRoom first, before accessing the attribute).

www.manaraa.com

288 J. P. Riegel, C. Kaesling, and M. Schutze

Since the generators know that rooms and surfaces are connected by a
one-to-many relation, this attribute (implemented by "Pipe 5") holds a
collection of heat flow values. Each of these values is calculated by an
instance of the ThermaUunction pattern, the calculation is controlled by
"Filter 1 ". This filter collects all required arguments, triggers the calculation
while providing those arguments, and, if necessary, delivers the result via
"Pipe 5". The following code fragment was generated from the above
bindings:

argumentsHeatFlowForRoom
"Collects all arguments for the calculation of heatFlowForRoom"
I args I
args :=Array new: 4.
args at: 1 put: self temperatureFromRoom.
args at: 2 put: self temperatureFrom Wall.
args at: 3 put: self thermalResistanceFromRoom.
args at: 4 put: self thermalResistanceFrom Wall.
"args

computeHeatFlowForRoom
"Does the calculation and stores the result in heatFlowForRoom"
"self heatFlowForRoom: (self calculateHeatFlowForRoom: self
argumentsHeatFlowForRoom)

In our example the access to "heatFlowFromSurface" is triggered by a
separate pull method (Pipe 5 is pull-driven). The other pipes are push
driven, which means that the data transfer is initiated by the sources of the
pipe.

As one can see, our patterns "Pipe" and "Filter" realize a flexible data
flow mechanism with synchronization capabilities. They separate this aspect
from the functionality, which in this case is handled by Thermallunction .
Thermallunction in tum does not care about data flow issues.

Depending on the binding, different transport and synchronization
mechanisms can be implemented by Pipe and Filter. Some synchronization
combinations are shown in Table 3.

Table 3. Some possible combinations of pipes and filters
Argument Filter Result Pipe Comment
Pi es
push-driven inactive

pull-driven active

pull-driven inactive

push-driven

push-driven

pull-driven

Each time a new argument is delivered,
the result is calculated and propagated.
The calculation of the filter is triggered
by an external activity. The arguments
are requested and the result is
propagated.
If someone requests the result, it is

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 289

Argument
Pi es

push-driven

Filter

active

Result Pipe

pull-driven

Comment

calculated after requesting all required
arguments.
This is the synchronized combination of
the first three examples

The required synchronization mechanism depends on the frequency of
data changes and on how the transport is triggered. The pattern interface
allows to abstract from the concrete transport mechanism. Distributing the
pattern or buffering values can be achieved by binding additional patterns
like AttributeProxy or BufferedVariable.

4.1.2 Code generation

Each pattern instance in PSiGene comes with a partial code generator. It
is responsible for generating adequate code from the patterns code templates
and the pattern bindings. Every pattern instance is analyzed in its binding
context before the generation is started. Therefore, tailored and optimized
code can be created.

To generate code for a pattern, not only its own bindings have to be
considered, but also other patterns bound to the same target objects. For
example, a propagating filter needs information about the pipe to which data
changes should be reported. Internal properties (additional bindings) are
used to allow the combination of patterns and are used to generate optimized
code. Application code is generated by assembling tailored code templates
that are part of each pattern. A very simple code fragment may look as
follows:

'{compute}
"Does the calculation and stores the result in {result}."
"self {result}: (self {calculate}: self {getArguments})'

Keywords in brackets ({ }) are used as macros. Usually code generation
can be done by choosing code templates and replacing all macros with other
templates or bound values. More complex patterns (like Traversal) also use
code synthesis techniques. For further reading see Heister et al. (1997).

5. DISCUSSION

This work combines different software engineering techniques. Structure
models are used together with a pattern based design strategy. Application
generators are used to implement a simulation component. The approach can

www.manaraa.com

290 J. P. Riegel, C. Kaesling, and M. Schiitze

be seen as a domain specific software architecture (DSSA, see Mettala and
Graham (eds.), 1992). Domain engineering in the field of building
simulation resulted in the overall architecture of a simulation component
(Figure 3) and in the implementation of the libraries. Also our pattern
catalog is domain-specific and part of the domain model. Reference
requirements are included in the informal parts of our patterns, prescribing
which patterns could be used together or giving hints how certain simulation
problems can be solved. To design a simulation component, only the
application engineering has to be performed. This includes especially setting
up or refining a class diagram for the building structure and instantiating and
binding patterns from the catalog. Tool support is given for these tasks. A
detailed process of this modeling procedure is not yet defined and will be a
topic for future works.

The revised pattern catalog contains behavioral patterns together with
patterns describing architectural styles. It is partitioned into categories that
deal with different aspects of simulation (the partitioning supports aspect
oriented programming (AOP), see Kiczales, 1997). Each category can be
seen as a view and be modeled separately. We are currently extending the
pattern editor to support views.

The main advantage of the new catalog is that we have found a way to
express parts of the component's architecture in (design) models. Patterns
can be used to implement or refine an architectural style. The configuration
is done by binding a pattern instance to the simulator model. These patterns
have a fixed formal interface and code templates (see Heister et al., 1997)
and therefore cannot express the whole variety of a style. But as our domain
is limited, it is sufficient to use only a few domain-specific implementations
of an abstract style.

All our patterns must be able to work together: they form a system of
patterns (compare Buschmann et al., 1996). Each individual pattern is used
to model a part of the component, but with the right combination of patterns
a building simulator can be designed. For example, with our Pipe and Filter
patterns, a data flow between two objects can be defined. At both ends of
the pipeline activity may take place. This is usually a calculation of values.
The Filter pattern is used to trigger such an activity; the activity itself must
be modeled elsewhere (i.e., with patterns from another category). A future
topic is to investigate how such dependencies and constraints between
patterns can be formally expressed.

www.manaraa.com

Modeling Software Architecture Using Domain-Specific Patterns 291

6. CONCLUSION

With architectural patterns it is possible to model architectural styles
separately. The pattern binding concept of PSiGene allows to combine
different pattern instances and to apply them to class diagrams. Therefore,
architectural styles can be integrated using a formal interface. The main
advantage of the architectural patterns is a better maintainable system
(model changes take effect only locally), better tailored components, and the
ability to handle more complex models. Also, our pattern catalog became
more domain independent. We still have some special simulation patterns
but they are able to work together with more abstract and more general
architectural patterns. We believe that these architectural patterns can easily
be adapted to other domains. Future work will investigate the applicability
of our approach in other domains.

Our patterns do not provide the whole bandwidth of all of their possible
applications but only a domain-specific subset. This makes code generation
and optimization possible but restricts the universal usage of the patterns a
bit. Finding more variants and new patterns is also a topic for future works.

A small disadvantage of our new pattern catalog is that it takes more
time to model small simulation components as each aspect has to be
designed separately. But for larger models this separation of concerns is
mandatory and leads to more flexible simulators (e.g., nonfunctional
requirements like distribution can be modeled and documented explicitly
and more easily).

The pattern-based approach to software architecture seems to be feasible
and worked well for PSiGene. Variants of components can be created within
short time, and a component can match the architectural demands of an
application by changing abstract architectural properties in the models. We
therefore believe that our approach to architecture modeling helps the
software development in providing and using tailored components.

REFERENCES

Altmeyer, J., Riegel, J.P., Schiirmann, B., Schiitze, M., and Zimmermann, G. (1997)
Application of a Generator-Based Software Development Method Supporting Model
Reuse, 9th Conference on Advanced Information Systems Engineering (CAiSE), Barcelona

Bass, L., Clements, P., Kazman, R. (1998) Software Architecture in Practice, SEI series in
software architecture, Addison-Wesley

Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M. (1994) The GenVoca
Model of Software-System Generators, IEEE Software, September 94

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stall, M. (1996) Pattern·
oriented Software Architecture - A system of Patterns. John Wiley & Sons Ltd.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns, Addison-Wesley

www.manaraa.com

292 J. P. Riegel, C. Kaesling, and M. Schiitze

Heister, F., Riegel, J.P., Schiitze, M., Schulz, S., and Zimmermann, G. (1997) Pattern-Based
Code Generation for Well-Defined Application Domains, European Pattern Languages of
Programming Conference (EuroPLoP), Siemens Technical Report 120/SWl/FB, 263-273

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. Irwin, J.
(1997) Aspect-Oriented Programming, PARC Technical Report, February 1997, SLP97-
008 P9710042

Kim, J. J., Benner, K. M. (1996) An Experience Using Design Patterns: Lessons Learned and
Tool Support, Theory and Practice of Object Systems, Vol. 2(1), 61-74

Kruchten, P. B. (1995) The 4+ I View Model of Architecture. IEEE Software, 42-50,
November 1995

Lieberherr, K. J. (1996) Adaptive Object-Oriented Software Development: The Demeter
Method with Propagation Patterns, PWS Publishing Company, Boston

Mettala, E., Graham, M. H., eds. (1992) The Domain-Specific Software Architecture
Program, Special Report CMU/SE/-92-SR-9, Carnegie Mellon University, Pittsburgh

Monroe, R. T., Kompanek, A., Meltom, R., Garlan, D. (1997) Architectural Styles, Design
Patterns, and Objets, IEEE Software, January 1997

Schiitze, M., Riegel, J.P., and Zimmermann, G. (1997) A Pattern-Based Application
Generator for Building Simulation, European Software Engineering Conference (ESEC),
Ziirich

www.manaraa.com

ImageBuilder Software
A Framework Development Experience Report

Dwayne Towell
ImageBuilder Software
6650 SW Redwood Lane, Suite 200
Portland, OR 97224
dwayne@imagebuilder.com

Key words: Framework, experience, object-oriented, cross-platform, multimedia, reuse,
education, domain, team, architects, development

Abstract: Six years ago lmageBuilder Software chose to develop an object-oriented,
cross-platform, multimedia framework to promote code reuse and therefore
increase profits. Today, it continues to be used and extended; it is profitable
and a major company asset. This paper documents how it was developed,
describes how we use it today, evaluates its success, and makes
recommendations for others based on our experience.

1. THE COMPANY

ImageBuilder is an independent, full-service, multimedia title
development company. Founded 15 years ago, it now has over 120 full-time
employees including more than 30 engineers. We design, develop and test
CD-ROM titles for clients, partners and, more recently, our subsidiary
Active Arts. Many products are completed independently from conception
through development to manufacturing release by ImageBuilder staff,
however we do allow clients to participate in the process to the extent they
desire. Most of the dozen or so products shipped each year are dual
Windows and Macintosh, shrink-wrap, edutainment, multimedia CD-ROMs.
Some of the most well-known titles include: Hasbro's Pictionary, Mr.
PotatoHead, and Playskool Puzzles; Creative Wonder's Madeline
Classroom Companion series; The Learning Company's Math Munchers

www.manaraa.com

294 Dwayne Towell

Deluxe and Paint, Write, and Play; Pacific Interactive's Bill Nye: Stop the
Rock!; Disney's Disney Magic Artist; and Microsoft's Arthur's Playground.

2. PROJECTS

Each project is somewhat unique, however most follow a well-traveled
path. lmageBuilder producers collaborate with the client to develop an
outline for the product including scope, content and purpose. As this is
nearing completion, the project lead and art director are assigned to begin
developing a product specification. This is a working document so changes
are quite regular especially near the start of project as details are ironed out
with the client, engineers and artists.

As areas of the product specification become firm, engineers start on the
technical specification. Engineers outside the project will usually critique it
in one or more design review meetings. Once the product specification is
complete, the Quality Assurance department will develop plans for testing
and certification. Additional members are added to the project as they are
needed and/or become available. Eventually, the team will include two to six
engineers, one or more media coordinators, artists, animators, scriptwriters
and/or sound designers. Most projects employ about eight full-time positions
and tend to last about ten months, but they can vary quite a bit. At any time,
ImageBuilder has a dozen or more projects in progress.

3. SUPPORT

One important ingredient contributing to a successful project at
ImageBuilder is our proprietary, object-oriented, multimedia framework and
its associated tools. Framework code comprises from one third to one half of
most applications developed. Typical applications make use of about 80% of
the code provided. Since practically all development builds on our
framework, a framework development team continues to improve it and
provide support for its use. The framework team's initial responsibility is to
develop, improve and extend our domain-specific object model for
multimedia applications. This model is realized as an object-oriented C++
framework. Several tools have also been developed to allow the large
quantities of multimedia resources to be manipulated, compiled, and viewed.

In addition to developing the object model, delivering code and providing
tools, the team provides design review and education. Most projects take
advantage of the team's design experience during formal reviews. Also,
engineers frequently use the team members as a convenient consultant for

www.manaraa.com

ImageBuilder Software 295

object design. Education provided by the team plays an important part in the
improvement of the engineering department. Whenever consulted the team
tries to take advantage of these "teachable" moments. In addition, formal
classes are held weekly covering various topics from engineering processes
to use of the framework to object modeling.

4. ARTIFACTS

The framework team maintains three artifacts: C++ framework,
documentation and tools. The framework is actually multi-tiered; it includes
an operating system services (OS) layer, an application layer and the
multimedia framework proper. The OS layer models services such as files
and threads, providing cross-platform objects to hide platform-specific
details. The application layer builds on the OS layer to provide windows,
controls, menus, events, etc., again hiding platform-specific details as much
as possible. Finally, the framework proper models multimedia objects such
as pictures, sounds, animations and buttons.

Table 1 shows the number of modeling objects and additional utility
classes for each layer.

Table 1. Domain Objects by Framework Layer
Domain Objects

OS services
Application framework
Multimedia framework
Total

26
20
88

134

Other Classes

53
27

118
198

Total

79
47

206
332

In addition to framework code, extensive documentation has been
developed. Approximately 60 pages of overview and intermediate-level
documentation are currently available on an internal web site. This continues
to grow as the framework is extended or new areas are identified for further
explanation. Class-level documentation, aimed at application use, is
provided with the class in header files.

The framework team also has responsibility for several tools including a
content compiler, a script compiler, an animation viewer, a resource browser
as well as others. These tools allow resources to be converted, compiled and
viewed for shipping and run-time use. Resources supported include: text,
pictures, sounds, MIDI, run-time composed and streamed animations,
QuickTime movies, Windows A VIs and project-dependent extensions.

www.manaraa.com

296 Dwayne Tow ell

5. HISTORY AND EVALUATION

Seven years ago ImageBuilder began to respond to industry changes as
Windows 3.0 and 3.1 were shipped. Emphasis changed from business
graphics to multimedia products. Six years ago we started our third
multimedia project and decided much of each project could be reused if we
could developed a "multimedia engine". So a parallel project to create
reusable code was started in conjunction with the client's project. Although
extremely primitive by today's standard, it gave us our first chance. The
most important thing we learned was the need for extension-the need for a
framework, not an "engine". It also allowed us to "throw one away".

At the conclusion of that project we immediately went back to the
drawing board. We allocated two of our best engineers and completely
redesigned the object model from the ground up. Over the next year or two
we continued to improve and extend the model. Several projects were now
using it and a few had even been completed. By the end of this period we
shipped about 6 products using the framework, but had also come to realize
many of its shortcomings.

The third year into the project we went back to the drawing board again.
Although we eventually touched all the code, much of the domain-related
object model remained unchanged. Following this redesign was an extensive
period of conversion. The framework team was under pressure to deliver
vast amounts of new code for projects underway. In response we tried using
occasional part-time team members either to help with conversion or
develop new areas. In the end, this did not work because our part-time
engineers did not have experience developing extensible code.

As the percentage of projects using the framework increased to almost
100% and the engineering department grew, we had to improve our
processes. We added an administrative assistant and an official release
procedure. Releases now included detailed change reports, verified code for
all supported platforms, and tools synchronized with the run-time code.

Over the years many additions have been suggested for the framework.
We have never lacked for proposed improvements and as each project
pushes the envelope, pressure to make enhancements increases. The
framework team periodically reviews the framework with two groups.
Producers are consulted for strategic direction. Engineers are consulted
about utility and convenience. Based on these directions the framework team
develops short- and medium-term goals.

In addition to application team needs, framework additions must meet
two requirements. First, the addition should be useful to more than one
project since the framework exists to reduce costs by increasing code reuse.

www.manaraa.com

lmageBuilder Software 297

Second, the addition must be well defined. Open-ended additions become
sinkholes for time and effort.

The need for education was one of the slightly unexpected results of
developing a framework. Although conversant in the C++ language, many of
our engineers lacked object skills. In an attempt to improve skills and deliver
timely information about the framework, weekly engineering meetings were
established. Time is divided between teaching object skills, improving
engineering practices, and discussing framework use.

The framework has been a major benefit to project development at
ImageBuilder. It allows application teams to do work faster because many of
the details are already solved. For example, rapidly prototyping a game,
module or entire application can be done as fast as content becomes
available. Also, it improves the quality and speed of applications
ImageBuilder is able to ship. Each product that takes advantage of the
framework contains proven and optimized code for its core functionality .

6. RECOMMENDATIONS

6.1 Getting Started

Building the framework team is the first step to a successful framework
development. The team will be responsible for deriving the object model,
documenting it for project engineers, implementing it in code, and
supporting it.

6.1.1 Create a Framework Development Team

You will not have well-architected, reusable code if no one has primary
responsibility to develop it. As much as it would be nice to believe good
engineers would develop reusable objects and code, it is very difficult while
under pressure to meet deadlines. Our experience indicates it will never
happen. However, it can be accomplished given a team whose full-time
responsibility is framework extraction or invention.

6.1.2 Enroll the Best Architects

Design is first chance engineers have to influence a project for success.
Correct decisions pay off for the rest of the project, while mistakes made
here cost the most to correct. Given a good domain-specific framework,
much of the design for a project has already been done. So, to make the most
of your investment, allocate the best architects available to framework

www.manaraa.com

298 Dwayne Towell

development. This allows all projects, and engineers, to benefit from their
experience and knowledge.

6.1.3 Allocate Ten Percent

Allocate enough engineers to be productive and make a real contribution,
but not too many to be unmanageable or risk extensive overhead. Our team
has varied slightly over the years, but we have found allocating ten percent
of our engineers to be about right.

6.1.4 Promote Stable Membership

Team membership should be stable. Framework development is
fundamentally different from application development. For example, correct
framework design is typically more important than the schedule. Also,
inventing a quality model is considerably different from using it. Therefore,
enroll new members for long terms, a year or more, and make key members
permanent. Since members will be working together for extended periods,
and in some cases indefinitely, chose the team carefully and use trial periods.
This allows everyone to reevaluate the assignment after an agreed interval. If
the situation does not appear to be working, the trial can be terminated with
less discomfort for everyone involved.

6.1.5 Empower a Visionary Leader

As with all enterprises, a strong leader is needed. Someone who has a
clear vision for the framework needs to "own" the project. Especially before
the project is well established, but even later, it will be pulled in many
directions. Each client project will make a case that the framework team
should solve its special requirements . An empowered leader will be able to
hold it on course and allow it to meet the widest possible needs.

6.2 Making Progress

Once the project gets underway the team will be developing the domain
object model. It is unlikely any team will "get it right" the first time around.
Even if the first version is successful, plan to improve and extend it.

6.2.1 Make It Tractable

Only consider taking on manageable areas of the domain. Some areas
will be complex or ill defined; ignore them. In many cases the application

www.manaraa.com

ImageBuilder Software 299

engineers will be able to solve the subset of the problem needed for their
application without needing the general solution. Even though a general
solution may be enticing, especially to architects, consider the economics of
building it.

6.2.2 Make Official Releases

As with any construction project, building on an unstable base is tricky at
best. Give the application engineers a hand by producing "official" code
releases. Produce "release notes" that announce model changes, extensions
and bug fixes. Typically project engineers are much happier to receive new
code if they know what has changed. Balance the desire to release changes
to application engineers with the cost to perform a release. We make releases
at most once a week, but they may occur less frequently if few changes have
occurred.

Suggest each project archive its own copy of the framework. This allows
an application member to control migration to new releases when convenient
for that project. It also allows application engineers to make local changes
and bug fixes after framework development has been "frozen" for that
project.

6.2.3 Keep the Model Stable

Backward compatibility is important with rapidly changing code. For
frameworks this means the domain model must support the ways the
application engineers use it. Application engineers hate releases with
architectural changes. Although improving the model may require "code
breaking" changes, try to keep them to a minimum. Find temporary ways to
support "old style" objects to give engineers time to convert.

6.3 Developer Relations

In addition to developing a model and providing code for it, the
framework team will spend a considerable amount of time supporting their
customers, the application engineers.

6.3.1 Solicit Client Input

The framework team will increasingly lose touch with application
development as it concentrates on the framework. Therefore, develop an
ongoing dialog with framework clients (i.e., the project engineers). Goals for

www.manaraa.com

300 Dwayne Towell

the framework will change over time. Some method of constantly
reevaluating them should be available.

6.3.2 Promote Object-Oriented Skills

Even if the quality of the object model developed is excellent, application
engineers will need object-oriented skills. In order to insure the success of
the framework it may be appropriate to include object education as
framework support.

6.3.3 Assist in Using the Framework Effectively

Even if application engineers have object-oriented experience, solutions
to some problems may not be obvious. During framework development
many domain problems will be considered and plans made to allow for their
solution. If application engineers are not aware of these proposed solutions
they may not use the framework effectively. Since the framework team will
be the experts within the domain, take advantage of design reviews to assist
application engineers with domain-related object design.

6.3.4 Refuse Ownership of Project-Specific Problems

When assisting project engineers, pressure will mount to use framework
team members to solve project-specific problems. While this is most evident
near the beginning of framework development, it will continue to plague the
team years later. Resist the urge to allow framework engineers to participate
on an application team. Framework members should be consulted on issues
of the framework or for advice but application development should remain
separate.

7. CONCLUSION

Developing a domain-specific, object-oriented framework has allowed
ImageBuilder Software to remain competitive, grow and succeed in the fast
paced environment of software development. Providing applications within
the framework domain has proven reliable and profitable over the past six
years. While most of the techniques presented have a proven track record,
some of the ideas only become clear in hindsight. Though ImageBuilder
developed these recommendations through trial and error, we count the
project as a success. Other organizations, with the benefit of these
recommendations, should experience smoother sailing.

www.manaraa.com

/mageBuilder Software 301

ACKNOWLEDGEMENTS

This paper was prepared for presentation at WICSA 1. Thanks are due to
Roger Bonzer for his many comments and Terry Hamm for providing the
opportunity to write.

www.manaraa.com

Event-Based Execution Architectures for Dynamic
Software Systems

James Vera, Louis Perrochon, David C. Luckham
Computer Systems Laboratory
Stanford University
Stanford, CA 94305, USA
{vera,perrochon,dclj@pavg.stanford.edu

Key words: Evolutionary software architectures, software artifacts, component
engineering.

Abstract: Distributed systems' runtime behavior can be difficult to understand.
Concurrent, distributed activity make notions of global state difficult to grasp.
We focus on the runtime structure of a system, its execution architecture, and
propose representing its evolution as a partially ordered set of predefined
architectural event types. This representation allows a system's topology to be
visualized, analyzed and constrained. The use of a predefined event types
allows the execution architectures of different systems to be readily compared.

1. INTRODUCTION

Distributed software systems consist of computational components
interacting over a communications infrastructure. The executions of these
systems can be highly dynamic with components being created and
destroyed and the communications infrastructure undergoing continual
reconfiguration. We propose to represent the evolution of the structure of
such a running system, termed the execution architecture of the system, as a
set of events, partially ordered by time and causality. This partial order of
architectural events enables the precise analysis of the topological evolution
of a system, just as a partial order of behavioral events enables a precise
analysis of the functional activity of a system (Peled, Pratt et al. 1996).

www.manaraa.com

304 James Vera, Louis Perrochon, and David C. Luckham

The need for understanding execution architectures is driven by the main
trends of software. Component-oriented software engineering has resulted
in systems composed of components connected through middleware.
Distribution, especially large scale, leads to asynchronous systems. The
effect on execution architecture is dramatic: there may be no single
depiction of the execution architecture of an asynchronous distributed
system at a particular "point" in time. Instead, different observers can have a
different views of what the architecture is.

We define a model for execution architectures and event types used to
indicate changes in such a model. We show how systems such as distributed
Java programs or systems communicating over commercial middleware can
have their topological evolution projected onto our model. Using a
predefined set of event types allows us to compare the execution
architectures of systems implemented in different languages and which
utilized different communications middleware.

Finally, we show how our representation of an execution architecture
allows a system's topological evolution to be visualized, analyzed, and
constrained.

2. PREVIOUS WORK

Our work is builds on two previously separate lines of research: software
architecture and causal modeling.

2.1 Software Architecture

The term architecture has been widely discussed in the literature (e.g.,
(Garlan and Shaw 1993) (Moriconi and Qian 1994) (Perry and Wolf 1992)
(Thompson 1998)). Soni et al. (Soni, Nord et al. 1995) discuss four
categories of architecture: Conceptual, Module, Execution and Code.
Conceptual architecture describes a system in terms of high level, abstract
elements. Module architecture is the a more detailed functional
decomposition. Execution architecture is the structure of the running sys
tem. Code architecture is the organizational structure of the source code of
the system. Execution architecture is unique among the four in being a
dynamic structure. We focus on execution architecture and argue that its
appropriate representation is a partially ordered set of events.

Current research in software architectures has often focused on
conceptual or module architectures (we will term architectures in either of
these categories as component architectures). Architectures are described as
entities possibly within other entities and interconnected somehow. Such

www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 305

descriptions are sometimes referred to as "boxes and arrows"
representations. While being useful for many purposes, they have their
shortcomings in describing a dynamic system. The representation of an
execution architecture needs to be able to deal with change. In simple cases,
execution architectures may be thought of as a series of static architectures,
snapshots at different points in time. However, in many cases this is not
enough.

The ACME system developed by Garlan et al. is designed as a language
for exchanging architectural designs (Garlan, Monroe et al. 1995). The
ACME system is inherently static though there is a proposed extension to
allow the specification of potential dynamism. Darwin (Magee, Dulay et al.
1995) focuses on design specification and is not intended to be used in
systems where new component types and the pathways between them are
defined and added at runtime.

2.2 Causal Modeling

The use of partial orders of events to depict the behavior of distributed
systems is well established (Lamport 1978; Pratt 1986). The relation of the
partial order, typically called causality, enables true concurrency to be
represented, information which is lost in a trace-based model.

Fidge and Mattern (Fidge 1988; Mattern 1988) separately developed the
notion of vector time which is an algorithmic way of representing and
analyzing the causal relation. Subsequent work has been done in improving
the performance of such algorithms in special cases (e.g., (MeJdal, Sankar et
a!. 1991). See (Schwarz and Mattern 1994) for an excellent survey). Other
work has been done on applying causal modeling notions to existing
programming languages (Santoro, Mann et al. 1998).

Our framework for execution architectures is an extension of our
previous work in event-based systems (Luckham, Augustin et al. 1995;
Luckham and Vera 1996). There we created a programming language,
RAPIDE, in which a causal record of a program's behavior was
automatically deduced and recorded during the program's execution.

3. A THEORY OF EXECUTION ARCHITECTURE

3.1 Execution Architectures

Execution architecture is a runtime notion. It is the architecture of an
executing system. Its building blocks are executable constructs (e.g.,
objects, processes, tasks) which we call modules and the mechanisms they

www.manaraa.com

306 James Vera, Louis Perrochon, and David C. Lucklulm

use to communicate which we call pathways. Both of these building blocks
may be created and deleted during the system's execution making execution
architecture an inherently dynamic notion. It can best be thought of as the
record of the evolution of the structure of a running system.

3.2 Modules and Pathways

Our framework for execution architectures is built on two basic
constructs:
I. Modules which are groupings of computational capabilities, and
2. Pathways which are the means modules use to communicate amongst

themselves.

Module: A module is a grouping of computational capabilities. Modules
have an associated type. The type consists of a set of provided and required
features of each module, called declarations. These declarations are used to
communicate with other modules. In an event-based system, these
declarations would denote what events a module can send and receive. In a
system based on synchronous (remote) procedure calls, the declarations
would describe the procedures provided and called by each module. The
type of a module describes what the module requires from other modules as
well as what the module provides to other modules. Some architecture
description language type systems only describe what modules provide.

In addition, we define a parent-child containment relationship over
modules. Each module has maximum one parent. The parent relationship
forms a directed graph. Being dynamic, the parent of a module may change.
While parent-child is the only module relation we predefine, additional
relationship may be defined, such as a relation between the software
modules and the hardware modules they currently run on, etc.

Pathway: A pathway represents potential communication among
modules. A pathway has a name, a set of inputs and a set of outputs. The
inputs may be thought of as those things which invoke or use the pathway
and the outputs as those things which result from the invocation or observe
the use of the pathway. The inputs and outputs of a pathway may change.
Typically, one input or output identifies a pair (module, declaration).

More generally, we allow the use of patterns to concisely specify sets of
inputs or outputs. For example, a pattern could express "any module of type
Airplane performing a RadioOut event." A pathway also has a scope over
which it operates. The scope may be a particular module or the entire
system. A pathway can represent a mechanism or simply a state or
condition. Possible examples of pathways are a UNIX pipe, a Java socket, a

www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 307

serial cable between two computers, or a dynamic scoping rule of a
particular programming language.

What constitutes a module is a subjective determination. For example, in
a producer-consumer example, the producer and consumer are likely to be
modules while the data communicated between them is probably not. Thus
what is defined as objects in the source language does not necessarily
correspond to modules. Not all objects need be modules, not all modules
need be objects. In a system of workstations and network links one modeler
may choose to have the workstations be represented as modules and the
network links to be pathways. However, for a modeler more concerned with
the network protocols, the network links might be the modules and the
workstations the pathways. The key point is that modules represent the
building blocks of the architecture. The definition of the actual cor
respondence is determined by the system implementor though
language/system defaults may be used.

3.3 Execution Architecture Events

An execution architecture changes over time. Modules are created and
destroyed, pathways come into and go out of existence. Such occurrences
may be serialized or may happen independently. We model such changes as
events. For example, the creation of a module or the additional of an output
to a pathway would each be denoted by events. In our framework, we have
templates for nine architectural events to describe creation and deletion of
modules and pathways, addition and deletion of inputs and outputs from
pathways, and changing of the parent of a module.

Events have parameters contammg additional information. A
CreateModule, for example, has parameters denoting the type of the
module that was created, the parent of that module, and the name of the
module. We give the simplified description of the templates below:

CreateModule(type : ModuleType, parent : Event,

name : String);

DeleteModule(module : Event);

CreatePathway(inputs : Pattern, outputs Pattern,

name: String);

DeletePathway(pathway : Event);

ChangeParent(module : Event, parent : Event);

AddPathwayinputs(pathway : Event, inputs : Pattern);

AddPathwayOutputs(pathway: Event, outputs : Pattern);

DeletePathwayinputs(pathway : Event, inputs : Pattern);

DeletePathwayOutputs(pathway : Event , outputs : Pattern);

www.manaraa.com

308 James Vera, Louis Perrochon, and David C. Luckham

Some explanations may be necessary: first, our events do not directly
refer to modules or pathways, as modules and pathways are transient objects
in an execution architecture. In many cases, such as debugging post mortem,
these objects no longer exist. Instead, we refer to the event that denotes the
creation of the module or pathway. This can be seen in the parent parameter
of CreateModule Instead of referring to the parent module, we refer to
the CreateModule-event of the parent.

Second, we would like to be able to define the inputs and outputs of a
pathway in a descriptive way, rather than as an enumeration of all possible
inputs. RAP IDE allows us to easily describe the sets of input and output of
a pathway using a pattern. For our purpose, the pattern in
CreatePathway just specifies a set of declarations of certain modules. If
a pattern language is not available, sets of pairs of a module (denoted by an
event) and a declaration would work also.

Events are ordered temporally and causally. In the context of an event
processing system such as RAPIDE, our architectural events can be treated
like normal events. This allows us to use existing browsing tools and, more
interestingly, pattern matching and constraint tools on architectural events.
Using event constraint tools, we can write topological architecture
constraints. Examples of such are presented in section 4.1 .

3.4 Causal and Time Orders

When events are created they are (partially) ordered by cause and time.
Two events are temporarily ordered if their temporal relation can be
determined by any single clock in the system. The temporal order of two
events in a distributed system without a common clock is not a priory
known, but may be derived later. Two events are causally ordered if one
causes the other (transitively). The exact meaning of cause is configurable
and is captured by the system architect in a causal model. A common
definition is that the events produced by a thread are totally ordered, the
receipt of an event causally follows its sending.

The partial ordered set (poset) of architectural events forms a record of
the evolution of the architecture. Recording relations between events in
distributed systems as partial orders (instead of just time-stamping them)
reveals that "the execution architecture at a certain point in time" is not a
well defined concept. (Vera 1998) introduces the notion of consistent cuts
as architectural observation points. A consistent cut partitions a partially
ordered set into a before and after part. If an event is in the after part, then
all events that follow it temporarily or causally are in the after part, and vice
versa. Informally, an observer could have seen only and exactly the before

www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 309

part of the poset. When we speak of a "point" in the execution we mean "at
a consistent cut".

3.5 Static Snapshots

At any consistent cut in the poset, a static representation or snapshot of
the execution architecture similar to a component architecture may be
derived from all of the events preceding the consistent cut. Such a snapshot
is amenable to the types of analysis typically done on component
architectures.

A compatible sequence of consistent cuts is graphically defined as a
sequence of cuts which do not cross. Such a sequence may be viewed as an
animated movie of the architecture's evolution. Since a poset may contain a
set of such sequences, an execution architecture may contain a set of such
animations. Each animation corresponds to a particular observers view of
the architecture over time. The example below gives examples for such
compatible and incompatible sequences of consistent cuts.

4. APPLICATIONS OF EXECUTION
ARCHITECTURES

4.1 An Air Traffic Control System

Consider an air traffic control system as depicted in figure 1. Its
architecture consists of AirTrafficSector which contains a ControlTower
and a Runway-Control module .

. l'frafficSector

ontrolTower RunwayControl

)+------{ ro

Figure 1. Initial air traffic architecture

This initial architecture was created by the execution represented by the
poset in figure 2. The arrows denote the causal relation. Note that the

www.manaraa.com

310 James Vera, Louis Perrochon, and David C. Luckham

consistent cut C 1 in figure 2 marks the "point" in the execution at which the
architecture depicted in figure 1 holds.

Figure 2. An initial execution of the air traffic system

Next imagine that two Flights (one called UA17, the other AA23) are
created and that their creations are independent. A pathway from each Flight
to the ControlTower is also created. This execution is represented by the
poset in figure 3. At the point in that poset indicated by consistent cut C3
the architecture depicted in figure 4 holds.

In between consistent cut C 1 and consistent cut C3 there are seven
consistent cuts• two of which are shown in figure 3. Cuts C2a and C2b are
inconsistent (graphically the cuts cross) so they would not both appear in the
same architecture animation. One architecture animation A1 could consist of
sequence of consistent cuts C1, C2a, C3 and another architecture animation
A2 could consist of the sequence C 1, C2b, C3.

In architecture animation Al, the initial snapshot shown in figure 1
would appear, then Flight UA17 and its connection to the ControlTower
would appear and finally Flight AA23 and its connection to the
ControlTower would appear. In architecture animation A2, the same initial
architecture as in Al would appear, followed by the appearance of Flight

1The consistent cut for which the maxima is (1) Event E6, (2) Event E7, (3) Event E8 (this cut
is labeled C2a in figure 3, (4) Event E9 (this cut is labeled C2b in figure 3, (5) Events E6
and E7, (6) Events E6 and E9 and (7) Events E7 and E8

www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 311

AA23 and its connection to the Control Tower followed by Flight UA 17 and
its connection to the ControlTower.

Event E6

Event E8

CreateModule(RunwayControlType,
El, "RunwayControl")

CreatePathway("UA 17.fo",
"ControlTower.cai")

Event El

C2a

Event E9

Figure 3. Continuation of execution of the air traffic system

In a system which is merely time-stamping its architectural changes, or
which observes them by breakpointing the system, only animation Al or
animation A2 would be seen (or potentially a third animation A3 in which at
one "frame" neither flight is visible and in the next both are. This animation
would result from an overly coarse time-stamping or breakpointing interval.)
This is a specific instance of a more general case. Whenever there are
concurrent changes to an architecture, a single trace of those changes (such
as would result from time-stamping or breakpointing) will only capture one

www.manaraa.com

312 James Vera, Louis Perrochon, and David C. Luckham

animation. They cannot capture the information contained in incompatible
consistent cuts.

AirTrafficSector

Contro!Tower

,-----{fo
UAI7

co i-------+1

l+---------4 ro

fo }------,
AA23

Figure 4. Air traffic architecture at consistent cut C3

4.1.1 Use of Partially Ordered Architectural Events

The representation of execution architecture as partially ordered sets
(posets) of events allows poset oriented tools and methods to be applied to
execution architectures. In particular, the pattern and constraint languages
developed in the RAPIDE project may be applied to specify topological (as
opposed to purely functional) constraints on executing systems. The
RAPIDE languages can be used to set up simple filters, constraints or
maps. Some illustrative examples follow.

4.1.2 Filters

Filters are operators which take as input a poset and output a subset of
the input selected by a pattern. Filters allow a reduction of the space being
examined. Suppose we are only interested in the module containment
structure. The following filter could be used:

observe select CreateModule() or DeleteModule()

or ChangeParent();

www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 313

4.1.3 Constraints

The representation of an execution architecture as a poset allows us to
write constraints about its evolution as well as static snapshots. For
example, we could constrain that a Radar module must be created before a
Depot module. Or that a particular communication topology (full connected,
strongly connected) exists among a class of modules before some condition.

Given a poset constraint language such as that available in RAPIDE, the
existence of architecture events allows these specifications of topological
constraints. In an event generating system (where the behavior is also
represented as events), mixed-mode functional/topological constraints can
be expressed.

Suppose we want to require that the creation of Flight modules be seri
alized. We might make this requirement because the creation of a new Flight
module involves the manipulation of some global state (e.g., the number of
Flights currently in the sector). We can express this constraint as requiring
the events signifying the creation of Flight modules be totally ordered:

observe select CreateModule(type is FlightType)

match [* rel ->] CreateModule;

4.1.4 Maps

Maps are operators that transform a poset into a new poset. The new
poset is generally at a higher level of abstraction. That allows the behavior
of a system to be understood in more abstract terms than those in which it
was implemented.

As a simple example, suppose we wish to abstract ControlTower module
and RunwayControl module pairs into a single AirportControl module. To
do this we would create a map that does this abstraction and adjusts the
communication structure accordingly. If the input poset also contained the
functional behavior of the system then behavior of a ControlTower or
RunwayControl module would also need to be mapped into behavior by an
AirportControl module. A subset of such a map is given below:

map AirportAbstract is trans : array [Event] of Event;

(?c,?r , ?p, ?a : Event; ?sl,?s2 : String)

?c@CreateModule(ControlTowerType, ?p, ?sl) and

?r@CreateModule(RunwayControlType, ?p, ?s2)

=> ?a@CreateModule(AirportControlType, ?p, ?sl+?s2);

trans[?c) := ?a ; trans[?r] := ?a; end map;

The above rule looks for pairs of CreateModule events, one denoting the
creation of a ControlTower module, the other a RunwayControl module. If

www.manaraa.com

314 James Vera, Louis Perrochon, and David C. Luckham

they both have the same parent then a CreateModule event is created in the
new poset which denotes the creation of an AirportControl module. The
association of the lower level events to the higher level event is stored in an
associative array for subsequent use by other rules.

4.1.5 Conformance to Reference Architectures

By combining maps and constraints, the conformance of systems to
reference architectures may be checked (Luckham, Augustin et al. 1995).
Architecture events allow topological conformance to be expressed. This
can be useful for checking requirements such as duplicate communication
channels.

4.1.6 Reverse Engineering

Reverse engineering of architectures is necessary when the original
architecture has been lost (or never existed). Research has focused on
extracting component architectures from source code (Harris, Reubenstein
et al. 1995). By extracting architecture events from a running system via
instrumentation (such as monitoring rniddleware) we can extract the
execution architecture even when the original source code is unavailable.
Perhaps more comparative work is the extraction of call trees by debugging
software. These tools can be thought of as providing a maximal depiction of
the use of the execution architecture. An execution architecture poset, in
contrast, captures its evolution.

4.2 Applications to Other Domains

The mapping of concepts from event-based systems into our architectural
constructs is flexible and in each case, different strategies are supported
with emphasis on different attributes.

Whatever choice is made, the ability to map one poset into another
allows such decisions to be changed ex post facto. In the above example, the
choice of the assignment to modules and pathways could be inverted by a
mapping.

In this subsection we present some example translations of distributed
systems to our execution architecture constructs.

4.2.1 A System Implemented in Java

The Java notion of objects is easily mapped to our module concept. More
interesting is the choice of constructs which map to pathways. The ability of

www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 315

one object to name another object (generally known as dynamic scoping) is
one form of pathway. If an object A can name an object B then we can say
that a pathway exists from A to B.

The Java socket construct is amenable to translation into a pathway. A
Java socket is a bidirectional mechanism over which data may be sent from
one object to another. It has two ends. Any object which can name an end
may send or receive data along the socket. Therefore, a Java socket could be
translated into two of our pathway constructs (pathways are one directional
while sockets are bidirectional) where the sources of one of the pathways
are the destinations of the other (and vice versa).

4.2.2 A System Hosted on Commercial Middleware

The Information Bus (TIB) (TIBCO 1998) is a communication
middleware which supports the subject-based publish-subscribe metaphor.
Objects send out (publish) messages labeled with a particular textual field
(subject). Other objects can request to receive (subscribe to) messages with
a particular subject. Higher level protocols are built on top of the
publish/subscribe mechanism such as point to point communication,
synchronous communication, and automatic selection of one from several
destinations.

In our application of execution architectures to the TIB (Luckham and
Frasca 1998), we map each TIB client into a module and map the basic
publish/subscribe mechanism into pathways. In a component architecture
description, for every subject a connection is needed from the modules
which may publish that subject to the modules that may subscribe to the
subject. Not surprisingly, pictures of such architectures show the TIB only
as a bus. In an execution architecture, pathways are only maintained
between modules that actually publish and modules that actually listen to a
certain subject, e.g., only after a module subscribes to a subject it is added
as a destination of the pathway which corresponds to that subject. This
results in a point-to-point depiction of the communication network.

Other TIB protocols can be captured via their implementation on top of
the publish/subscribe protocol. However, the semantics of the higher level
protocols are more accurately captured by dealing with them individually.

5. SUMMARY AND CONCLUSIONS

We developed a technology to define, track and control execution
architectures of dynamically changing software systems. Architectural

www.manaraa.com

316 James Vera, Louis Perrochon, and David C. Luckham

changes are represented by causally and temporarily (partially) ordered
events. Our framework has the following features:
- Architecture events provide a formal language to describe execution

architectures.
Filters and maps, together with the visualization tools such as those
available in RAP IDE allow real time monitoring of execution
architectures.
The RAPIDE engine raises exception when the formal specification (i.e.,
constraints) of an execution architecture is violated. Maps allow
corrective actions in non fatal error conditions.

- Static snapshots at consistent cuts provide backward compatibility with
previous approaches.

- Posets of architecture events capture the execution architecture of an
asynchronous, distributed system in cases where static architectures are
not expressive enough.

- Posets can easily be stored and analyzed at a later time.
Our technology is applicable to systems that are distributed,

asynchronous and have a high change rate. We believe understanding
execution architectures is important because it fills the gap between the
abstractness of conceptual architectures and what is actually implemented in
systems. In particular, our partially-ordered event-based execution
architectures is superior to simple, time-stamped traces of architectural
changes.

REFERENCES

Fidge, C. J. (1988). Partial Orders for Parallel Debugging. Workshop on Parallel and
Distributed Debugging, Madiscon, Wisconsin, ACM SIGPLAN/SIGOPS.

Garlan, D., R. Monroe, et al. (1995). ACME- Software Architecture Interchange Language.
Garlan, D. and M. Shaw (1993). An Introduction to Software Architecture, World Scientific

Publishing Company.
Harris, D. R., H. B. Reubenstein, et al. (1995). Reverse Engineering to the Architectural

Level. 17th International Conference on Software Engineering, ACM.
Lamport, L. (1978). ''Time, Clocks, and the Ordering of Events in a Distributed System."

CACM 21(7): 558-565.
Luckham and Vera (1996). "An Event-Based Architecture Definition Language." IEEE

Transactions on Software Engineering 21 (9): 717-734.
Luckham, D. C., L. M. Augustin, et a!. (1995). "Specification and Analysis of System

Architectures using RAPIDE." IEEE Transactions on Software Engineering 21(4).
Luckham, D. C. and B. Frasca (1998). Complex Event Processing in Distributed Systems.

Stanford, Stanford University.
Magee, J., N. Dulay, eta!. (1995). Specifying Distributed Software Architectures. 5th

European Software Engineering Conference (ESEC 95), Sitges, Spain.

www.manaraa.com

Event-Based Execution Architectures for Dynamic Software Systems 317

Mattern, F. (1988). Virtual Time and Global States of Distributed Systems. Parallel and
Distributed Algorithms, Elsevier Science Publishers.

MeJdal, S., S. Sanlcar, eta!. (1991). Exploiting Locality in Maintaining Potential Causality.
I Oth ACM Symposium on the Principles of Distributed Computing, New York, New
York, ACM Press.

Moriconi, M. and X. Qian (1994). Correctness and Composition of Software Architectures.
SIGSOFT'94 Software Engineering Notes, New Orleans, LA, ACM Symposium on
Foundations of Software Engineering.

Peled, D. A., V. R. Pratt, eta!. (1996). Partial Order Methods in Verification, American
Mathematical Society.

Perry, D. E. and A. L. Wolf (1992). Foundations for the Study of Software Architecture,
SIGSOFT '92, Software Engineering Notes, ACM Symposium on Foundations of
Software Engineering.

Pratt, V. R. (1986). "Modeling concurrency with partial orders." Int. J. of Parallel
Programming 15(1): 33-71.

Santoro, A., W. Mann, eta!. (1998). clava- Extending Java with Causality. lOth International
Conference on Software Engineering and Knowledge Engineering (SEKE'98), Redwood
City, CA, USA.

Schwarz, R. and F. Mattern (1994). "Detecting Causal Relationships in Distributed
Computations: In Search of the Holy Grail." Distributed Computing 7(3): 149-174.

Soni, D., R. L. Nord, et al. (1995). Software Architecture in Industrial Applications. 17th
International Conference on Software Engineering, ACM.

Thompson, C., Ed. (1998). Workshop on Compositional Software Architectures. Monterey,
California, OMG, DARPA, MCC, OBJS.

TIBCO (1998). TIBCO Web Site, TIBCO.
Vera, J. S. (1998). Software Architecture Description Languages: Descriptive Constructs and

Execution Algorithms. Electrical Engineering. Stanford, Stanford University.

www.manaraa.com

DOMAIN-SPECIFIC ARCHITECTURES AND
PRODUCT FAMILIES

www.manaraa.com

Evolution and Composition of Reusable Assets in
Product-Line Architectures: A Case Study

Jan Bosch
University of Karlskrona/Ronneby
Department of Computer Science and Business Administration
S-372 25 Ronneby, Sweden
e-mail: Jan.Bosch@ide.hk-r.se
www:http://www.ide.hk-r.sel-bosch

Key words: Reusable assets, product-line architectures, software composition, software
evolution, case study

Abstract: In this paper, a case study investigating the experiences from evolution and
modification of reusable assets in product-line architectures is presented
involving two Swedish companies, Axis Communications AB and Securitas
Larm AB. Key persons in these organisations have been interviewed and
information has been collected from documents and other sources. The study
identified problems related to multiple versions of reusable assets,
dependencies between assets and the use of assets in new contexts. The
problem causes have been identified and analysed, including the early
intertwining of functionality, the organizational model , the time to market
pressure, the lack of economic models and the lack of encapsulation
boundaries and required interfaces.

1. INTRODUCTION

Product-line architectures have received attention in research, but even
more so in industry. Many companies have moved away from developing
software from scratch for each product and instead focused on the
commonalities between the different products, and capturing those in a
product-line architecture and an associated set of reusable assets. This is,
especially in the Swedish industry, a logical development since software is

www.manaraa.com

322 Jan Bosch

an increasingly large part of products and often defines the competitive
advantage. When moving from a marginal to a major part of products, the
required effort for software development also becomes a major issue and
industry searches for ways to increase reuse of existing software to minimize
product-specific development and to increase the quality of software.

A number of authors have reported on industrial experiences with
product-line architectures. In [SEI 97], results from a workshop on product
line architectures are presented. Also, [Macala et al. 96] and [Dikel et al. 97]
describe experiences from using product-line architectures in an industrial
context. The aforementioned work reports primarily from large, American
software companies, often defense-related, which are not necessarily
representative of the software industry as a whole, especially European
small- and medium-sized enterprises.

We have performed a case study of product-line architectures involving
two Swedish software development organisations: Axis Communications
AB and Securitas Larm AB. The former develops and sells network-based
products, such as printer, scanner, camera, and storage servers, whereas the
latter company produces security- and safety-related products such as fire
alarm, intruder-alarm, and passage control systems. Since the beginning of
the '90s, both organisations have moved towards product-line architecture
based software development, especially through the use of object-oriented
frameworks as reusable assets . In an earlier paper [Bosch 98c], we reported
on the technological, process, organizational and business problems and
issues related to product-line architectures. In this paper, we focus on the
use, evolution, composition and reuse of assets that are part of a product-line
architecture. Since the involved organisations have considerable experience
using this approach, we report on their way of organising software
development, the obtained experiences and the identified problems.

The contribution of this paper is, we believe, its provision of exemplars
of industrial organisations in software industry that can be used for
comparison or as inspiration. In addition, the experiences and problems
surrounding reusable assets provide, at least partly, a research agenda for the
software architecture and software reuse communities.

The remainder of the paper is organised as follows. In the next section,
the research method used for the case study is briefly described. The two
companies forming the focus of the case study are described in section 3.
Section 4 discusses the differences in perception of product-line
architectures and reusable assets in academia and industry. The problems
identified during data collection are discussed in section 5 and their causes
are analysed in section 6. Section 7 discusses related work and the paper
concludes in section 8.

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 323

2. CASE STUDY METHOD

The goal of the study was twofold: first, our intention was to get an
understanding of the problems and issues surrounding reusable assets part
that are part of a product-line architecture in "normal" software development
organisations, i.e ., organisations of small to average size, i.e., tens or a few
hundred employees, and unrelated to the defense industry. Second, our goal
was to identify those research issues that are most relevant to software
industry with respect to reusable assets in product-line software
architectures.

The most appropriate method to achieve these goals, we concluded, was
interviews with the system architects and technical managers at software
development organisations. Since this study marks the start of a three year
government-sponsored research project on software architectures involving
our university and three industrial organisations, i.e ., Axis Communications,
Securitas Larrn, and Ericsson Mobile Communications, the interviewed
parties were taken from this project. The third organisation, a business unit
within Ericsson Mobile Communications, is a recent start-up and has not yet
produced product-line architectures or products. A second reason for
selecting these companies was that we believe them to be representative of a
larger category of software development organisations. These organisations
develop software that is to be embedded in products also involving hardware
and mechanics, are of average size (e.g., development departments of 10 to
60 engineers), and develop products sold to industry or consumers.

The interviews were open and rather unstructured, although a
questionnaire was used to guide the process. The interviews were video
taped for further analysis afterwards and in some cases documentation from
the company was used to complement the interviews. The interviews often
started with a group discussion and were later complemented with interviews
with individuals for deeper discussions on particular topics.

3. CASE STUDY ORGANISATIONS

3.1 Case 1: Axis Communications AB

Axis Communications started its business in 1984 with the development
of a printer server product that allowed IBM mainframes to print on non
IBM printers. Up to then, IBM maintained a monopoly on printers for their
computers, with consequent price settings. The first product was a major
success that established the base of the company. In 1987, the company
developed the first version of its proprietary RISC CPU that provided better

www.manaraa.com

324 Jan Bosch

performance and cost-efficiency than standard processors for their data
communication oriented products. Today, the company develops and
introduces new products on a regular basis. At the beginning of the '90s,
object-oriented frameworks were introduced into the company and since
then a base of reusable assets is maintained from which most products are
developed.

Axis develops IBM-specific and general printer servers, CD-ROM and
storage servers, network cameras, and scanner servers. The latter three
products, in particular, are built using a common product-line architecture
and reusable assets. In figure 1, an overview of the product-line and product
architectures is shown. The organisation is more complicated than the
standard case with one product-line architecture (PLA) and several products
below this product-line. In the Axis case, there is a hierarchical organisation
of PLAs, with the product-line architecture at the top and the product-group
architectures (e.g., the storage-server architecture) at the next lower level.
The focus of the case study is on the marked area in the figure, although the
other parts are discussed briefly as well. The primary reusable assets for
Axis include object-oriented frameworks for file systems and network
protocols, but several smaller frameworks are used as well.

Figure 1. Product-line and product software architectures in Axis Communications

3.2 Case 2: Securitas Larm AB

Securitas Larm AB (formerly TeleLarm AB) develops, sells, installs and
maintains safety and security systems such as fire-alarm systems, intruder
alarm systems, passage-control systems, and video surveillance systems. The
company's focus is especially on larger buildings and complexes, requiring
integration between the aforementioned systems. Therefore, Securitas has a
fifth product unit developing integrated solutions for customers including all

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 325

or a subset of these systems. In figure 2, an overview of the products is
presented.

system integration

fire-alarm systems intruder-alarm systems access control systems camera control systems

Figure 2. Securitas Larm Product Overview

Securitas uses a product-line architecture only for their fire-alarm
products, in practice only the EBL 512 product, and traditional approaches in
the other products. However, due to the success in the fire-alarm domain, the
intention is to expand the PLA in the near future to include the intruder
alarm and passage-control products as well.

4. PRODUCT-LINE ARCHITECTURES AND
REUSABLE ASSETS

An important issue we identified during this case study and our other
cooperative projects with industry is that there exists a considerable
difference between the academic perception of software architecture and
reusable assets and the industrial practice. It is important to explicitly discuss
these differences because the problems described in the next section are
based on the industrial rather than the academic perspective. It is interesting
to note that sometimes the problems that are identified as the most important
and difficult by industry are not identified (or viewed as non-problems) by
academia.

Table 1 lists the academic and industrial interpretations of the notion of
product-line architecture. The main differences are related to the definition
of architectures, the use of first-class connectors, and the use of specialised
languages.

www.manaraa.com

326 Jan Bosch

Table 1 Academic versus industrial view of software architecture

Research Industry
Architecture is explicitly defined. Mostly conceptual understanding of

architecture. Minimal explicit definition, often
through notations.

Architecture consists of components No explicit first-class connectors (sometimes
and first -class connectors. ad-hoc solutions for run-time binding and glue

code for adaptation between assets).

Architectural description languages Programming languages (e.g. , C++) and script
(ADLs) explicitly describe languages (e.g., Make) used to describe the
architectures and are used to configuration of the complete system.
automatically generate applications.

For reusable assets, one can identify a similar difference between the
academic and industrial understanding of the concepts. In table 2, an
overview is presented comparing the two views. The main differences are
related to, among others, the assumed black-box nature, the component
interface, and variability.

Table 2. Academic versus industrial view of reusable assets

Research Industry

Reusable assets are black-box Assets are large pieces of software (sometimes more
components. than 80 KLOC) with a complex internal structure and

no enforced encapsulation boundary, e.g., object-
oriented frameworks.

Assets have narrow interface The asset interface is provided through entities, e.g.,
through a single point of access. classes in the asset. These interface entities have no

explicit differences to non-interface entities.
Assets have few and explicitly Variation is implemented through configuration and
defined variation points that are specialisation or replacement of entities in the asset.
configured during instantiation. Sometimes multiple implementations (versions) of

assets exist to cover variation requirements

Assets implement standardized Assets are primarily developed internally. Externally
interfaces and can be traded on developed assets go through considerable (source
component markets. code) adaptation to match the product-line

architecture requirements.
Focus is on asset functionality Functionality and quality attributes, e.g. ,
and on the formal verification of performance, reliability, code size, reusability and
functionality. maintainability, have equal importance.

5. PROBLEMS

Based on the interviews and other documentation collected at the
organisations part of this case study, we have identified a number of
problems related to reusable assets that we believe to have relevance in a

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 327

wider context than just these organisations. In the remainder of this section,
the problems that were identified during the data collection phase of the case
study are presented. For each problem, a problem description is presented,
illustrated by an example from one of the case-study companies. The
problems are categorized into three categories, related to multiple versions of
assets, dependencies between assets, and the use of assets in new contexts.

5.1 Multiple versions of assets

Product-line architectures have associated reusable assets that implement
the functionality of architectural components. These assets can be very large
and contain up to a hundred KLOC or more. Consequently, they represent
considerable investments (multiple man-years in certain cases). Therefore, it
was surprising to identify that in some cases, the interviewed companies
maintained multiple versions (implementations) of assets in parallel. One
can identify at least four situations where multiple versions are introduced.

5.1.1 Conflicting quality requirements

The reusable assets are generally optimized for particular quality
attributes such as performance or code size. Different products in the product
line, even though they require the same functionality, may have conflicting
quality requirements . These requirements may have so high a priority that no
single component can fulfil them all. The reusability of the affected asset is
then restricted to just one or a few of the products while other products
require another implementation of the same functionality.

For example, in Axis, the printer server product was left out of the
product-line architecture (although it can be considered to be a PLA on its
own, with more than 20 major variations) because minimizing the binary
code size is the driving quality attribute for the printer server whereas
performance and time to market are the driving quality attributes for the
other network-server products.

Our impression is that when products in the product-line are at different
points in their lifecycle, there is a tendency to have multiple versions of
assets. This is because the driving quality attributes of a product tend to
change during its lifecycle from feature- and time-to-market driven to cost
and efficiency-driven (see also [SEI 97]).

5.1.2 Variability implemented through versions

Certain types of variability are difficult to implement through
configuration or compiler switches since the effect of a variation spreads out

www.manaraa.com

328 Jan Bosch

throughout the reusable asset. An example is different contexts, such as the
operating system, for an asset. Although it might be possible to implement
all variability through, for example, #ifdef statements, often it is decided to
maintain two different versions.

The above printer server example can also be used here. The different
versions of assets actually implement different variability selections.

5.1.3 High-end versus low-end products

The reusable asset should contain all functionality required by the
products in the product-line, including the high-end products. The problem is
that low-end products, generally requiring a restricted subset of the
functionality, pay for the unused functionality in terms of code size and
complex interfaces. Especially for embedded systems where the hardware
costs play an important role in the product price, the software engineers may
be forced to create a low-end, scaled-down version of the asset to minimize
the overhead for low-end products.

Two versions of the file-system framework have been used in Axis in
different products. The scanner and camera products used a scaled down
version of the file system framework, only implementing a memory-based
pseudo file system, whereas the CD-Rom and Jaz drive products used the
full-scale file system, implementing a variety of file-system standards. The
scanner and camera product develpoers had no interest in incorporating the
complete asset since it required more memory than strictly necessary,
leading to increased product cost.

5.1.4 Business unit needs

Especially in the organizational model used by Axis, where the business
units are responsible for asset evolution, assets are sometimes extended with
very product-specific code, or code only tested for one of the products in the
product-line. The problems caused by this create a tendency within the
affected business units to create their own copy of the asset and maintain it
solely for their own product. This minimizes the dependency on the shared
product-line architecture and solves the problems in the short term, but in the
long term it generally does not pay off. We have seen several instances of
cases where business units had to rework considerable parts of their code to
incorporate a new version of the evolved shared asset that contained
functionality that needed to be incorporated in their product also.

The aforementioned file system framework example is also an example
of a situation where business-unit needs resulted in two versions of an asset.
At a later stage, the full-scale file system framework had evolved and the

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 329

scanner and camera products wanted to incorporate the additional
functionality. In order to achieve that, the product-specific code of both
products had to be reworked in order to incorporate the evolved file system
framework.

5.2 Dependencies between assets

Since the reusable assets are all part of a product-line architecture, they
tend to have dependencies between them. Although dependencies between
assets are necessary, assets often have dependencies that could have been
avoided by another modularization of the system or a more careful asset
design. From the examples at the studied companies, we learned that the
initial design of assets generally defines a small set of required and explicitly
defined dependencies. It is often during evolution of assets that unwanted
dependencies are created. Addition of new functionality may require
extension of more than one asset; in the process dependencies are often
created between the assets that implement the functionality. These new
dependencies could often have been avoided by another decomposition of
the architecture. They have a tendency to be implicit, in that their
documentation is often minimal, and the software engineer encounters the
dependency late in the development process. Dependencies in general, but
especially implicit dependencies, reduce the reusability of assets in different
contexts, but also complicate the evolution of assets within the PLA since
each extension of one asset may affect multiple other assets . Based on our
research at Axis and Securitas, we have identified three situations where
new, often implicit, dependencies are introduced:

5.2.1 Component decomposition

With the development of the product-line architecture, generally the sizes
of the reusable assets also increase. Companies often have some optimal size
for an asset component, so that it can be maintained by a small team of
engineers (e.g., it captures a logical piece of domain functionality, etc.).
With the increasing size of asset components, there is a point where a
component needs to be split into two components. These two components,
initially, have numerous relations to each other, but even after some redesign
several dependencies often remain because the initial design did not
modularize the behaviour of by the two components. One could, obviously,
redesign the functionality of the components completely to minimize the
dependencies, but the required effort is generally not feasible in development
organizations.

www.manaraa.com

330 Jan Bosch

To give an example from Axis: at some point, it was decided that the file
system asset should be extended with functionality for authorisation. To
implement this, it proved to be necessary to also extend the protocol asset
with some functionality. This created yet another dependency between the
file system and the protocol assets, making it harder to reuse them
separately. Currently, the access functionality has been broken out of the file
system and protocol assets, and defined as a separate asset, but some
dependencies between the three assets remain.

5.2.2 Extensions cover multiple assets

Extension of the product-line architecture stems from new functional
requirements that need to be incorporated in the existing functionality.
Often, the required extension to the product line covers more than one asset.
During implementation of the extension, it is very natural to add
dependencies between the affected assets since one is working on
functionality that is perceived as one piece, even though it is divided over
multiple assets.

The authorisation access extension to the Axis PLA provides, again, an
excellent example. At first, the access functionality was added to the file
system and protocol assets. However, the protocol framework contained the
protocol user classes that were needed by the access functionality in the file
system framework, leading to strong dependencies between the two
frameworks. At a later stage, the authorisation access was separated from the
two assets and represented as a single asset, thereby decreasing the
dependencies.

5.2.3 Asset extension adds dependency

As mentioned, the initial design of a PLA generally nunmuzes
dependencies between its components. Evolution of an asset component may
cause this component to require information from an earlier unrelated
component. If this dependency had been known during the initial PLA
design, then the functionality would have been modularized differently and
the dependency would have been avoided.

In the protocol framework in the Axis PLA, most of the implemented
protocols use a layered organisation in which process packets that are sent
up and down the protocol layers. These communication packets are nested in
the sense that each lower-level protocol layer declares a new packet and adds
the received packet as an argument. At some point, the implementation of
new functionality required methods of the most encapsulated packet object
to refer to data in one of the packets higher up in the encapsulation

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 331

hierarchy, introducing a very unfortunate dependency between the two
packets.

5.3 Assets in new contexts

Since assets represent considerable investments, the goal is to use assets
in as many products and domains as possible. However, a new context
differs in one or more aspects from the old context, causing a need for the
asset to be changed in order to fit. Two main issues in the use of assets in
new contexts can be identified.

5.3.1 Mixed behaviour

An asset is developed for a particular domain, product category,
operating context, and set of driving quality requirements. Consequently, it
often proves to be hard to apply the asset in different domains, products, or
operating contexts. The design of assets often hard-wires design decisions
concerning these aspects unless the type of variability is known and required
at design time.

The main asset for Securitas is the highly successful fire-alarm system. In
the near future, Securitas intends to develop a similar asset for the domain of
intruder-alarm systems. Since the domains have many aspects in common,
their intention is to reuse the fire-alarm asset and apply it to the intruder
alarm domain, rather than developing the asset from scratch. However,
initial investigations show that the domain change for the asset is not a trivial
endeavour.

5.3.2 Design for required variability

It is recommended best practice that reusable assets be designed to
support only the variability requested in the initial requirement specification,
e.g., [Jacobson et al. 97]. However, a new context for a reusable asset often
also requires new variability dimensions. One cannot expect that assets are
designed to include all foreseeable forms of variability, but they should be
designed so that the introduction of new variability requires minimal effort.

The application of the fire-alarm framework in the intruder-alarm domain
serves as an example here. These systems share, to a large extent, the same
operating context and quality requirements. However, since the fire-alarm
domain functionality is hard-wired in the framework design, and the intruder
alarm domain has different requirements and concepts, one is forced to
introduce variability for application-domain functionality.

www.manaraa.com

332 Jan Bosch

6. CAUSE ANALYSIS

The problems discussed in the previous section represent an overview of the
issues surrounding the use of reusable assets in a product-line architecture.
We have analysed these problems in their industrial context and have
identified what we believe to be the primary underlying causes of these
problems. In the remainder of this section, these causes are discussed.

6.1 Early intertwining of functionality

The functionality of a reusable asset can be categorized into functionality
related to the application domain, the quality attributes, the operating
context, and the product-category. Although these different types of
functionality are treated separately at design time, both in the design model
and the implementation they tend to be mixed. Hence it is generally hard to
change one of the functionality categories without extensive reworking of
the asset. Both the state-of-practice as well as leading authors on reusable
software (e.g., [Jacobson et al. 97]), design for required variability only. That
is, only the variability known at asset-design time is incorporated in the
asset. Since the requirements evolve constantly, requirement changes related
to the domain, product category, or context generally appear after design
time. Consequently, it often proves hard to apply the asset in the new
environment.

The early intertwining of functionality is a primary cause of several of
the problems discussed in the previous section. Multiple versions of assets
are required because the different categories of functionality cannot be
separated in the implementation and implemented through variability. Also,
the use of an asset in a new context is complicated by the mixing of
functionality.

Companies try to avoid mixed functionality primarily through design. For
instance, the use of layers, even in asset design, to separate operating
context-dependent from context-independent functionality, avoids the
mixing. Also, several design patterns [Gamma et al. 94, Buschmann et al.
96] support separation of different types of functionality and support the
introduction of variability.

Research issues. The primary research issue is to find approaches that allow
for late composition of different types of functionality. Examples of this can
be found in the Draco system [Neighbors 89], [Batory & O'Malley 92]
approach to hierarchical software systems, parameterized programming
[Goguen 96], aspect-oriented programming [Kiczales et al. 97] and in the
layered object model [Bosch 98a] and [Bosch 98b]. In addition, design

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 333

solutions, such as design patterns, that successfully separate functionality
should be a continuing topic of research.

6.2 Organization

Both Securitas and Axis have explicitly decided against the use of separate
domain engineering units. The advantages of separate domain engineering
units, such as being able to spend considerable time and effort on thorough
designs of assets, were generally recognised. On the other hand, people felt
that a domain engineering group could easily get lost in wonderfully high
abstractions and highly reusable code that did not quite fulfil the
requirements of the application engineers. In addition, having explicit groups
for domain and application engineering requires a relatively large software
development department consisting of at least fifty to a hundred engineers.

Nevertheless, several of the problems discussed earlier can be related to
the lack of independent domain engineering. Business units focus on their
own quality attributes and design for achieving those during asset extension.
Because of that, multiple versions of assets may be created where a domain
engineering unit might have found solutions allowing for a single version. In
addition, asset extension without sufficient focus on the product-line as a
whole may introduce more dependencies than strictly necessary,
complicating the use of assets as well as their reuse in new contexts.

Solutions exist to minimize the negative effects of organizational
structures. At Axis, so-called asset redesigns are performed when a
consensus is present that an asset needs to be reorganised. During an asset
redesign, the software architects from the business units using the asset
gather to redesign the asset in order to improve its structure. As a
complement, both Axis and Securitas have responsibility for each asset, and
evolution of assets has to be approved by them. However, because of time
to-market pressures, there is sometimes a need to accept less-than-optimal
solutions. Thirdly, to improve on these issues, management must be willing
to occasionally relieve some time-to-market pressure, accepting delay of one
product so that subsequent products can enter the market sooner.

Research issues. The primary research issue concerns the processes
surrounding asset evolution. More case studies and experimentation are
required to gather evidence of working and failing processes, and mandatory
and optional steps. In addition, one can conclude that it is unclear when an
organisation should have separate domain engineering units rather than
performing asset development in the application engineering units. Research
is required for the collection of evidence on optimal organizational structures

www.manaraa.com

334 Jan Bosch

and identification and evaluation of approaches to minimize the negative
effects of organizational choices.

6.3 Time to market

A third important cause for the problems related to reusable assets at the
interviewed companies is the time-to-market (TIM) pressure. Getting out
new products and subsequent versions of existing products is very high up
on the agenda, thereby sacrificing other topics . The problem most companies
are dealing with is that products appearing late on the market will lead to
diminished market share or, in the worst case, to no market penetration at all.
However, this ali-or-nothing mentality leads to an extreme focus on short
term goals, while ignoring long term goals . Sacrificing some time-to-market
for one product may lead to considerable improvements for subsequent
products, but this is generally not appreciated.

The TIM pressure causes several of the problems discussed earlier. This
is primarily because software engineers do not have the time to reorganise
the assets to minimize dependencies or to generalize functionality. Asset
evolution is often implemented as quick fixes , thereby decreasing the
usability of the asset in future contexts.

To address the problems resulting from TIM pressure, it is important for
software development organizations to regard the development of a product
line architecture and associated assets as a strategic issue, with decisions
being made at the appropriate level. The consequences for the time-to
market of products under development should be balanced against the future
returns. Finally, taking a time-out for asset redesign is necessary periodically
to "clean up."

Research issues. Decisions related to TIM for products are made based on a
business case and these, rather relevant, research issues are outside the
software engineering domain. However, two issues can be identified: the
lack of economic models (described in the next section) and design
techniques that minimize the effort required for extending assets without
diminishing their future applicability.

6.4 Economic models

As mentioned earlier in the paper, reusable assets may represent
investments of up to several man-years of implementation effort. For most
companies, such assets represent a considerable amount of capital, but both
engineers and management are not always aware of that. For instance, an
increasing number of dependencies (especially implicit dependencies)

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 335

between assets is a sign of accelerated aging of software and, in effect,
decreases the value of the assets. However, since no economic models are
available that visualise the effects of quick fixes causing increased
dependencies, it is hard to establish the economic losses of these
dependencies. In addition, reorganisation of software assets that have been
degrading for some while is often not performed because no economic
models are available to visualize the return on investment.

The lack of economic models influences several of the identified
problems. In general, one can recognize a lack of forces against time-to
market pressure because no business case for sound engineering (versus
deadline-driven hacking of software) can presented.

Research issues. One can identify a need for economic models in two
situations. Firstly, models are needed for calculating the economic value of
an asset, based on the investment (man hours) but also on the value of the
asset for future product development and/or for an external market.
Secondly, models are needed for visualising the effects of various types of
changes and extensions to the asset value. These models could be used to
visualise the effects of quick fixes and implicit dependencies on the asset
value.

6.5 Encapsulation boundaries and required interfaces

Although many of the issues surrounding product-line architectures are
non-technical in nature, there are technical issues as well. The lack of
encapsulation boundaries that encapsulate reusable assets and enforce
explicitly defined points of access through a narrow interface is a cause of a
number of the identified problems. In section 4 we discussed the difference
between the academic and the industrial view of reusable assets . Some of the
assets at the interviewed companies are large object-oriented frameworks
with a complex internal structure. The traditional approach is to distinguish
between interface classes and internal classes. The problem is that this
approach lacks support from the programming language, requiring software
engineers to adhere to conventions and policies. In practice, especially under
strong time-to-market pressure, software engineers will go beyond the
defined interface of assets, creating dependencies between assets that may
easily break when the internal implementation of assets is changed. In
addition, these dependencies tend to be undocumented or only minimally
documented.

A related problem is the lack of required interfaces. Interface models
generally describe the interface provided by a component, but not the
interfaces it requires from other components for its correct operation. Since

www.manaraa.com

336 Jan Bosch

dependencies between components can be viewed as instances of bindings
between required and provided interfaces, one can conclude that it is hard to
visualize dependencies if the necessary elements are missing.

The lack of encapsulation boundaries and required interfaces primarily
causes problems related to component dependencies . For instance,
component decomposition is complicated since the new part-components
can continue to refer to each other without explicit visibility.

As mentioned, companies address these issues by establishing
conventions and policies, but these tend to be broken in practice.
Documentation of the assets and inspection of design documents, the
implementation and the documentation of assets helps enforce the
conventions and policies.

Research issues. The primary research issue to address this cause is to find
approaches to encapsulation boundaries that are more open than the black
box component models, but provide protection for the private entities that
are part of the assets. Also, more research on the specification and semantics
of required interfaces is needed. One example of an existing model is
described in [Batory & O'Malley 92]. A second example is the layered
object model where an "acquaintance-based" approach is presented that
allows for specifying required interfaces and binding these interfaces to
other components [Bosch 98b] .

7. RELATED WORK

Tools, techniques, and approaches to the development of families of
software products have been proposed by a number of authors. LIL [Goguen
86] is an example of a module interconnection language (MIL) that describes
component (or module) based systems. In [Neighbors 89], the Draco
approach is discussed that, although not using the same terminology,
identifies the basic structures of software development based on reuse of
domain designs and implementations. [Perry 89] discussed the Inscape
environment, focusing on software evolution and problems of scale (i.e.,
complexity, programming-in-the-large, and programming-in-the-many) .
[Goguen 96] discusses parameterized programming to instantiate generic
descriptions with domain-specific components. [Batory & O'Malley 92,
Batory & Geraci 97] discuss a hierarchical component-based model that
facilitates the development of families of systems. [Biggerstaff 94] discusses
a basic problem in component-based software development, i.e., scaling, and
identifies some of the problems discussed in this paper.

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 337

With respect to product-line architectures, a number of authors have
studied their industrial use. [Macala et al. 96] discuss a demonstration
project using product-line development in Boeing in cooperation with the
US Navy as part of the STARS initiative. The authors identify four elements
of product-line development, i.e., process-driven, domain-specific,
technology support, and architecture-centric. The lessons learned during the
projeci: are discussed and a set of recommendations is presented. [Dike! et al.
97] discuss lessons learned from using a product-line architecture in Norte!
and present six principles: focusing on simplification, adapting to future
needs, establishing architectural rhythm, partnering with stakeholders,
maintaining vision, and managing risks and opportunities. The report from
the product-line practice workshop held by the SEI [SEI 97] presents an
overview of the state-of-practice in a number of large software development
organisations. Contextual, technology, organizational and business aspects
are discussed and a number of critical factors are identified, including deep
domain expertise, well-defined architecture, distinct architect, solid business
case, management commitment and support and domain engineering unit.

An interesting difference between the papers mentioned above and the
results of our study is the perceived necessity of separate domain
engineering units. The organisations of our case study explicitly decided
against separate domain engineering units. Also [Simos 97] reacts against
using domain engineering units and suggests a unified lifecycle model.

[Jacobson et a!. 97] presents a complete approach to institutionalizing
software reuse in an organisational context, including technology, process,
and business aspects. The book is based primarily on experiences from the
HP and Ericsson context and contains excellent suggestions also applicable
to the interviewed companies.

The Taligent frameworks [Taligent 95] provide various interfaces to each
framework, including a client API and a custornization API. However, no
approaches to language support for high-level encapsulation boundaries are
presented. [Szyperski 97] presents an overview of component-oriented
programming and discusses the necessity of "required interfaces" in addition
to the "provided interfaces". He recognises the necessity of required
interfaces, but concludes that current commercial component models focus
on provided interfaces only.

8. CONCLUSIONS

The notion of product-line architectures has received attention especially
in industry since it provides a means to exploit the commonalities between
related products and thereby reduce development cost and increase quality.

www.manaraa.com

338 Jan Bosch

In this paper, we have presented a case study involving two Swedish
companies, Axis Communications AB and Securitas Larm AB, that use
product-line architectures in their product development. Key persons in these
organisations have been interviewed and information has been collected
from documents and other sources. The goal of the case study was to
examine the use, evolution, composition and reuse of assets in a product-line
architecture.

In the previous sections, a number of problems and underlying causes are
described that were identified in the case study organisations and generalised
to a wider context. We have identified three categories of problems related to
reusable assets:
1. the existence of multiple versions of assets
2. dependencies between assets
3. the use of assets in new contexts

In the analysis we focus on the causes that we believe underlie the
identified problems. The identified causes include
- the early intertwining of functionality
- the organizational structure

the time-to-market pressure
the lack of economic models

- the lack of explicit encapsulation boundaries and required interfaces.
In conclusion, product-line architectures can be, and are being,

successfully applied in small- and medium-sized enterprises. The studied
organisations are struggling with a number of difficult problems and
challenging issues, but the general consensus is that a product-line
architecture approach is beneficial, if not crucial, for the continued success
of these organisations.

ACKNOWLEDGEMENTS

The author would like to thank the software architects and engineers and
technical managers at Axis Communications AB and Securitas Larm AB, in
particular Torbjom Soderberg and Rutger Palsson. Thanks also to the
anonymous reviewers for their comments.

REFERENCES

[Batory & Geraci 97) D. Batory and B.J. Geraci, 'Validating Component Compositions and
Subjectivity in GenVoca Generators', IEEE Transactions on Software Engineering,
February 1997, 67-82.

www.manaraa.com

Evolution and Composition of Assets in Product-Line Architectures 339

[Batory & O'Malley 92) D. Batory and S. O'Malley, 'The Design and Implementation of
Hierarchical Software Systems with Reusable Components ' , ACM Transactions on
Software Engineering and Methodology, October 1992.

[Biggerstaff 94) T. Biggerstaff, 'The Library Scaling Problem and the Limits of Concrete
Component Reuse', Third International Conference on Software Reuse, Rio de Janeiro,
November 1-4, 1994, 102-110.

[Bosch 98a] J. Bosch, 'Design Patterns as Language Constructs,' Journal of Object-Oriented
Programming, Vol. 11, No.2, pp. 18-32, May 1998.

[Bosch 98b] J. Bosch, 'Object Acquaintance Selection and Binding,' accepted for publication
in Theory and Practice of Object Systems, February 1998.

[Bosch 98c] J. Bosch, 'Product-Line Architectures in Industry: A Case Study,' submiued,
June 1998.

[Buschmann et al. 96] F. Buschmann, C. Jakel , R. Meunier, H. Rohnert, M.Stahl, Pattern
Oriented Software Architecture -A System of Patterns, John Wiley & Sons, 1996.

[Dike! et al. 97] D. Dike!, D. Kane, S. Ornburn, W. Loftus, J. Wilson, 'Applying Software
Product-Line Architecture,' IEEE Computer, pp. 49-55, August 1997.

[Gamma et al. 94] E. Gamma, R. Helm, R. Johnson, J.O. Vlissides, Design Pal/ems
Elements of Reusable Object-Oriented Software , Addison-Wesley, 1994.

[Goguen 86] J. Goguen, 'Reusing and Interconnecting Software Components', IEEE
Computer, February 1986.

[Goguen 96] J. Goguen, 'Parameterized Programming and Software Architecture', 4th
International Conference on Software Reuse, Orlando, Florida, April 1996.

[Jacobson et al. 97]1. Jacobson, M. Griss, P. Jonsson, Software Reuse -Architecture, Process
and Organization for Business Success, Addison-Wesley, 1997.

[Johnson & Foote 88] R. Johnson, B. Foote, 'Designing Reusable Classes,' Journal of Object
Oriented Programming, Vol. 1 (2), pp. 22-25, 1988.

[Kiczales et al. 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M.
Loingtier, J. Irwin, 'Aspect-Oriented Programming,' Proceedings of ECOOP'97 (invited
paper), pp. 220-242, LNCS 1241, 1997.

[Kruchten 95] P.B. Kruchten, 'The 4+ 1 View Model of Architecture,' IEEE Software, pp. 42-
50, November 1995.

[Macala et al. 96] R.R. Macala, L.D. Stuckey, D.C. Gross, 'Managing Domain-Specific
Product-Line Development,' IEEE Software, pp. 57-67, 1996.

[Neighbors 89] J. Neighbors, 'Draco: A Method for Engineering Reusable Software
Components' , in T.J. Biggerstaff and A. Perlis, eds., Software Reusability, Addison
Wesley/ACM Press, 1989.

[Perry 89] D. Perry, 'The Inscape Environment' , Proceedings ICSE 1989, 2-12.
[SEI 97] L. Bass, P. Clements, S. Cohen, L. Northrop, J. Withey, 'Product Line Practice

Workshop Report,' Technical Report CMU/SEI-97-TR-003, Software Engineering
Institute, June 1997.

[Simos 97] M.A. Simos, 'Lateral Domains: Beyond Product-Line Thinking,' Proceedings
Workshop on Institutionalizing Software Reuse (WISR-8), 1997.

[Szyperski 97] C. Szypersk.i, Component Software- Beyond Object-Oriented Programming,
Addison-Wesley, 1997.

[Tali gent 95] Taligent, The Power of Frameworks, Addison-Wesley, 1995.

www.manaraa.com

Flexibility of the ComB AD* Architecture

N.H. Lassing, D.B.B. Rijsenbrij and J.C. van Vliet
Vrije Universiteit, Faculty of Sciences
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
tel: +31 (0)20 44 47769,/ax: +31 (0)20 44 47653
e-mail: {nlassing, daan, hans}@cs.vu.nl

Key words: Software architecture, software frameworks, software quality, quality
assessment, flexibility, adaptability, portability, reusability

Abstract: Software architecture is nowadays regarded as the first step to achieving
software quality. The architect's main task is to translate quality requirements
into a software architecture. An important step is to assess whether the
architecture actually satisfies these quality requirements. The purpose of this
paper is to explore which architectural choices support flexibility and how
flexibility can be assessed. To that end, we explored the ComB AD
architecture, whose main objective is flexibility. We investigated the
architectural choices made and assessed whether flexibility was achieved. This
will not only increase our insight into flexibility in general, but particularly
into the assessment of this quality attribute. We use the term flexibility in the
broadest sense of the word: to denote adaptability, portability and reusability.
Adaptability can be regarded as flexibility in the narrow sense, portability as
the flexibility to use a system in various technical environments, and
reusability as the flexibility to reuse part of a system in another system.

1. INTRODUCTION

Recently, there has been an increasing interest in software architecture. It
is nowadays generally accepted that the software architecture has a major
impact on the quality of an information system. An important step to
achieving the desired level of quality is to evaluate the architecture. The

The ComBAD architecture is a software architecture developed within Cap Gemini
Netherlands. ComB AD stands for Component }1ased Application .Qevelopment.

www.manaraa.com

342 N. H. Las sing, D. B. B. Rijsenbrij, and J. C. van Vliet

software architecture analysis method (SAAM) (Bass et al, 1998) was
developed with this in mind. SAAM is a scenario-based assessment method
that is mainly used to compare the usability of two or more candidate
architectures. We claim that SAAM could just as well be used to assess the
quality of a single architecture, to evaluate its usability in a certain situation.

The purpose of this paper is to explore how the three elements of
flexibility could be addressed in an architecture and how SAAM could be
used to assess to what extent the desired level of quality for these attributes
was achieved. To do so, we investigated the ComBAD architecture (whose
main objective is flexibility in the broadest sense of the word) we described
the architectural choices made, and we assessed its adaptability, portability
and reusability using SAAM.

The remainder of this paper is organized into four sections. In section 2
we discuss the ComBAD architecture, in section 3 we assess its quality and
in section 4 we make some concluding remarks.

2. THE COMBAD ARCHITECTURE

The ComBAD architecture was developed within Cap Gemini
Netherlands, a large software house. The architecture originates from a
project called "Reuse", whose main purpose was to explore the possibility of
reusing domain-knowledge. This project delivered an approach for
Component Based Application Development, named ComBAD, and a
supporting architecture, the ComBAD architecture, whose main quality
requirements were adaptability, portability and reusability. This paper will
focus on the ComBAD architecture. The corresponding development
approach will not be discussed.

The ComBAD architecture was not developed for a specific customer; it
was intended for a broad category of administrative systems. Though it may
be used for other domains as well, it is probably more suitable in some
situations than others. We return to this point in the evaluation in section 3.

In the next sections, we give an overview of the ComBAD architecture
and the architectural choices made to achieve the quality requirements. This
overview consists of two parts, a description of the framework, given in
section 2.1, and a description of the application architecture, given in section
2.2. These descriptions provide a high-level view of the architecture.

2.1 The ComBAD framework

The quality attributes addressed by the ComBAD framework are
portability and reusability. Portability is the quality attribute that indicates

www.manaraa.com

Flexibility of the ComBAD Architecture 343

the ease with which an application can be moved from one technical
environment to another (Delen et al., 1992). In the ComBAD architecture,
portability is addressed by using a layered architecture, in which an
application is separated from its technical environment, the latter consisting
of things like the database-management system used for storage and the
protocol used for communications. This separation is achieved by
introducing an intermediate layer between the application and its technical
environment, which abstracts from the details of this environment. This
intermediate layer is the ComBAD framework. The ComBAD framework
also offers the type of support required by applications that conform to the
ComBAD application architecture.

An instance of this framework is created for a specific development
environment and it consists of a number of concrete and abstract classes, and
a definition of the way the instances of these classes interact. An application
can use a framework in two ways:
1. by inheritance of (abstract) framework classes
2. by calling methods defined in the framework' s interface (Lassing et al,

1998)
The abstract classes of the ComBAD framework are treated in the next

section when we describe the application architecture. In this section, we
focus on the interface of the ComB AD framework.

The ComBAD framework provides a common interface to the technical
environment by encapsulating access to the environment in a number of
services. These services include object brokerage, object persistency,
transaction management, notify management, logging and security, each of
which is implemented by one component in the framework. The underlying
assumption for this is that potential changes in the technical environment
each impact just one service and, therefore, also one component. Object
persistency, for instance, is implemented by the object-persistency manager,
which encapsulates access to the database-management system (DBMS).
The impact of changing the DBMS is now limited to this object-persistency
manager. Figure 1 shows all of the services of the ComBAD framework. In
section 3.3, where we evaluate portability, we assess whether these services
encapsulate the environment entirely.

The second quality attribute that the ComBAD framework addresses is
reusability. Reusability is much harder to achieve than portability because it
is more than a technical problem. Consider the following statement from van
Vliet (van Vliet, 1993). He states that "a reusable component is to be valued,
not for the trivial reason that it offers relief from implementing the
functionality yourself, but for offering a piece of the right domain
knowledge, the very functionality you need, gained through much
experience and an obsessive desire to find the right abstractions."

www.manaraa.com

344 N. H. Las sing, D. B. B. Rijsenbrij, and J. C. van Vliet

Apparently, reuse is only possible within a specific domain and we need a
thorough understanding of this domain to determine its reusable elements.
We define a domain as a well-defined area of application that is
characterized by a set of common notions.

,---

EJ
ioPMI Application

EJ
EJGEJEJEJG n

::r
:::J
i'i"
Ill Co mBA D frame work -

environment

OB: 0 Broker
OPM : Manager
TM : Transaction Manager
NM: Notif,r Mareger
L.; Logging

SM: Serumv Manager
PM: Process Manager
CM: Code Manager
LOM: log-on Manager

Figure 1. The layered architecture with the ComBAD framework and its services

The ComBAD framework tries to address reusability in two ways. First,
the framework itself can be reused. The domain in which this framework
could be reused is the technical foundation of applications using the
ComBAD architecture. Thus, the reusability of the ComBAD framework
depends on the usability of the ComBAD architecture, which is the topic of
the evaluation in section 3.

The second way in which the ComBAD framework addresses reusability
is that it can serve as an environment for reuse of software components. This
addresses one of the technical problems of reuse, namely architectural
mismatch. Architectural mismatch occurs when the assumptions that a
component and its environment make about each other are conflicting
(Garlan et al., 1995). Frameworks reduce the risk of architectural mismatch,
because they provide a known environment for components to operate in.

The ComBAD application architecture determines the types of
components that can be used in the framework. They are included in the
framework as abstract classes that implement the behavior that is common
for these components. The actual components of the application are derived
from these abstract classes.

www.manaraa.com

Flexibility of the ComBAD Architecture 345

Although frameworks address architectural mismatch, they are not a
panacea for reuse. They do not relieve the developer from the painstaking
process of finding the right components in a domain. However, they do
provide support after the right components have been found.

2.2 The ComBAD application architecture

The quality attributes that are addressed by the ComBAD application
architecture are adaptability and reusability. According to Basset al. (1998),
adaptability is largely a function of locality of change. This means that to
increase adaptability, one should try to limit the impact of changes to a small
number of components. On the other hand, we should try to limit the number
of potential changes by which each component may be impacted.

In the ComBAD application architecture, adaptability is addressed by
dividing an application into three layers:
1. the interface layer
2. the processing layer
3. the data layer

The interface layer handles the communication with the environment,
consisting of users and other systems. The processing layer contains the
application logic. Finally, in the data layer all data of the application is
managed.

By separating an application into these layers, changes to the interface of
the system can be limited to the interface layer, changes to the application
logic limited to the processing layer and changes to the data limited to the
data layer. However, this means that the number of potential changes that
may impact each component is rather large. Therefore, it was decided to
further divide the layers into components, as shown in Figure 2. The
interface layer is divided into human interface components (or HICs), which
handle a dialog with the user, and system interface components (or SICs)
that communicate with other systems. The processing layer is divided into
task-management components (or TMCs) that each implement (only) one
function. And the data layer is divided into problem-domain components (or
PDCs), which record data about a concept from the problem domain.
Collectively, these components are called application components.

This division can help us to limit the impact of changes to a few
relatively small components. True locality of change is achieved for changes
that affect the internals of one or more application components, but leave
their interfaces intact. However, some changes not only affect the internals
of one or more application components, but also the interfaces of some of
them. This means that all dependent application components need to be
changed as well. By restricting the dependencies between components, the

www.manaraa.com

346 N. H. Lassing, D. B. B. Rijsenbrij, and J. C. van Vliet

impact of changes can be restrained. In the application architecture only top
down dependencies are allowed, i.e., an HIC or an SIC should only be
dependent on one or more TMCs, a TMC on one or more PDCs and PDCs
should be independent of other application components. Notify management
is used to inform higher layers of events occurring in the lower layers.

Interface
L....J L....Jl--JW layer

---------------------------· C ,--, r---1..---. Processing

L....J L....Jl--JW layer

Data layer

L....J L....Jl--Jw

framework

environment

Figure 2. The ComB AD application architecture

Independence also affects reusability, because reusability demands that
components are as independent as possible. Independence and, hopefully,
reusability of PDCs is increased by prohibiting direct relations between
them. This restriction reduces PDCs to stable building blocks that can be
reused in other applications. We address the reusability of these components
in section 3.4.

The ComBAD framework and the ComBAD application architecture
very much depend on each other. First, the components of the application
architecture use the services of the framework. For instance, the PDCs are
accessed through the object broker and the PDCs use the object-persistency
manager for storing themselves in a database. Second, the application
components are derived from abstract classes provided by the framework.
These abstract classes provide behavior common for each of these types of
application components. Thus, the framework and the application
architecture cannot be separated; they are highly intertwined.

3. ASSESSING THE QUALITY

To assess the quality of the ComBAD architecture we use the software
architecture analysis method, SAAM (Basset al., 1998). This is a scenario-

www.manaraa.com

Flexibility of the ComBAD Architecture 347

based method that consists of formulating a number of scenarios and
evaluating the impact of each on the architecture. A scenario is a situation
that can occur in the life of an architecture. Although SAAM was developed
to compare two or more candidate architectures, we use it to assess the
quality of a single architecture. The first step in the evaluation is to derive a
number of scenarios from the quality requirements of the architecture. For
example, from the quality requirement portability we can derive the
following scenario: What happens when another DBMS is to be used? By
formulating a number of these scenarios, we can make portability tangible,
because they capture what we actually want to achieve with portability.

The next step is to evaluate the impact of these scenarios on the
architecture. We classify the impact of a scenario into four discrete levels. At
the first level, no changes are necessary, which means that the scenario is
already supported by the architecture. At the second level , just one
component of the architecture needs to be changed, but its interface is
unaffected. At this level, we have true locality of change. At the third level
more than one component is affected, but no new components are added or
existing ones are deleted. This means that the structure of the architecture
remains intact. At the fourth level architectural changes are inevitable,
because new components are necessary or existing ones become obsolete. It
is clear that one should seek to keep the level of impact as low as possible.

When we return to our example scenario, we see that this scenario
necessitates a change in the object-persistency manager. Thus, this scenario
has a level two impact. This means that we have locality of change for this
scenario and that the architecture is portable with respect to the DBMS used.

We have created four categories of scenarios. The first two categories,
which focus on adaptability, contain scenarios that are related to the
requirements of the system. We have made a distinction between scenarios
that address technical adaptability and those that address functional
adaptability. The former consists of scenarios that explore the applicability
of the architecture in situations with different technical requirements. The
latter consists of scenarios that explore the effect of changes in the functional
requirements. The third category of scenarios concentrates on portability,
which is evaluated by scenarios that simulate changes in the technical
environment. The final category focuses on reusability. This category
includes scenarios that explore the use of elements of the architecture in
other systems and architectures.

3.1 Technical adaptability

Technical adaptability is the flexibility of an application to incorporate
changes to the technical requirements. The scenarios simulate the use of the

www.manaraa.com

348 N. H. Lassing, D. B. B. Rijsenbrij, and J. C. van Vliet

ComBAD architecture in situations with diverse technical requirements.
Note that the ComBAD architecture was not specifically developed for some
of these situations. The architecture is usable in a situation when the scenario
has an impact of level three or lower. The results of these scenarios are
summarized in Table 1.

Scenario 1: Which changes are needed when the architecture is to be
used for secure applications?

We assume that for secure applications a number of things are necessary.
First, each user action should be authenticated and it should be possible to
grant different levels of access to users (for example, no access, read-only,
full control, etc.). This is already supported by the ComBAD architecture, so
it is unaffected. Second, the communication between clients and servers
should be encrypted. Encrypted communication is not yet present in the
architecture, but it could be added by changing one of the base classes for
the application components. Finally, access to servers should be prohibited
for unsecured hosts. This means that the log-on manager should be changed
so that it inspects the network address of clients. Our conclusion is that using
the architecture for secure applications necessitates changes to a number of
the existing components and, therefore, this scenario has a level three
impact.

Scenario 2: Which changes are needed when the architecture is to be
used for real-time systems?

The distinguishing features of real-time systems are deadlines and
synchronization between different parts of a system (Laplante, 1993). These
features are not supported by the ComBAD architecture. However, deadlines
could be enforced by introducing something like a deadline manager into the
framework, that makes sure that a systems responds within a certain period.
Similarly, synchronization could be added by introducing a synchronization
manager that makes sure that the different parts of a system operate in
harmony. In addition, the division of applications into H/SICs, TMCs and
PDCs is perhaps not usable for real-time systems. So, the impact of this
scenario is architectural and it is classified as level four.

Scenario 3: Which changes are needed when the architecture is to be
used for ultra-reliable systems?

In ultra-reliable systems both software and hardware are often replicated
(Leveson, 1995). This redundancy makes sure that the system remains in

www.manaraa.com

Flexibility of the ComBAD Architecture 349

working order after one or more services have failed. In addition, these
systems could use voting, which means that the same operation is performed
by two or more elements, and the end result of the operation is some kind of
weighted average of the results of individual elements. Both redundancy and
voting could be addressed by introducing one or more front-end servers that
encapsulate the access to the other services. This has a major impact on the
architecture and, therefore, the impact of this scenario is classified as level
four.

Scenario 4: Which changes are needed when a Web inteiface is created
for an application?

To make the system accessible from a Web browser, the human interface
components (HICs) should be replaced with applets that can be viewed
within a Web browser. Because the lower layers are independent of the
HICs, they are unaffected by changes in the HICs. The HICs are the only
components affected and therefore the impact of this scenario is classified as
level three.

Scenario 5: Which changes are needed when the architecture is used for
a system that uses worliflow management?

The ComBAD framework already has a process manager that controls
which operations may be performed by the user in a certain situation. This
component could be enhanced to support true workflow management. Since
the process manager is the only component affected, the impact of this
scenario is level two.

T, bl 1 s a e ummary o t e scenanos or tee me a apta 1 Jty f h . f h . a! d bT
ComBAD framework Application

Scenario Archi- Component Arc hi- H!Cs/ TMCs PDCs Imp.
lecture s lecture SICs level

I - M - - - - 3
2 + M + ? ? ? 4
3 + M + ? ? ? 4
4 - - - M - - 3
5 - 0 - - - - 2

-= unaffected, + = needs to changed, 0 = one component affected, M = more components
affected, ? = undefined

As expected, we see in Table I that the architecture is not directly usable
in every situation. Using it for real-time or ultra-reliable systems necessitates
major changes to the architecture. In the other situations, the architecture is
usable, but some changes are necessary. These changes sometimes affect the

www.manaraa.com

350 N. H. uusing, D. B. B. Rijsenbrij, and J. C. van Vliet

framework and sometimes the application components. When the ComBAD
architecture is used in an actual situation, more scenarios are probably
needed to evaluate whether the right services are identified to encapsulate
the expected changes to the technical requirements.

3.2 Functional adaptability

Functional adaptability is the ease with which changes in the functional
requirements can be implemented. It is difficult to address the functional
adaptability of an architecture, due to the absence of functional
requirements. However, we are able to address the architectural aspects of
changes to the functionality. To this end, we use scenarios that explore the
effect of adding or deleting components from the application. The results are
summarized in Table 2.

Scenario 1: Which changes are needed when a problem-domain
component (PDC) is added or deleted?

When a new PDC is added, one or more elements in the higher layers
should also be modified, for it does not make any sense to add a PDC
without using it in one of the higher layers. When a PDC is deleted, the
components in the higher layers that are dependent on it should be changed.
The impact of this scenario can therefore be classified as level three.

Scenario 2: Which changes are needed when a task-management
component (TMC) is added or deleted?

A task-management component is always invoked from the interface
layer. Therefore, when a TMC is added, one or more HISICs need to be
changed to make use of this new TMC. Similarly, when a TMC is deleted,
one or more HISICs need to be changed to remove any references to the
TMC. This scenario affects one TMC and at least one, but possibly more,
HISICs and the impact of this scenario can therefore be classified as level
three.

Scenario 3: Which changes are needed when a human/system inteiface
component (HIS/C) is added or deleted?

The impact of this scenario is very small, because no other components
are dependent on the HISICs. In fact, the HISIC that is added or deleted is
the only component that is affected. Thus, this scenario has a level two
impact.

www.manaraa.com

Flexibility of the ComBAD Architecture 351

Table 2. of the scenarios for functional adaptability
ComBAD framework Application

Scenario Archi- Component Archi- HICs/ TMCs PDCs Imp.
lecture s lecture SICs level

I - - - M M 0 3
2 - - - M 0 - 3
3 - - - 0 - - 2

-= unaffected, + = needs to changed, 0 = one component affected, M = more components
affected, ? = undefined

From Table 2 we conclude that changes to the functional requirements do
not affect the ComBAD framework. This means that the framework is
entirely separated from the functionality of the application. And as expected,
we observe that TMCs are unaffected by changes to the interface layer and
that PDCs are unaffected by changes to either the processing layer or the
interface layer.

3.3 Portability

At first sight, portability and technical adaptability very much look alike,
but they are not the same. Portability is the ease with which a system can be
adapted to changes in the technical environment and technical adaptability is
the ease with which a system can be adapted to changes in the technical
requirements. The scenarios in this category explore the effect of changes in
the technical environment.

Scenario 1: Which changes are needed when another database is used?

This scenario was used in the introduction of this section. The object
persistency manager is the only element that is impacted. Thus, the impact of
this scenario can be classified as level two.

Scenario 2: Which changes are needed when another operating system is
used for the client machines?

The answer to this question is not unambiguous, because it depends on
the programming language and the development environment used. First, if
the application is written in Java, no changes should be needed, but other
languages may cause major problems. Second, it is important which
development environment is used, because a number of development
environments are able to generate and/or compile code for different
platforms. This approach is taken in ComBAD, where the tools used can
generate and/or compile code for multiple platforms. This solution lies

www.manaraa.com

352 N. H. ulSSing, D. B. B. Rijsenbrij, and J. C. van Vliet

outside the architecture, and the impact of this scenario can be classified as
level one.

Ta bl 3 s e f h . bT ummary o t e scenanos or porta 1 Jty
ComBAD framework Application

Scenario Archi- Component Archi- HICs/ TMCs PDCs Imp.
tecture tecture SICs level

1 - 0 - - - - 2
2 - - - - - - I

-= unaffected, + = needs to changed, 0 = one component affected, M = more components
affected, ? = undefined

In Table 3, we observe that changes in the technical environment affect
very few components of the ComBAD architecture. We notice that the
application components are unaffected by our scenarios, which could
indicate that the framework actually encapsulates access to the environment.
However, there may be potential changes in the technical environment, not
mentioned here, that have an impact above level two.

3.4 Reusability

We have chosen to assess reusability by scenarios that test the usability
of ComB AD components in other situations, as well as the usability of other
components within the ComBAD architecture. These scenarios focus on
individual components, so it is not very meaningful to create a table that
indicates which elements of the architecture are affected.

Scenario 1: Can components that were not especially developed for the
ComBAD framework be used in applications built using the ComBAD
architecture?

The components that can be reused in these applications are mainly GUI
controls, like ActiveX-controls and Java Beans. However, because of the
demands these components put on their environment, using them limits the
portability of an application. Other components could be reused in these
applications as well, if the components on which they depend are also
included.

Scenario 2: Can the application components be used in systems using
another application architecture?

The application components are usable in an environment that provides
all of the framework services used by the component. This means that,

www.manaraa.com

Flexibility of the ComBAD Architecture 353

theoretically, application components are reusable in another application, but
it will require an enormous amount of work if they depend on more than a
few framework services.

Scenario 3: Can the object broker of the ComBAD framework be reused
in systems using another architecture?

The answer to this question is yes, provided all of the components upon
which the object broker depends, being the transaction manager, the notify
manager and the object-persistency manager, are included in the other
architecture as well. However, this answer focuses on the architectural
aspects only. Whether the object broker offers the right functionality in this
situation is ignored.

Scenario 4: Can application components be reused in other applications
using the ComBAD architecture?

Architecturally speaking, application components can be reused in other
applications using the ComBAD architecture, provided the components on
which they depend are also included. However, the reusability of a
component also depends on whether it offers the right functionality . Within
the ComBAD project, it was felt that the level of abstraction of the
application components is too low. Therefore, a number of these components
are grouped into packages, the same way Jacobson et al. (1997) address
reusability. Whether these packages offer the right functionality can only be
judged in an actual situation.

From these scenarios, we conclude that it is hard to assess the reusability
of components, because it largely depends on the functionality they
implement. From an architectural point of view, we may conclude that most
components of the ComBAD architecture could be reused, but that this is
easiest within the ComBAD architecture.

3.5 Evaluation of the assessment

In this section, we assessed the flexibility of the ComBAD architecture
using scenarios. The assessment showed that the technical adaptability and
portability of a single architecture could be assessed quite well using
scenarios, yet functional adaptability and reusability are harder to assess.
The main difficulty of the assessment of functional adaptability of
architectures is that functional requirements are lacking, which means we
can only address the architectural aspects of changes to the functionality.

www.manaraa.com

354 N. H. Las sing, D. B. B. Rijsenbrij, and J. C. van Vliet

Reusability is hard to assess in general, because the reusability of a
component largely depends on whether it supports the right functionality,
which can only be judged by a developer.

In addition, the assessment demonstrated that the flexibility of an
architecture should always be related to the area of application. Although the
assessment given in this section provides some general insight into the
usability of the ComBAD architecture, one is unable to value the scenarios
but in an actual situation.

4. CONCLUSION

The purpose of this paper is to explore how flexibility can be addressed
in an architecture and how we can assess whether an architecture supports it.
To that purpose we have examined the ComBAD architecture. In the first
part of this paper we presented the architectural solution, which consists of
the architectural choices made to address the quality requirements:
adaptability, portability and reusability. We showed that in the ComBAD
architecture portability and reusability are addressed by creating the
ComBAD framework and that adaptability and, once again, reusability are
addressed by the application architecture.

In the second part of this paper we assessed the flexibility of the
ComBAD architecture. To do so, we formulated scenarios for assessing
technical adaptability, functional adaptability, portability and reusability. It
turned out that assessment using scenarios of technical adaptability and
portability of a single architecture is quite possible. However, functional
adaptability and reusability proved to be hard to assess using scenarios,
because we are considering an architecture, lacking functional requirements
and actual application components.

The assessment demonstrated that the introduction of the ComBAD
framework encapsulates changes to the technical environment from the
application. In addition, we showed that the framework is unaffected by
changes in the functional requirements. However, whether the services in the
framework encapsulate the right technical mechanisms could be a topic for
further research. In addition, one should always remember that flexibility is a
relative notion, which can only be valued in a particular context.

Our next step will be to investigate the architecture of an existing system
to see whether we are able to assess its quality attributes, including
functional adaptability and reusability of components. This way we hope to
deepen our insight into the quality attributes and their assessment in software
architectures.

www.manaraa.com

Flexibility of the ComBAD Architecture 355

ACKNOWLEDGEMENTS

This research is mainly financed by Cap Gemini Netherlands. We are
grateful to Cor de Groot, Ad Strack van Schijndel, and Guus van der Stap of
Cap Gemini Netherlands for their time and comments. Guus van der Stap (e
mail: GStap@inetgate.capgemini.nl) can be contacted for more information
about ComBAD.

REFERENCES

Bass, Len, Paul Clements and Rick Kazman (1998). Software architecture in practice.
Addison Wesley, Reading.

Delen, G.P.A.J. and D.B.B. Rijsenbrij (1992) The specification, engineering and measurement
of information systems quality. J. Systems Software 17,205-217.

Garlan, David, Robert Allen and John Ockerbloom (1995) Architectural mismatch: Why
reuse is so hard. IEEE Software 12, 6, 17-26.

Jacobson, Ivar, Martin Geiss and Patrik Jonsson (1997). Software reuse: architecture, process
and organization for business success. ACM Press, New York.

Johnson, Ralph E. (1997) Frameworks= (Components+ Patterns). Communications of the
ACM 40, 10,39-42.

Laplante, Phillip A. (1993) Real-time systems design and analysis: an engineer's handbook.
IEEE Press, New York.

Lassing, N.H., D.B.B. Rijsenbrij and J.C. van Vliet (1998) A view on components.
Proceedings of the 9'h International DEXA Workshop on Database and Expert Systems
Application. IEEE Computer Society, Los Alamitos, 768-777.

Leveson, Nancy (1995) Safeware: system safety and computers. Addision Wesley, Reading.
Shaw, Mary, and David Garlan (1996) Software architecture: perspectives on an emerging

discipline. Prentice-Hall, Upper Saddle River.
Van Vliet, Hans (1993) Software Engineering: principles and practice. John Wiley & Sons,

Chichester.

www.manaraa.com

Medical Product Line Architectures
12 years of experience

B.J. Pronk
Philips Medical Systems
P.O. Box 10,000, 5600 DA Best, The Netherlands
bpronk@best.ms.philips.com

Key words: Example architectures, product line architectures, styles and patterns

Abstract: The product line architectures for diagnostic imaging equipment like CT. MRI
and conventional X-Ray have to cope with large variations (in hardware and
application functions) combined with a high level of integration between their
embedded applications. Therefore a primary goal of these architectures is to
avoid monolithic applications while retaining the required integrated
behaviour. Furthermore, an easy and independent variation of the constituting
components is essential. The product line architecture described in this paper
gives one recent example solution to this problem. This example presents a
layered, event-driven, resource-restricted system based on the model-view
controller pattern. Its technical implementation relies heavily on state of the art
desktop (Windows NTTM) and component techniques (DCOM). For this
architecture, orthogonality and (binary) variation have been the key design
goals. Three views of this architecture-the conceptual, technical, and process
models-are discussed. In all three views the rationale of the chosen concepts
and their relation to the problems indicated above is shown.

1. MEDICAL ARCHITECTURES

Philips Medical Systems is one of the world's leading suppliers of
diagnostic imaging equipment. Its product range includes conventional X
ray, computed tomography (CT), magnetic resonance imaging (MRI), and
ultrasound (US) equipment. These product families, usually called
modalities, come in many variants of which only small quantities (100-1000)
are being produced, enforcing reuse of development effort and product
family architectures for all of them. In this paper the main issues

www.manaraa.com

358 B. J. Pronk

encountered in the architecture development of these product families will
be discussed. For illustration a recent example architecture will be presented.

1.1 Characteristics of medical software environment

The main characteristics of the Philips Medical embedded software
development environment are:
- distributed, multi-processor

real-time embedded and standard desktop environments
large amount of code(> 106 lines of code) per system
large software engineering groups(> 100 FTE's)
software is by far the fastest growing component of all products
long product support, maintenance and extensions (10-15 year)
Long-running projects (2-3 years)
distributed development
small product series (< 1 000/year)
strict quality, legal, and safety requirements

1.2 Architecture overview

From a physical viewpoint most of the products mentioned above are
constructed along the same principles. They are centred around a host
processor, running a desktop operating system, that controls a set of
modality-specific peripheral devices that are needed to generate, process,
and view images. These peripherals are normally large, expensive, and
controlled locally by embedded real-time processors or digital signal
processors. Examples are high-tension amplifiers, patient support mechanics,
RF-coils, etc. The set of peripherals is unique to a single product family,
although many variations of individual peripherals are usually supported
within one product family .

On the host of all modalities, similar software applications linked with
the user workflow can be identified:
- database and patient administration, for entering patient data in the

system
- acquisition, which programs all devices for image generation,
- a viewing application that allows the user to review and process the

acquired images,
- image handling applications that support all further handling of the

information obtained during the examination, such as printing, archiving,
and network communication.
The architecture is outlined in Figure 1.

www.manaraa.com

Medical Product Line Architectures 359

Host processor

Mechanics
Image Image

Generation Processing

Modality peripherals

Figure 1. Medical architecture overview

2. MAIN ARCHITECTURAL ISSUES

The main issues to be addressed by the software architecture of medical
product families can be summarised as:
- Reuse: The need to support many different product family members,

serving a variety of application areas and operating in many different
(hardware) configurations, with one shared code base.

- Independence: Allow parallel, independent, and incremental development
for specific family members.

- Time to market: Allow efficient addition of new functionality for the
various family members in reaction to changing market needs.
In the remainder of this section the main aspects of these problem areas

are explored somewhat further.

Reuse:
Medical products come in many configurations (types of hardware,

software options) serving various market segments and application areas.
Yet within one product family (X-Ray, MRI etc.) a lot of functionality can
be identified that is common to all family members. Because of the long
lifetime, small production numbers, and enormous code base (investments)
of most product families these variations must be handled by the
configuration of a single basic platform.

www.manaraa.com

360 B. J. Prank

Independence:
Often the variations indicated above influence significant properties of

the system (e.g., maximum frame speed), that propagate throughout the
entire architecture. As a consequence of this, current implementations show
cross-dependencies throughout the entire software system. Other symptoms
of these phenomena are multiple definitions and extensive and complex
branches.

Furthermore the current practice of source code reuse introduces heavy
compile-time dependencies between all components. Independent
development and delivery are virtually impossible in this situation.
Furthermore this strong coupling requires extensive testing at every change,
yielding ever-longer test cycles.

The software applications of a medical device present very integrated
behaviour to their users. This is reflected in software dependencies at all
levels (user interface, application and technical level). Examples of these are
the sharing of the current patient and image between applications, the use of
shared (hardware) resources, and the compensation of imperfections of one
device in another one.

Time to market:
Many new features, acquisition techniques, and hardware devices are

added to medical products over the lifetime of the software architecture.
These extensions are often accompanied by extensive growth of coupling in
the system, since the necessary interfaces do not exist in the architecture.
Continuous engineering by an ever-varying population of developers,
forgetting or even unaware of the original architecture, further aggravates
this situation.

Medical devices contain a lot of persistent data: patient and image related
data, system settings, and configuration of the system and its components
and calibration data. Each of these settings depends on the software level of
the components, the actual available hardware, and the configuration and
options available on a system. This strongly coupled set of data imposes a
significant barrier to change. The same goes for exchange of data between
different releases, systems, and off-line tools that introduce many
compatibility problems.

Dedicated solutions and proprietary techniques have been widespread
throughout the professional industry. In view of the advance of modem
desktop operating systems with their myriad applications, productivity tools,
and high innovation rate, this legacy has become one of the sources of a low
rate of innovation in the industry.

www.manaraa.com

Medical Product Line Architectures 361

3. AN EXAMPLE SOLUTION

In this section a recent example of medical product family architecture is
described. In its quest for a solution to the three main architectural issues
introduced in the previous section, the architecture applies the following
principles.
1. avoiding a monolithic design by de-coupling and localisation. Every

component can be replaced in isolation.
2. binary reuse of components, reducing compile time dependencies.
3. use of standard technology and tools for productivity enhancement
4. division of the product family development into a generic (platform) part

and member-specific parts. Addition of specific parts should be possible
in independent parallel activities.
None of the principles stated above is very revolutionary, and of them

only binary reuse of components can be considered to be relatively new,
since enabling technology has recently become widely available (COM,
CORBA). Yet we think that the strict adherence to these principles and the
actual implementation followed has led to a system coping with the main
architecture issues better than any of our previous implementations.

This new product family architecture has been modelled in several views,
which will be described in detail in the remainder of this paper:
- the conceptual architecture view: Describing the solutions and rules as

applied to tackling the main architectural issues of decomposition vs. co
operation. The actual design of the system employs these solutions. This
view will receive most attention in the discussion in this paper.

- the technical architecture view: This view describes all additional
constructs necessary on top of the conceptual view (e.g., UO classes,
caching mechanisms) to realise the system. It also describes the hardware
(processors, buses etc.) and software (operating system, protocols etc.)
infrastructure and technology choices.

We will also describe the process architecture. However this is not
viewed on the same level as the previous two; in fact within both the
technical and conceptual architecture a process architecture view can be
identified. Within the conceptual architecture this describes the general
approach for handling the required (application) concurrency. Within the
technical architecture it describes the deployment of the elements of the
decomposition into threads, processors, and processes. This latter point will
not be addressed in this paper.

The architecture is thus described by
- a set of rules and concepts,
- a series of technology and infrastructure choices,

www.manaraa.com

362 B. J. Prank

- the decomposition of the solution domain into so-called Units,
- their deployment to the infrastructure, and
- the set of interfaces between them.

As much as possible the rules and concepts are expressed in formal
terms, to allow automatic verification of adherence to them in both the
platform and specific developments.

The presented three models (conceptual, technical, process) closely
resemble three of the views described by Kruchten (Kruchten, 1995). On a
lower level the same views are used in the design of the individual Units that
fit into this architecture. This set of views has been selected since they have
proven to be sufficient input for the designers of these Units to complete
their requirements and designs in relative independence.

3.1 Conceptual architecture

The conceptual architecture of the product family describes the concepts,
rules, and tactics that implement the principles described above. Note that
the conceptual architecture mainly addresses principle 1 (localisation and de
coupling). Note also that the conceptual architecture is almost independent
of the underlying technology, which is added only at a later stage.

3.1.1 Layering

The product family architecture decomposes the system into a number of
(independent) abstraction layers, from the bottom up, as shown below in
Figure 2.

I User Interface I

I Application I Infra
struc

Hardware abstraction ture
Technical

Layers
Hardware control

I Hardware I
Figure 2. Layered set-up of product family architecture

www.manaraa.com

Medical Product Line Architectures 363

The layers are
- Technical layer, consisting of the following sub layers:

- Hardware: basic digital and analogue hardware and their controllers.

- Hardware control: drivers and real-time control of hardware that
shield the low-level details of the hardware implementation such as
registers, addresses, interrupts, etc.

- Hardware abstraction: an abstraction layer offering a domain-specific
abstraction of the underlying type of hardware (e.g., the X-Ray
generation part in aCT-family).

- Application layer: The actual user functions realised with this equipment.

- User interface layer: The presentation layer, taking care of display and
user interaction.

Next to these three layers there is an infrastructure layer that is used by
all. The three layers and their sub-layers supply a true abstraction, i.e. they
are not transparent to the layers above them. Each of these layers can
therefore be replaced independently of the surrounding layers. This is one of
the major features supporting variation within the product family. Examples
of this are:
- different user interfaces for the members of the family
- various implementations of the geometry part of an X-Ray system
- implementing functions from several application areas on top of the

common (domain) abstraction layer (e.g., a cardiological and a
neurological MRI application)

3.1.2 Conceptual building blocks

Within each layer several independent Units are distinguished, which
should not interact with each other. Therefore each of these Units is as self
contained as possible. The conceptual building blocks used within the three
layers are:
- Services: The service concept is a main structuring element of the

architecture. A service is a software entity that autonomously executes a
number of tasks for another part of the software, guarding a set of
resources. A service is a completely isolated part of the architecture that
also keeps its own configuration, etc. The technical layer consists of a set
of these services, one for each device. In an X-ray system, for example,
the services are for the generator and detector, and in an MRI system the
services are for the gradient amplifier and the RF coils.
Applications: There are a number of applications such as reviewing,
acquisition, patient, and beam positioning, etc. These applications are
also services offering an interface to the user interface layer. Applications

www.manaraa.com

364 B.J.Pronk

offer a very uniform interface consisting of commands (in fact the use
cases as defined in the functional specifications) and a so-called UI
model that represents all information (data and state) necessary for the
user interface.

- User interfaces: The user interface is completely decoupled from the
applications and interacts with them through the application service
interfaces described above. Throughout the system a model-view
controller pattern is applied, with the user interface being the "view." The
application in fact contains the model (the UI model) and the controller
(the commands). The grouping and appearance of the user interface is not
known by the applications. There might be one integrated UI for multiple
applications or a single user interface per application.

3.1.3 Independence

The previous steps represent a major step forward in decoupling the various
Units of the system. However interaction between Units cannot be avoided
completely because of the integrated behaviour aspects describedabove. Yet
we maintain the rule that applications and services of the system will not
interact directly with each other. This will be supported by the following
mechanisms.
- Event driven: Another main concept of the architecture that supports

decoupling is notification. Objects in this architecture may issue events
(notifications) that can be received (if requested) by so called observers.
This mechanism works both within processes and across process
boundaries. The source of the events in this mechanism is not aware of its
observers. All upward communication between Units is based upon this
mechanism.

- Integration: All system-wide known data (e.g., patient data, but also
currencies) is stored in a separate service called the integration and data
model. Applications never directly exchange data such as a change in the
current patient. Instead the current patient object in the integration
service is updated by the patient administration application. All interested
applications may be notified of this change through the notification
mechanism just described. The integration service is closely linked to the
database since a lot of this information is also stored persistently.

- Automation: Many sequences of operations in the system are pre
programmed. After an acquisition, the system switches to reviewing
mode: data are forwarded to an archive etc. After closing an examination,
data are forwarded to printers, the Radiology Information System, etc.
Such functionality is located in a separate automation service that

www.manaraa.com

Medical Product Line Architectures

receives completion notifications from the applications and starts the
relevant actions. Again, the applications do not interact directly.

365

- All system characteristics are derived from the available resources an
application can obtain from the services it uses. There is no hard coding
in the applications of restrictions of the underlying services. This implies
that resources may be added to increase the capabilities of the system
without additional coding.

3.2 Process architecture

This section describes the concepts used for decomposing the system into
separate concurrent processes, starting with the application requirements for
concurrency. From a user point of view the system should deliver the
following levels of concurrency.
- Multiple users operating separate applications concurrently. This will be

handled by defining all applications to be separate processes.
- All long-running, non-interactive user functions (e.g., printing, export,

archiving) have to be performed as background parallel processes since
the user wants to be free to do other actions while these functions are
executed.

- Long-running interactive user functions (like screen build up) have to be
performed in parallel processes to retain user interface responsiveness .
For these functions the user should be able to cancel or overrule it.
From a technical point of view additional concurrency is introduced in

the system since asynchronous hardware has to be controlled. So all services
handling hardware have to be separate conceptual processes. Yet another
technical point of concurrency follows from the services concept itself.
Lengthy actions are often distributed over a client and multiple services. A
service request may take considerable time to complete since the handling of
hardware UO often is involved. During the time that the service request is
handled, the application can often do other useful things (e.g., starting other
service requests in parallel). It is a matter of choice where to put the
conceptual processes for handling lengthy service requests. We choose to put
them in the services themselves. So, all lengthy service requests have to run
in separate conceptual processes. This also implies that these service
requests will complete asynchronously (and use notification to signal
completion).

From this initial selection even more concurrency requirements can be
derived. Since multiple conceptual processes are active in parallel, shared
resources (e.g., database, context) are introduced. Therefore additional
conceptual processes will be introduced to serialise access to these shared
resources.

www.manaraa.com

366 B. J. Pronk

3.3 Technical architecture

The technical architecture of the system supports, in particular, the following
principles from the introduction to section 3:
- binary reuse of components
- enhanced productivity by application of standard, state-of-the-art

technology
- building a generic platform with product-specific additions

3.3.1 Use of a standard environment

Professional industrial environments have long worked with proprietary
solutions. However the advance of standard desktop environments, market
pressure, and the need for productivity increases drive the industry towards
usage of standard solutions and open standards. Note that this is not only a
matter of money. Even where money is no argument, the time and people
needed to create from scratch something to compete with standard desktop
environments represents a tremendous bottleneck. Finally, the innovation
rate of desktop environments is now so high that proprietary solutions will
probably be outdated before they are introduced. Therefore the following
approach is chosen for the new product family architecture:
- Allocate, as much as possible, software functionality to custom hardware

components. Only build dedicated hardware when
processing/responsiveness cannot (cost effectively) be delivered by such
a platform.

- Allocate, as much as possible, functionality in a standard desktop
environment. Only use a real-time operating system environment when
strictly required (for performance, safety, or graceful degradation).

- Use standard PC-architecture and technology as much as possible (PCI,
Intel x86, Windows NT, Microsoft Foundation Classes, Windows User
interface, Windows NT services etc.).

- Use standard software packages (database, license management,
network)

- Use internet technology (Java/HTML/Browser, Windows NT peer web
server) for (remote) service.

3.3.2 Binary exchange

Classical reuse programs are often based on source code level reuse. This
approach introduces strong compile-time dependencies. Furthermore it does
not support true reuse, since extensive testing is still required in the new
code/compile environment. This situation is even further aggravated when

www.manaraa.com

Medical Product Line Architectures 367

using object-oriented languages and deep inheritance trees. Based on these
experiences it has been decided that the new product family architecture will
be based on binary variation. The following choices have been made in this
area:
- Component-based development (DCOM) based on binary exchange,

allowing flexible allocation of UI, application and services.
- All interfaces in the system will be expressed in IDL, and DCOM will be

used for all communication between Units.
- All notification between Units will be based on the COM connection

point mechanism.
- DCOM, however, is only used as an interface mechanism; all

implementation classes are strictly separated from this interface shell.
- Interfaces are considered immutable even when extending, for example,

ranges of enumerated types or error codes; new interface versions will be
introduced.

- Apply component technology to define frameworks for all extensible
parts of the system. A framework consists of a set of interfaces and some
generic functionality. For example, the acquisition application is a
framework in which (binary) components can be added to support
additional acquisition procedures.

4. CONCLUSIONS

Medical equipment architecture has to focus on orthogonality and
independence to support a viable product family concept. The rigorously
pursued decoupling in the presented product family architecture allows for
the development of completely localised and highly independent
components. The use of DCOM as standard interface technology enables
versioning, strict interface management, and the delivery of components that
are thoroughly tested. In addition, applying standard technology and
components will reduce time to market significantly. This combined
approach has resulted in a generic platform, which through addition of
system-specific components, can be specialised in parallel developments.

REFERENCES

Kruchten, Philippe B. (1995) The 4+ I View Model of Architecture, IEEE Software,
November 1995, pp. 42-50.

www.manaraa.com

Kaleidoscope
A Reference Architecture for Monitoring and Control Systems

Andrea Savigni, Francesco Tisato
DSI Universita di Milano
Via Comelico 39/41 20153 Milano, Italy
emails: {savigniitisato}@dsi.unimi.it
voice: +39 2 55006231
fax: +39 2 55006249

Key words: Software architecture, monitoring and control systems, connectors, strategy,
object orientation

Abstract: Although monitoring and control systems can be applied to a great variety of
application domains, they exhibit a number of common characteristics,
particularly the extensive use of abstraction layers and information streams.
This paper presents a reference architecture upon which a number of
monitoring and control systems for a wide range of application domains can be
designed. The architecture is described in terms of components and
connectors, and the UML methodology is employed to specify class diagrams.
The architecture is specifically conceived to be made of reusable components;
to that aim, a clear separation is made between information components and
strategic components, so that the former can be reused under different
strategies. Conceptual images are information components that model
concepts of the application domain, and are specialised in terms of concrete
images, such as acquisition, processing, and presentation. The major task of
the system is to align concrete images, which takes place via transfer of
objects (facets) through particular connectors (projectors). This mechanism
allows construction of systems where very little is hard-coded at compile time,
and a lot is left to configuration, which can usually be performed by a domain
expert rather than a software engineer.

1. INTRODUCTION

A software architecture should realise, in terms of architectural
components, crucial concepts that are of use to application domain experts.

www.manaraa.com

370 Andrea Savigni and Francesco Tisato

First, the architecture must rely on concrete "generic" mechanisms that allow
components to be defined and to be composed into a system. Second, both
components and composition rules must be specialised to fit specific
application domain models. This paper presents a software architecture for
monitoring and control systems.

Monitoring and control systems cover a huge range of application areas,
from classical process control, to environmental monitoring, urban traffic
control, monitoring of historical buildings, and many more. They also share
common features, from the point of view of both the domain model and of
architectural requirements.

In terms of the application domain model there are two major issues:
1. Physical objects of the environment are represented at several abstraction

layers, spanning from the field interface layer (sensors and actuators) to
higher layers where abstract images of the physical objects live and
control-related activities (computation, decision, and presentation) are
performed;

2. There are two major information flows. The observation flow starts from
the actual state of physical objects and updates more and more abstract
images. The control flow starts from the expected state of abstract images
and updates more and more concrete images- ultimately, it controls the
state of the physical objects.
This scheme is quite general, and accommodates particular cases. For

instance, in a pure monitoring system the observation flow only exists,
whereas in an open-loop control system the control flow only exists.

In terms of concrete architecture, there are two major requirements:
1. modularity and configurability: the domain engineer must be capable of

building, configuring and managing his or her system by exploiting
reusable components that model domain-level concepts, without having
to deal with implementation-related concerns

2. behaviour: the domain engineer must also be capable of defining the
dynamic behaviour of the system- in particular, of specifying the timing
of the observation and control flows - without knowing the internal
structure of the components nor the idiosyncrasies of the technological
platforms.
The Kaleidoscope architecture we present in this paper is a general

framework (Gamma, 1995) that attempts to meet the above requirements of
monitoring and control systems. The key issues, described in detail in the
rest of the paper, are the following:

Application domain entities are modeled by conceptual images.
A conceptual image is realised by a set of concrete images, possibly
hosted by different physical nodes.

www.manaraa.com

Kaleidoscope: A Reference Architecture 371

- The alignment of information between concrete images is performed by
projectors.

- The overall behaviour is defined by strategic1 components that drive the
projectors.
The major advantage of the Kaleidoscope architecture is that not only

does it provide a sound basis for building a distributed system by composing
domain-related components, but it also raises up to the programming-in-the
large level the definition of the strategies that drive the alignment of the
concrete images and the execution of computational activities. In fact,
individual components do not embed specific strategies, which can be easily
defined by the domain engineer according to specific domain requirements.

A detailed description of the architecture is given in parts 2 to 6, and
some implementation issues are set forth in part 8. The Unified Modeling
Language (Fowler, 1997) (Penker, 1997) is employed to describe modeling
and design issues, while the Java Programming Language (Gosling, 1997)
has been chosen as the reference implementation language.

2. THE ARCHITECTURAL APPROACH

2.1 Static Architecture

According to (Shaw, 1997), the architecture will be described in terms of
computational components and connectors. Adopting an optical metaphor, a
computational component is the image of an object in the application
domain. Images are defined at two levels.
1. Conceptual images model the entities that are meaningful from the point

of view of the application domain. A conceptual image defines:
- a set of facets i.e., attributes, that model the information associated

with the entity (for example, current value, average, variance, etc.);
- a set of filters i.e., methods, which are responsible for converting the

information among different facets.
2. Concrete images are subclasses of the conceptual images that can be

regarded as views of the latter. They provide concrete representations of
an abstract image, according to both application requirements and
physical deployment issues.
In general, a concrete image implements a subset of the facets and of the

filters defined by the conceptual image; moreover, a conceptual image may
not be associated with all the possible types of concrete images. Some

1 To avoid misunderstandings, we shall use the term control in the sense of "process control",
and strategy to denote the policies which drive the dynamics of the system from the
software architecture point of view.

www.manaraa.com

372 Andrea Savigni and Francesco Tisato

standard types of concrete images, that will be treated in detail in the
following, are:

- acquisition image
- peripheral processing image

central processing image
persistent image
presentation image
simulation image
actuation image

In the remainder of this paper, unless explicitly stated, "image" will
denote "concrete image."

The connectors, on their part, play the role of projectors, which align the
information contents (facets) of the images and encapsulate system
dependent communication issues.

For example, suppose a traffic engineer wants to control the access to a
certain area of a town in order to avoid congestion. After installing the
physical devices (e.g., photocells and traffic lights), he or she instantiates
one acquisition image per photocell (and/or one actuation image per traffic
light), plus one peripheral processing image for each device (which will be
hosted by a peripheral node). Also instantiated are some images that will
reside at the central control room, namely a central processing image, a
persistent image that has the goal of permanently storing data, and a
presentation image devoted to data visualisation. Moreover, the traffic
engineer instantiates the projectors that will be in charge of aligning the
proper facets of the images. The resulting static architecture is sketched in
Figure 1.

application

Figure 1. The static architecture

www.manaraa.com

Kaleidoscope: A Reference Architecture 373

2.2 Dynamic Behaviour

Information (in the example, the presence of a vehicle detected by a
photocell) will be first acquired in the form of facets local to the acquisition
component, then "projected" onto the different images, and "filtered" to
obtain more abstract facets (counts, averages, statistics, graphics, and so on)
This is the observation flow.

At the end of the observation flow, information will eventually reach the
user, be it a traffic operator exploiting the presentation image, or an
application component relying on the central processing image. The user can
monitor data and exercise control by modifying the central image of the
traffic lights (e.g., by changing the desired plan of "red" and "green"
phases). The changes of the central images are projected and filtered, and
eventually reach the actuation images that physically control the traffic
lights. This is the control flow.

The traffic engineer is in charge of specifying the dynamics of the
system. The heart of the dynamic behaviour lies in the updating of the
images (which may imply filtering actions). Consequently, the projectors
play a major role in the definition of the dynamic behaviour.

A key point of the whole architecture is that neither images nor
projectors embed any activation strategy: they can be viewed as passive
entities (Tisato, 1996). They define data (facets), operations upon them
(filters), and alignment mechanisms (projectors), but they are not aware of
all the issues regarding when to retrieve data, transfer them between images,
and filter them. Such issues depend on specific application domain
requirements and must be defined by the domain engineer without having to
know the internal structure of the individual components (images and
projectors). In other words, images and projectors are aware neither of the
static structure nor of the dynamic behaviour of the system; this peculiarity
can be summarised by saying that the components have "no implicit
architecture" (Cazzola, et al., 1998a).

The control of the overall dynamics is up to specific strategic
components (also named strategists; see part 6), which can be selected and
parameterised by the domain expert. This way, strategic components are
kept strictly separate from images and projectors, and they can be easily re
used under different strategies in a different context of the same domain, or
in a completely new domain. To summarise:
- Conceptual images model concepts that are meaningful in the application

domain.
- Concrete images model specific views of conceptual concepts, which are

specialised based on the kind of processing they perform and on their
deployment.

www.manaraa.com

374 Andrea Savigni and Francesco Tisato

- Facets are the actual containers of data.
- Filters model manipulation of the data of a concrete image.
- Projectors align different concrete images of the same conceptual image.
- Strategic components drive the activities of projectors and filters.

3. INFORMATION COMPONENTS

The information components lie at the heart of the system's static
architecture, as they are the actual managers of application data. There are
three types of information components: conceptual images, concrete images,
and facets.

3.1 Conceptual Images

Modeling complex domains requires a proper use of abstraction to make
the system manageable. Conceptual images realise a high-level abstraction
of reality, defining which aspects of the domain must be taken into
consideration. A traffic control example is the concept of "gate", which
captures a flow of vehicles at different levels of abstraction - vehicle
presence, vehicle count, average, and so on.

A conceptual image is an abstract class, defining data and methods that
will be inherited and implemented by the subclasses (concrete images; see
part 3.2); thus, a conceptual image defines the semantics of some monitored
and/or controlled data.

3.2 Concrete Images

Conceptual images are abstract classes and, as such, represent abstract
concepts; therefore they need to be further specified to be useful. For
example, asking if vehicles pass through a gate at a given time makes little
sense. What is sensible to ask is how many vehicles passed in the last
minute, or how many passed yesterday between 2 and 3 p.m., or how many
pass on the average. These different views of the same conceptual image are
dealt with separately in the various subclasses called the concrete images,
and in other classes, associated with these, called facets (see part 3.3).

Concrete images are the actualisation of conceptual images. They tum
into practice the semantics of the abstract images. More technically, concrete
images are subclasses of conceptual images, inheriting a subset of their
attributes (i.e., facets; see part 3.3). Their instances are actual software
objects deployed to different locations according to their functionality .

www.manaraa.com

Kaleidoscope: A Reference Architecture 375

Special cases of images are information sources and information sinks.
Sources retrieve data from the outside world and feed them to the system;
they provide a "generate" method that, in a system-dependent way, acquires
data from physical devices, or generates them itself, typically by simulation.
Sinks feed back to the outside world information that was generated by the
system; they provide a "use" method that transfers to the outside world the
generated data. In this case, too, the way data are output is system-dependent
(e.g., graphical report on a workstation, satellite transmission, Web-based
diffusion, commands to a physical device, etc.).

Concrete images, albeit architecturally well characterised, do not
constrain the designer's choices as to which functionality each image is to
integrate. As an extreme example, a designer might want to incorporate
complicated statistical processing into an acquisition image; this would
clearly be against the philosophy of the architecture (and good sense too!),
but it is reported here just to give an idea of the flexibility of the system.

A basic set of concrete images has been identified, which, in the authors'
opinion, is enough to cover most concrete cases of monitoring and control
systems, even if it is always possible for the designer to define new ones, or
eliminate some of the existing ones.
- The acquisition image is a source image that collects physical data from

the outside world. It can be thought of as a device driver of the physical
sensor, and resides on the same node. For instance, it may represent the
state of a photocell (vehicle passing/not passing). According to the type
of sensor, different types of acquisition image may exist, and possibly
some device-dependent code will have to be integrated.

- The peripheral processing image resides on a peripheral processing node
and supports a first level of information abstraction. For instance, it
might include a facet modelling a short-time count of vehicles passing in
front of a photocell. In the symmetric case of a traffic light, it might
include a facet modelling the desired duration of the next "red" or
"green" phase.

- The central processing image provides an abstract view that supports
user interfaces and major computational activities (statistics,
optimisation, control decisions), and typically resides on a central
processing node. It includes facets suitable for these tasks.

- The persistent image is a permanent view filed in a database. It typically
includes facets that model timed sequences of primitive data. Once the
time series have been stored, all sorts of computations can be performed
on them, including statistics, data mining, etc.

- The presentation image is both a sink and a source image. As a sink
image, it exports to the outer world the data acquired and processed by
the system. We purposely use a vague term such as "exporting" because

www.manaraa.com

376 Andrea Savigni and Francesco Tisato

it makes no assumption as to which medium will be used to communicate
the information to the outside world, be it a graphical workstation, a
satellite, or the Web. In this respect the proposed architecture is
completely open; one may think of a simple Web server that, via CGI o
servlets, delivers static snapshots of the system state, or of a complex,
three-tier, full-fledged presentation server that in real time delivers the
presentation image. Note that the projector-based approach (see part 6)
allows the timings related to data transfer towards the presentation image
to be decoupled from the timings related to inner data transfers. On the
other hand, the presentation image may also be a source image, in that it
exports methods that allow the user to exercise control. For example, the
presentation image (i.e., the GUI) for a photocell will present the actual
number of vehicles passing through a gate, whereas the presentation
image for a traffic light will provide a slider to tune the duration of the
"red" and "green" phases.

- The simulation image is a source image, situated below the peripheral
processing image (i.e., at the same level as the acquisition image) or,
possibly, below the central processing image. Its goal is to supply data
that are not retrieved by direct acquisition. The rationale behind the
existence of such an image is twofold. First there is fault-tolerance: in
case of unavailability of the acquisition image (due to hardware or
software failure), the simulator works "on-line" and can feed the system
with reasonable data, thus ensuring the continuity of service. Second,
there is decision support: it is possible to perform what-if analyses, based
on the "off-line" execution of the simulator. As we shall explain later, the
switch between acquisition mode and simulation mode can take place at
run-time in an immediate and transparent manner, by simply activating
the proper connector. This way, the system can work in a non-stopping
mode.

- The actuation image is a sink image whose goal is to translate user
commands and decisions taken by the processing components into real
actions performed on the domain. Note that both the acquisition image
and the actuation image are in fact nothing but drivers of physical
devices: sensors and actuators respectively. This symmetry does not exist
by chance; it is the expression of a substantial architectural equivalence
between monitoring and control. In both cases, information output by the
system (monitored data in the one case, commands in the other) is
acquired, processed, and finally output by the system in the form of
presentation (monitoring) or actuation (control).

www.manaraa.com

Kaleidoscope: A Reference Architecture 377

3.3 Facets

Facets are the actual containers of data, and as such are the items of
interest to the end user. Typical examples of facets are current value,
average, and variance. They are the actual realisation, in concrete images, of
the attributes found in conceptual images. In UML terms, an image is an
aggregate of facets. The choice not to directly include these data into the
concrete images may seem strange, but it stems from the intention to keep
the architecture as general and flexible as possible. Incorporating the facets
in the form of attributes of the concrete images would mean hard coding the
semantics of the images. Using the proposed approach, however, the
designer is free to include in each concrete image only the facets he or she is
interested in. This approach allows insertion of new classes to meet
particular requirements (for instance, advanced statistical processing) that
obviously cannot be all provided a priori; in this case, the designer must
simply define the facet classes he/she is interested in and associate them with
the concrete images that will utilise them.

As facets are the actual data, it is these objects that are transferred
through the projectors when images are aligned (as explained in part 6). Of
course, the same facet may have different implementations for different
images that may be hosted by different nodes and rely on different platforms.
In this case, filters (see part 5) are in charge of performing marshalling. In
order to ensure coherence of observations, every facet has a timestamp.

3.4 Aggregate images

What has been presented so far refers to monitoring and control of single,
elementary entities. It is nonetheless clear that a general reference
architecture must contemplate the possibility of monitoring and controlling
images relative to complex entities that model significant domain concepts,
but do not correspond to the direct abstraction of physical devices. For
example, a traffic operator would like to reason in terms of "urban areas",
that can be observed (in terms of global number of vehicles in them) and
controlled (in terms of incoming and outgoing vehicle flows).

In order to model such situations, the concept of aggregate image has
been introduced, which models, at a higher abstraction level, a set of
elementary images. Clearly, it is not possible to associate a physical sensor
with a whole zone. Thus, aggregate data cannot be directly derived from
information coming from the outside world, but need to be computed from
elementary data that are themselves inside the system.

The structure of an aggregate image closely resembles that of elementary
images, so there will exist a conceptual image that specialises into concrete

www.manaraa.com

378 Andrea Savigni and Francesco Tisato

images, and a set of facets that are associated with the various concrete
images. The main difference between aggregate and elementary images lies
in data acquisition (and, symmetrically, actuation). While elementary images
acquire data directly from the outside world through the acquisition image
(or by simulation), aggregate images acquire data inside the system, namely
from the elementary images the aggregate image refers to. This yields two
main consequences:
1. An aggregate image is an aggregate of the elementary images it refers to.
2. An aggregate image is not associated with an acquisition image (nor with

an actuation image), since acquisition (actuation) is performed by
processing data associated with elementary images.

Aggregate Abstract Image

Figure 2. The relationships among classes

Aggregate images can be put at different levels of abstraction. Suppose
that, in order to avoid network overloads, the designer chooses to perform
aggregation at the peripheral processing level. The following scenario will
occur:
- The aggregate image has no associated acquisition image.
- The peripheral processing aggregate image locally collects data from the

peripheral images of the elementary entities it aggregates.
- From this point on there is no more actual difference between an

aggregate image and an elementary one.

www.manaraa.com

Kaleidoscope: A Reference Architecture 379

- It may be the case that elementary entities have no higher-level images
(central processing, presentation, and so on).
The schema described so far, and illustrated in Figure 2, constitutes what

may be considered a design pattern (Gamma, 1995).

4. PROJECTORS

Projectors are in charge of linking images, and aligning the information
they host. According to this definition, a projector would seem to be nothing
more than a communication channel; on the contrary it corresponds to the
concept of a connector (Shaw, 1996), which has a much richer meaning and
much deeper implications.

A connector is an abstract entity, completely independent from its actual
implementation, that can be mapped onto the most diverse hardware and
software communication architectures. Moreover, a connector, beyond its
communication capability, can also perform information retrieval, i.e.,
extraction of information from the components it is connected to.
Communication being the main task performed by a connector, a set of
communication-related attributes and methods can be collected in a class,
that will act as a superclass for all classes implementing connectors. This
class is abstract, thus it only serves as a base class.

Projectors are in charge of communication among concrete images.
Being specialised kinds of connectors, projectors are themselves abstract
entities, independent of their actual implementation. At one extreme, there
might be a projector implemented as an almost empty object; at the other
extreme, a projector might implement a complex application protocol.

Despite their variety of possible implementations, projectors still retain a
set of common characteristics that have to do with their main function i.e.,
alignment among concrete images. To this aim, they are provided with two
standard methods (called respectively "alignUp" and "alignDown") whose
task is to realise the transfer of facets among concrete images, as we shaH
further explain in part 6. That transfer will take place upstream (alignUp) to
realise monitoring and downstream (alignDown) to realise control.

Note that projectors perform an inter-image alignment of uniform facets,
i.e., they transfer the state of the same facet from one image to another. In
other words, if two images are connected by a projector, the same
"projected" facet must be included in both images. No computation or
conversion is ever performed by the projector (such conversions are
performed by filters; see part 5). For example, both peripheral and central
processing images of a photocell contain a "short-term-vehicle-count"
image, which is aligned by a projector.

www.manaraa.com

380 Andrea Savigni and Francesco Tisato

The symmetry between monitoring and control (see part 2.2) is now fully
realised: each of these two activities is implemented exactly the same way,
by alignment of concrete images. For monitoring (method "alignUp") data
are transferred from sensors to the central parts of the system, for control
(method "alignDown") commands from the user are transferred towards the
periphery of the system, and finally to the actuators.

5. FILTERS

Filters are particular components associated and co-resident with,
concrete images.

central processing image

I medium term average

I short term vehicle count I

Figure 3. Facets, projectors, and filters

www.manaraa.com

Kaleidoscope: A Reference Architecture 381

Their task is to transform information between different facets, perhaps
performing data conversions if the same facet has different implementations
in different images. Just as connectors are responsible for an inter-image
alignment of uniform facets, filters are responsible for an intra-image
conversion among different facets. For example, as shown in Figure 3, the
peripheral processing image of a photocell has both a "vehicle-present" and
a "short-term-vehicle-count" facet. The former one is aligned according to
the corresponding facet of the acquisition image, whereas the latter one is
updated by a local filter according to the changes of "vehicle-present".
Accordingly, the central processing image has both a "short-term-vehicle
count" and a "medium-term-average" facet.

In general, filters should be triggered by strategic components (see part
6). In many cases, filters are triggered as a consequence of information
transfer performed by projectors, in which case an automatic triggering
mechanism can be exploited.

6. STRATEGIC COMPONENTS

6.1 Goals

As pointed out in part 2.2, strategic components manage the execution of
system activities. They perform the following tasks:
- Decide when to activate acquisition images (through the "generate"

method discussed in part 3.2) to acquire data from the physical sensor.
Decide when to align concrete images activating the appropriate
projectors (through the "align Up" and "alignDown" methods).
Decide when to invoke filters. In fact, in case of very frequent updates, it
may not be efficient to re-compute every time the statistical quantities, as
this activity can be complex and time-consuming.
Decide when to export information to the rest of the world (through the
"use" method of the sinks), thus obtaining the visualisation or printing of
data, in the case of the presentation image, or the activation of control
devices, in the case of actuation images.
Decide when to re-compute new plans (see part 6.2).
React to asynchronous events generated by the concrete images (see part
6.3).

6.2 Architecture

The architecture of the strategic subsystem is somewhat orthogonal to the
rest of the architecture. In the following we sketch the basic features of the

www.manaraa.com

382 Andrea Savigni and Francesco Tisato

strategic subsystem of Kaleidoscope. It is organised into a set of strategic
components linked by strategic connectors, according to a strongly
hierarchical model in which each layer corresponds to a different abstraction
layer, and higher-level strategic components control lower-level ones.

Strategic components are instances of a Strategist class (see (Cazzola, et
al., 1998b)) that can be specialised into subclasses. Instances of this class are
linked by special kinds of connectors, called strategic connectors, which are
also subclasses of the generic connector class.

All communication between a strategist and the non-strategic
components it manages takes place locally; in other words, the two
components reside on the same processing node. This reduces network
traffic and allows hard-real-time problems to be managed locally.

Each strategist, in order to perform its task, needs an action plan, i.e., a
list of the form <timelnterval, className:methodName>, that specifies the
time interval in which a certain method of a given class is to be invoked.
These plans can be passed on as parameters to the strategists; this allows a
change of plans at least at configuration-time, or even at run-time, rather
than at compile-time, thus rendering the system much more flexible.

Each strategist has the ability to execute various plans: this way, when
faced with events or particular situations, the component can change plan at
run-time without the need to stop and restart the system. To that aim, each
component is equipped with a "changePlan" method that takes as a
parameter the new plan identifier. Of course, a component cannot change
plan before the current one has come to a "safe" situation. This yields the
necessity of providing plans with breakpoints, i.e., points at which it is safe
to interrupt plan execution. Given the hierarchical structure of strategists, the
"changePlan" method is invoked by the upper-level strategist.

6.3 Strategies

Since Kaleidoscope wants to be a general architecture, it should
accommodate both a time-driven and an event-driven model. The authors
definitely do not want to be involved in the decade-long event-driven vs.
time-driven debate (Tisato, 1995), so the basic architecture makes no
assumption as to which triggering philosophy will be chosen. This is
possible because all the non-strategic components, be they images or
projectors, are passive, thus no strategy-related elements are embedded
within them. The designer can freely decide to build the strategic subsystem
on either a time-driven or an event-driven approach (an example will be
provided in part 7).

The specific architecture we proposed in part 6.2 is basically time-driven,
and relies on the execution of timed plans. In many cases, plans can be

www.manaraa.com

Kaleidoscope: A Reference Architecture 383

defined at configuration time. For instance, photocells are sampled at fixed
time intervals, the alignments and the decision activities are triggered at
fixed intervals too, and the states of the traffic lights are controlled via pre
defined plans.

Asynchronous events can be taken into account either via a "plan
selection" -based policy or via a "plan-formation" -based one. In the former
case the strategist reacts to an event by choosing a plan among the pre
defined ones. In the latter case it defines a new plan. Once again, the
designer is completely free to choose whatever policy he or she prefers. As a
guideline, the authors suggest that a default "emergency" plan be activated
upon receipt of an alarm. Such a plan has the goal of governing the system in
a consistent and safe, if not optimal, way. While the default plan is
executing, it is always possible to re-compute, as a non-critical background
process, a new optimal plan.

7. DYNAMIC BEHAVIOUR: SCENARIOS

Let us now look at a possible execution scenario, referred to as the traffic
control example. The scenario is sketched in Figure 4, which highlights (as
thin dotted arrows) the triggers of the actions, not the underlying strategy.
For simplicity, the figure shows some generic "strategists" and does not
consider the allocation of components to nodes, even if the strategist shown
corresponds to a reasonable allocation.

The execution scenario depicted in the figure proceeds as follows:
a) A strategist decides that it's time to acquire data and calls the method

"generate" of the photocells acquisition image, which gets information
from the physical sensor and inserts them into the appropriate facet
(''vehicle-present").

b) A strategist decides to align the "vehicle-present" facet of the photocells
peripheral processing image, by calling the "alignUp" method of the
appropriate projector. Note that this activity might have a timing that is
different from the previous one - and might be controlled by a different
strategist. This may be necessary to face the case of heterogeneous
hardware and software devices, which are very likely to have very
different updating intervals and modes.

c) A strategist triggers the intra-image filtering that updates the "short-term
vehicle-count" facet of the peripheral processing image, as explained in
part 5.

d) A strategist decides to align the "short-term-vehicle-count" facet of the
central processing image.

www.manaraa.com

384 Andrea Savigni and Francesco Tisato

e) A strategist triggers the filter that updates the "medium-term-average"
facet of the central processing image.

presentation image
(photocell)

central processing iTIIIlge
(photocell)

I
medium tenn average I

............ , .••.

\ E)
\

.•·•···

presentation iTIIIlge
(traffic light)

central processing iTIUlge
(traffic light)

I 1
I) T

vehicle present
\ C)

......................
B)

acquisition iTIIIlge / A)
(photocell) ·

.. /
/

...
......

..........

Figure 4. Execution scenario

www.manaraa.com

Kaleidoscope: A Reference Architecture 385

f) A strategist decides to align the "medium-term-average" facet of the
presentation image, which is presented to the user (be it a human being or
a process control application).

g) Eventually the user changes the "desired plan" facet of the traffic light
presentation image, and a strategist decides to align the "desired plan"
facet of the traffic light central processing image.

h) A strategist triggers the filter that updates the "red/green duration" of the
central processing image.

i) After that, the control flow proceeds till the physical traffic light is
changed.
As pointed out before, different triggers may have different timings,

according to specific application requirements. Timings are defined by
strategists, and neither images nor projectors are aware of them. Several
scenarios can be devised.
- fully time-driven: all the actions of both connectors and filters are

triggered by the strategists on the basis of timed action plans (see part
6.2). This is the scenario for a traffic control system oriented to medium
term optimisation, where sampling the system state and tasking decisions
at a fixed rate is a major requirement.

- "upward" event-driven: the actions are triggered by the strategists as a
consequence of events that asynchronously notify a state change of some
acquisition image. This is the scenario for a system that must manage
alarm conditions (incidents and the like).

- "downward" event-driven: the actions are triggered as a consequence of
events generated by a presentation image- i.e., by a user. This is the
scenario for a system that allows an operator to freely observe and
control the traffic system.
Of course, mixed strategies can be conceived. We note that all the

strategies can be implemented by changing the strategic components only,
without any change to the re-usable components, i.e., images and projectors.

Simulation can play an important role in making the system reliable and
in ensuring continuity of service. Should a physical sensor break, the
strategic component can activate a simulation image and trigger a projector
that gets information from the simulation image rather than from the
acquisition one.

8. IMPLEMENTATION ISSUES

In part 2.1 we said that a concrete image inherits methods from its base
class "conceptual image," while attributes are rendered as separate objects,
namely facets. Note that the concept of "inheritance" we are referring to in

www.manaraa.com

386 Andrea Savigni and Francesco Tisato

this context is a very abstract one, meaning that, at a very high abstraction
level, concrete images share the semantics introduced by a conceptual
image. Obviously, this does not mean that concrete images must be
implemented as actual subclasses of conceptual images; in fact, we already
stated that, in order to implement attributes of the conceptual image, facets
are used, which are not attributes in the usual sense.

Another issue relative to facets is that when the strategist commands an
alignment, the projectors retrieve the appropriate facets from within images.
In general, this implies marshalling, therefore a projector must invoke a
filter. In order to make such an approach possible, each concrete image must
maintain a data structure (presumably a hash table or something similar)
containing the symbolic names and the addresses of the facets it includes.
Moreover, each filter is equipped with a method, called "read", which is
called by the projector, retrieves from the concrete image the reference to the
proper facet, instantiates a copy of the facet ,and passes it on to the projector.
A "write" method of the filter performs symmetric actions.

This procedure requires rather sophisticated mechanisms to avoid
unpleasant situations, such as having to hard-code in the application code the
mechanisms to recognise the kind of facet the projector is carrying. Such
hard-coding would cause the resulting code to be non-extensible and not
adaptable to new situations, which would be against the aims of the
architecture. Vice-versa, one can think of using mechanisms such as
computational reflection (Maes, 1987) or run-time type investigation in
order to retrieve at run-time the type of the facet, and to be able to install a
new one of the same type. (Such a mechanism is already implemented in the
Java programming language (Gosling, 1997).)

Filters are an interesting example of the role abstraction plays in a
software architecture such as this. In fact, at general design level, they are
defined as stand-alone classes; however, proceeding further down to detailed
design, one realises that a filter may actually be rendered as a distributed
object that lies partly within the concrete image it is bound to, partly in the
facets, and partly in the connector it is referred to.

As we said in part 2, images, strategic components, and projectors are
strongly separate entities This means that images and projectors never know
who is controlling them, while the opposite always holds, i.e., each strategist
knows the identity of all the images and projectors it is controlling, and thus
knows exactly what kind of notifications can be sent to it. This way, in order
to implement default plans, it is sufficient to provide an association table of
the form <notificationCode:planToExecute>. Upon receipt of a notification,
the strategist will adopt the associated plan.

To solve the opposite problem (how can the image know to whom it must
issue the notification?), one can think of an "implicit invocation"

www.manaraa.com

Kaleidoscope: A Reference Architecture 387

architectural style (Shaw, 1996), also known as the "Model-View
Controller" design pattern (Gamma, 1995). The strategist declares itself
interested in a certain set of notifications, and these will be delivered to it.
(Such mechanism is already implemented in Java (Gosling, 1997), under the
name of "observer/observable".)

9. CONCLUSIONS AND FUTURE WORK

This paper presents a software architecture that can be used as a basis for
the design of a wide range of monitoring and control systems. The
architecture relies on a set of reusable components (images), connected by
particular connectors (projectors), while all strategy-related activities take
place in separate components (strategists). The proposed approach brings
consistent benefits to both software engineers, who can build re-usable
components according to the reference architecture, and domain experts,
who can build a system without having to be software experts .

The current activity regarding the Kaleidoscope architecture is twofold.
1. A prototype is being implemented in Java to test implementation

alternatives and check the soundness of the architecture.
2. A specialisation of the architecture to specific domains is in progress . In

particular, the urban traffic domain is being treated; the system is
essentially modelled as a set of intersections and arcs, represented as
conceptual and then concrete images and by the relative facets. Other
conceptual images model meaningful entities such as traffic lights,
sensors, and in particular accumulation points, i.e., abstract containers of
vehicles that can be recursively defined. Specific presentation images
support a Web-based information export to citizens and patrols (police,
fire brigade, etc.) deployed on the territory.
The preliminary tests confirm the soundness of the approach.

REFERENCES

Cazzola, W.; Savigni A.; Sosio, A. and Tisato, F. (1998a), A Fresh Look at Programming-in
the-Large, Proceedings of The Twenty Second Annual International Computer Software
and Application Conference (COMPSAC '98), August 1998, Austria, Vienna.

Cazzola, W.; Savigni, A. ; Sosio, A. and Tisato, F. (1998b), Architectural Reflection: Bridging
the Gap Between a Running System and its Architectural Specification, Proceedings of the
2nd Euromicro Conference on Software Maintenance and Reengineering and 6th
Reengineering Forum, March 8-11 1998, Aorence, Italy.

Eriksson, Hans-E. and Penker, M. (1997), UML Toolkit, John Wiley & Sons, 1997.
Fowler, M. and Scott, K. (1997), UML Distilled: Applying the Standard Object Modeling

Technique, Addison Wesley Object Technology Series, 1997.

www.manaraa.com

388 Andrea Savigni and Francesco Tisato

Gamma, E.; Helm, R.; Johnson, Rand Vlissides, J. (1995), Design Patterns: elements of
reusable object-oriented software, Addison-Wesley, Reading, MA, 1995.

Arnold, K. and Gosling, J. (1997), The Java Programming Language, 2nd edition, Addison
Wesley, 1997.

Maes, P. (1987), Concepts and Experiments in Computational Reflection, Proceedings
OOPSIA '87, Sigplan Notices, ACM, October 1987.

Shaw, M. and Garlan, D. (1996), Software Architecture. Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

Tisato, F. and DePaoli, F. (1995), On the Duality between Event-Driven and Time-Driven
Models, Proceedings of the 13th IFAC Symposium on Distributed Computer Systems,
Toulouse, France, September 27-29, 1995.
Revised version also published as:

DePaoli, F. and Tisato, F. (1996), On the complementary nature of event-driven and time
driven models, Control Engineering Practice- An IFAC Journal, Elsevier Science, June
1996.

DePaoli, F.; Tisato, F. and Bellettini, C. (1996), HyperReal: a Modular Control Architecture
for Reai:.I'ime Systems. Journal of System Architecture, Vol. 42, N. 6::J . December 1996.

www.manaraa.com

Segregating the Layers of Business Information
Systems
An interface-based approach

Johannes Siedersleben 1, Gerhard Albers2, Peter Fuchs 1, Johannes Weigend 1

1 University of Applied Sciences of Rosenheim, Marienberger Str. 26, D-83024 Rosenheim,
Germany; +49/806719122 (phone), +491806719123 (fax)
2Software Design & Management, Thomas-Dehler-Str. 27, D-81737 Munich, Germany;
+49189163812-0 (phone), +49/89163812-150 (fax)
johannes.siedersleben@ t-online.de

Key words: Business information systems, external representations, interfaces, layers,
reusability

Abstract: This paper presents a refined layered architecture for business information
systems of any size. It allows a strict separation of application logic, database
access, and user interface and is largely independent of programming
languages, database management systems, operating systems, and middleware.

1. INTRODUCTION

1.1 Business information systems

Business information systems (e.g., systems for order processing, stock
control, or flight reservation) are used daily by many people and are crucial
for a company's business. The focus of this paper is front office systems as
opposed to back office systems like data warehouses. The systems
considered here can be characterised as follows:
- They are individually designed and implemented for big companies

(telecommunication, railroad, travelling, car production). It takes more
than one calendar year and several dozen man years to implement them.
They contain at least several hundred thousand lines of code.

www.manaraa.com

390 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al.

- Their class (data) model contains several thousand attributes and several
hundred classes (entities). They handle many gigabytes of data ..

- They cope with high transaction rates, the transactions being short and
relatively simple.

- They run in a heterogeneous environment: A system might involve
several programming languages (e.g., Java, C++ and Cobol), several
database management systems (e.g., SQL Server and DB2) and several
operating systems (e.g., MVS, Unix and Windows NT).

- Their expected lifetime is 10 years or more.
In spite of many valuable results in the area of software engineering, the

design of these kinds of systems has proved to be difficult. This paper
presents a standard architecture, based on defined interfaces between
components, that simplifies the design of these systems. It distils the
experience of several dozen software projects in which the authors have
been involved.

1.2 Why is software design so hard?

1.2.1 No metric for software design

We all know that software should be easy to maintain, easy to extend,
easy to reuse, open to additional features, and fast. These properties are hard
to measure (performance excepted), hard to achieve, and some of them are
contradictory. A crucial feature like extensibility can at best be defined in
terms of examples. There is no beaten path to a defined degree of
maintainability, extensibility and so on; it all depends on the intuition of the
system architect. The degree of maintainability actually reached by a given
project is visible only after many years . It is not measured by quantitative
means, but only assessed by the naked eye.

1.2.2 The three layer architecture does not work

The three layer architecture (see Ambler, 1998; Denert, 1991) is a well
established recipe for the design of business information systems:
- the dialog layer controls the interaction with the user
- the application kernel implements the business logic
- the database access layer takes care of all database accesses

There has been little change to this scheme during the last few years;
variants being discussed in the area of workflow systems do not affect the
key ideas of this architecture. The intended benefit is the separation of
concerns:

www.manaraa.com

Segregating the Layers of Business Information Systems

- The application kernel is neither aware of the user interface nor the
database; changes to the these are transparent to the kernel.

- Dialog and database access layer have limited knowledge of the
application. They are not aware of the business logic.

391

Experience shows that it is hard to keep the details of user interface and
database off the application kernel. Two phenomena are frequently
observed:
1. The business logic moves from the application kernel to other layers; the

application kernel just vanishes.
2. The application kernel gets polluted with details that should be hidden in

other layers.
There is a blatant lack of standards for the interaction of layers.

Numerous projects have spent many years designing and redesigning these
layers' responsibilities. To our experience, the intended benefit of the three
layer approach never materialised to the expected degree.

1.2.3 Too many APis

The software community is literally flooded with new technical APis and
new versions thereof: JDBC, ODBC, OCI, ADO, OLE-DB, A WT, MFC and
so on. This makes the software architect's job even harder: Which API can
I rely on? Which one works? How many workarounds will be necessary?
How expensive would it be to migrate from - say - ODBC to OCI or vice
versa? Furthermore there are some old-fashioned, awkward-to-use but very
reliable host APis (e.g., BMS, IMS, VSAM) that will not disappear in the
near future and often have to be taken into account even with new systems.
How can we cope with this variety of different APis of different ages? For
small systems with a short lifetime, these questions are of little importance.
Our concern, however, is big systems with an expected lifetime of 10 years
or more. These systems must carefully encapsulate all technical APis.

1.2.4 Where to go?

Why are some components reusable and extendable, but others not?
There is one obvious observation: Software that deals with many different
things at a time is bad in all respects. The programmer's nightmare is return
codes from different technical APis mixed up with application problems,
and all that within a couple of lines of code. This idea can be formalised:
Any business information system is concerned with the application domain
(this is why it is built), and technical APis like operating systems, database
management systems, and middleware (no system can run in thin air).
Therefore, the components of a given system can be divided into four
disjoint categories of reusability. Any piece of software can be:

www.manaraa.com

392 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al.

1. determined neither by the application nor by technical APis
2. determined by the application, but not by technical APis,
3. determined by technical APis, but not by the application,
4. determined by the application and by technical APis .

The term " determined by" can be read as "knows about," "depends on,"
or "is influenced by." Code determined by the application knows about
business objects like customers, accounts, flights, or aircraft. Code
determined by technical APis knows at least one API like ODBC or OCI.
For the sake of convenience, we mark software determined by the
application with an "A" and software determined by technical APis with a
"T", thus yielding the four categories 0 (neutral), A, T and AT.

0-software is ideally reusable, but of no use on its own. Class libraries
dealing with strings and containers (e.g., STL) are examples for 0-software.
0-software implements an abstract concept, such as a dictionary or a state
model. Note the difference between a class library like STL and a technical
API like MFC that acts as an interface to a lower-level API (Win32). Using
STL means choosing an abstract concept (namely that of containers,
iterators, adapters, etc.) and works wherever C++ runs. Using MFC excludes
all environments MFC does not support.

A-software can be reused whenever the given application logic is
needed as a whole or in parts. Other applications access A-software
typically via rniddleware like CORBA, DCOM or RMI.

T -software can be reused whenever a new system uses the same
technical environment (e.g., JDBC, ODBC, A WT or MFC). One nice
feature ofT -software is that its size increases sub-linearly with respect to the
number of business classes. A cleverly designed and carefully written
technical component that works fine for 20 business classes can do as well
for 200. In fact, JDBC (and other APis as well) does not care at all about the
number of business classes that are using it.

AT -software is hard to maintain, reluctant to change, can never be
reused, and should hence be avoided. The architectural quality of a software
system is inversely proportional to the share of AT-code. Unfortunately, at
least at a small scale AT -code is easy and straightforward to write. Quality
software is characterised by the complete lack of AT-code and by clean
interfaces between 0, A and T. This is where we should go. It goes without
saying that there are major management issues to the question of reusability
that this technical paper does not address .

www.manaraa.com

Segregating the Layers of Business Information Systems 393

2. QUALITY SOFTWARE ARCHITECTURE

2.1 Overview

It is possible to define a standard architecture that contains some
0-components, no AT-components at all, and which establishes clean
interfaces between 0, A and T components. This architecture is being
developed by a project at Rosenheim University of Applied Sciences
(Germany) in cooperation with Software Design & Management, a company
in Munich. Its name is QUASAR, from "quality software architecture."

QUASAR employs the terms "use case" and "business object" in the
sense of Jacobson (1997) with the following refinement: A use case seen as
a software module knows which steps have to be performed in which order
for the use case to succeed. A step of a use case can be any operation on
business objects or on other use cases. A use case can be persistent (stay
alive for days or months) or transient. There is no clear distinction between
a use case and a business object. A flight reservation may be regarded as a
use case, a business object, or both at a time; it is up to the designer to
choose. QUASAR makes minimal assumptions about the design of use cases
and business objects. QUASAR's concern are reusable components that are
called by the application and which call it back.

QUASAR's mission is a standard architecture for business information
systems that significantly simplifies the design. That means that there are
reusable components of a defined category with defined interfaces, and
running prototypes in evidence of feasibility that can be used as-is or as
templates for project-specific implementations. The remainder of this paper
describes the current state of our work.

2.2 Central themes

The central themes of the quality software architecture are
- QUASAR attempts to be as non-intrusive as possible. An application

using QUASAR has to implement defined interfaces and to call others.
All assumptions are laid down as interfaces. In particular, there is no
superclass from which all business objects or use cases have to be
derived.

- QUASAR is open to almost all programming languages. There is a focus
on object-oriented languages, but QUASAR components can be
implemented inC or Cobol as well. QUASAR doesn't rely on language
features like RTII (C++), Java reflection classes or Smalltalk blocks.

- QUASAR shields the application kernel from technical APis (like OCI
or ODBC) by means of a stable, vendor-independent interface.

www.manaraa.com

394 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al.

- QUASAR components can be used independently.
- QUASAR avoids code generation. Often code generators tend to be

slow, unreliable, do not generate what is really needed and turn out to be
a burden for the development process.

- QUASAR only performs error and exception detection. The handling is
left to the application.

2.3 Architecture

QUASAR's backbone are business objects and use cases. The main
menu of most systems can be thought of as a special use case which gains
control at system start-up. We call this the use case controller. Normally, a
use case is started by its constructor or by a special start method.

On the right hand side of Figurel there are three components: The
Workspace, the DataStore and the concrete API, which provides access to
the database (ODBC, OCI, ..). The DataStore hides that API behind a generic
interface which can be talked to in terms of DataContainers. Thus, it is
unaware of use cases and business objects. The DataStore interface provides
the usual find/update/insert/delete operations.

T 0 A 0 T

-.call

Figure 1: QUASAR architecture

We use the term "persistent object" for all business objects and all use
cases that are to be stored in the database. In general, all business objects
and some of the use cases will be persistent. A persistent object cannot be
stored as such, but only as a DataContainer. So, each persistent class has to
provide methods to map the object onto its representation as a Data
Container and vice versa. In most languages, these methods will have names

www.manaraa.com

Segregating the lAyers of Business Information Systems 395

like "toDataContainer" and "frornDataContainer"; in C++ it is simple to
overload the shift operators.

Following Java naming conventions, the interface that defines these
methods is called "Storable"; all persistent classes must implement it. hi
section 2.6, we sketch how this can be done. The Workspace links the
application to the DataStore. Its interface follows closely that of DataStore,
but is defined in terms of Storables. Thus, it is the Workspace that calls the
Storables' mapping methods. The Workspace takes care of object identity
and implements a given transaction strategy (optimistic or pessimistic, see
section 2.6). The important thing to note is that the Workspace is 0-software.
Its use could become as obvious as that of - say - a container. The
communication between the application and the database uniquely relies on
two interfaces: The Storable interface with its to- and from- methods and the
Workspace interface. This is the only link between the two worlds; there are
no assumptions about each other except those cast in the two interfaces.

hi a typical implementation, there will be exactly one instance of
Workspace and one instance of DataStore for each human user logged in.
Variants of this rule are hinted at in section 2.6.

Let's look at the left hand side of the figure. There is a symmetry not
only in the figure but in the whole way of thinking. We will see that
accessing a database and accessing a user interface have a lot in common.

Again there are three components: The virtual dialog manager (VDM),
the virtual user interface (VUI), and the concrete API, that provides
access to the physical screen, which can be anything in the area of BMS,
Motif and MFC. The virtual user interface hides that API behind a generic
interface that can be talked to in terms of virtual windows and virtual
widgets. Like the DataStore, the VUI is unaware of use cases and business
objects and knows basically only two classes: virtual windows and virtual
widgets.

We use the term "presentable object" for all business objects and all use
cases that are to be presented to the user. hi general, all use cases and most
of the business objects will be presentable. A presentable object cannot be
presented as such, but only as a virtual window. In complete analogy to the
database side, each presentable class provides the methods "toVirtual
Window" and "fromVirtualWindow". Of course, the corresponding
interface is called "Presentable". The virtual user interface presents virtual
windows by means of its central method "processVirtualWindow". Within
that method, it handles incoming events. Many of them can be dealt with
directly by the VUI, for example, field editing. The main benefit of the VUI
is its ability to condense physical events (e.g., "button X released", "field Y
changed") into virtual events. Virtual events are abstractions of physical
events, e.g., "analyse user input", "confirm" or "cancel". hi the simplest
case, a physical event is directly mapped onto one virtual event. In general,

www.manaraa.com

396 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al.

there can be arbitrary definitions like "button Y released and field Z
changed and field T not changed". This idea works for graphical user
interfaces as well as for block-oriented ones: In a 3270 environment, there
are very few physical events ("key K is hit, where K is one of ENTER, PF1,
PF2, ... ") which can be easily refined to many different virtual events.
Whenever the virtual user interface recognises a virtual event it calls back
the virtual dialog manager and tells it to process the virtual event.

The virtual dialog manager acts as a link between the use case that wants
to execute its dialog and the VUI that communicates with the concrete API.
Each use case has a corresponding instance of VDM, which in tum has an
instance of a VUI. Thus, for each active use case, there will be one VDM
instance and one VUI instance. Each VDM instance manages one dialog
only and dies when that dialog is closed. The dialog management is
controlled by an interaction diagram. Interaction diagrams have been used
for quite a while and have proven to be extremely useful for the precise
description of user interactions; see Denert (1991) for more details. Here,
the use case hands over an instance of an interaction diagram to its VDM
instance. Thus, the VDM constructor expects a presentable object (i.e., the
use case) and an interaction diagram as arguments. It calls the use case's
toVirtualWindow-method and transmits the result to its VUI. When the
VDM instance is called back with the processVirtualEvent method, it
consults its interaction diagram and decides what to do. Frequently the
ruling use case is called back with its fromVirtualWindow method.

The VDM is little more than an interpreter of interaction diagrams and
fairly easy to implement. It is, of course, 0-software. The to/fromVirtual
Window methods are far less straightforward; see section 2.7.

An active database would call back the DataStore very much like
BMS/CICS or Motif would call back the VUI. Both the VUI and VDM can
be hierarchically organised along the lines of the PAC pattern (Bass, Coutaz,
1991).

2.4 Virtual devices

Virtual devices encapsulate technical APis. We have seen two of them:
1. the virtual user interface (VUI), hiding APis like BMS or MFC
2. the DataStore, hiding, for example, ODBC or OCI

Additional virtual devices can be introduced for any technical API that
should be hidden from the system (e.g., workflow systems or archives).
Virtual devices don't know anything about customers, accounts and orders;
instead, they deal with virtual containers containing virtual items. VUI is
concerned with virtual windows and virtual widgets; DataStore manages
DataContainers and DataContainerColurnns. The definition of a virtual

www.manaraa.com

Segregating the Layers of Business Information Systems 397

container consists of three parts: definition, contents, and context, which can
be implemented as a class or a record each, depending on the progralllllring
language. In order to bring a virtual device into being, you define the
interface, the item, the container, and you implement the interface for at
least one concrete API. This is, of course, aT-implementation (determined
by exactly one API). It is written in the same language as the API, that is, a
DataStore implementation for ODBC is likely to be written in C or C++; a
JDBC implementation in Java. A virtual device only knows a handful of
classes.

It is up to the designer to determine the amount of information known by
virtual devices. Choosing a complex virtual container allows full
exploitation of the features of the physical device but makes the
from/toVirtualContainer methods expensive to implement and reduces
portability. Choosing a dumb virtual container guarantees portability, allows
for cheap to/from-methods, but a 3270-minded virtual window won't look
very beautiful on a Motif screen. This is not as harsh a problem as it might
appear at first sight: Many famous standard products (e.g., SAP) have a
graphical user interface that is almost completely form based and could be
implemented by means of a rather dumb virtual window.

2.5 DataStore

This section describes the DataStore interface and its implementation
with a relational database in mind. However, it is equally possible to have
the interface implemented for an object-oriented database or for VSAM.
Why would somebody choose not to directly access an object-oriented
database but rather via a DataStore? There could be at least two reasons:
1. In spite of the ODMG efforts, the available object-oriented database

management systems differ significantly. Many vendors are small
companies whose future is hard to predict. Within the context of a
reengineering and/or migration project, a given application may switch
from a relational database to an object-oriented one, or, even worse, may
have to access both of them at a time. So, for many applications it is
crucial to separate database-influenced code from application logic.

2. Even with object-oriented databases, database classes and application
classes are not necessarily identical. Performance considerations at the
database level should be invisible at the application level.
It depends on the information conveyed by the DataContainer if the

DataStore-implementation is able to exploit the actual database' s features.
Let's look at a relational DataContainer, that can be mapped onto one or

more physical rows of one or more tables. The DataContainerDefinition is
a data structure (class or record) that contains all information necessary to

www.manaraa.com

398 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al.

talk to the database about rows of a particular table (field name, data type,
length, precision, primary keys, etc.). It is up to the software architect to
allow few or many data types in the definition. The DataStore maps these
virtual data types onto the physical ones.

The DataContainerContents is a container of column contents that in
tum are just values of the corresponding data type. It contains a reference to
the corresponding DataContainerDefinition that tells the DataStore how to
read the contents. It is crucial to make sure that a given contents matches the
definition it refers to.

The DataContainerContext contains additional information for the
DataStore about how to process given contents. When writing to the
database, it can be important to know which fields are unchanged; when
reading, perhaps not all fields are requested. DataContainerContext is a
container of column contexts that convey state information such as
"changed/unchanged" or "requested/not requested".

The DataStore interface defines the ordinary database operations in
terms of DataContainer definition, contents, and context. The most obvious
operations are:

DsReturnCode find(Datacontainer de) throws DsException;

void update(DataContainer de) throws DsException;

void insert(DataContainer de) throws DsException;

void delete(DataContainer de) throws DsException;

The DataStore also supports the database's transaction logic:

DsReturnCode commit() throws DsException;

void rollback() throws DsException;

It depends on the chosen transaction strategy if we need an additional
operation for locking:

DsReturnCode lock(DataContainer de) throws DsException;

The DataStore's return codes (class DsRetumCode) are used for normal
events (e.g., find() didn't find anything, commit() encountered a collision
with another user); exceptions are raised for unexpected events (e.g.,
database not available). The DataStore interface provides at least one
operation for bulk reading.

DsResultSet findMany(DataContainer de) throws DsException;

www.manaraa.com

Segregating the Layers of Business Information Systems 399

This is a query by example: findMany accepts an example and searches
all matching DataContainers. The DataContainerContext tells the DataStore
which fields are to be read from the database. This operation returns an
instance of DsResultSet, that implements the usual Collection interface, but
can be finely tuned with respect to prefetching and caching. It is accessed by
an iterator; the actual database fetch operation may happen at any time

the invocation of findMany (earliest possible point in time) and the
dereferencing of the iterator (latest possible point in time). A variety of
similar findMany methods can be implemented accepting more than one
example connected by logical expressions. Experience shows that almost all
queries of a typical OLTP application can be dealt with in this manner. The
DataStore also supplies DDL-methods, so it can check at runtime whether
the actual database layout matches the actual classes.

The DataStore sketched here is easy to implement, especially when it can
be copied from a template. However, it does not provide the full query
functionality of SQL or OQL. If this is required there is an obvious work
around: a findMany() method that directly accepts an SQL or OQL query
string. However, this pollutes the application kernel, effectively
transforming it into AT-software, so the workaround should only be a well
documented, rarely used hack.

2.6 Workspaces and storables

The Storable interface is implemented by each persistent class:

void toDataContainer(DataContainer de);

void fromDataContainer(DataContainer de);

void resolv e(Workspace ws , DataContainer de);

Oid getOid ();

Storable clone();

The to/from methods have been discussed already. They are easy to
program: The to/from methods of a complex class call the to/from methods
of its components; the DataContainer itself knows how to handle elementary
data types (int, float, and so on). This is an application of the well
known streams concept that is used similarly by, for example, XDR
(external data representation) or NDR (network data representation). The
to/from-methods map the object onto its database representation and vice
versa. For example, several object fields may be combined into one database
field . This is why in general it is not a good idea to have these methods
generated.

www.manaraa.com

400 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al.

The resolve method resolves the object's references: It knows the foreign
keys contained in the DataContainer and calls the Workspace's find-method
in order to get an object reference or a container of references. The clone
method is needed for technical reasons.

Inheritance is easily dealt with if the following rules are observed:
- There is one DataContainer for each persistent object regardless of the

number of superclasses contributing to that object. The DataContainer
contains a discriminator indicating the actual class.

- The toDataContainer method of any derived class first calls the
toDataContainer method of its superclass (like a constructor).

- The fromDataContainer method of any superclass calls the
fromDataContainer method of the actual derived class using a switch
statement on a discriminator contained in the DataContainer.
It is the DataStore's job to map the DataContainer according to the

DataContainerDefinition onto one huge table (one table per inheritance
tree), many tables (one table per class) or anything in between.

The Workspace interface is almost identical to the DataStore interface
except that Workspace deals with Storables whereas DataStore only knows
DataContainers. If we implement DataContainers as Storables, then any
Workspace implementation automatically implements DataStore and can be
used anywhere a DataStore is expected.

The Workspace's primary task is to call the appropriate to/from and
resolve methods. It has, however, further reasons for existing:
- It implements object identity, that is, subsequent finds yielding the same

object return a reference to that object, not a copy. The Workspace needs
the getOid() method in order to identify objects.

- It implements a given transaction strategy. The optimistic strategy reads
without lock and checks only at update time if there was a collision with
a different user; the pessimistic strategy locks all objects on read.
The idea of the Workspace is "What you say is what you get." All

changes of objects sharing the same Workspace are immediately visible to
all those objects that represent together an area of integrity. It is only at
commit time that these changes are published to the DataStore behind the
Workspace. Pursuing this idea a bit further, one can imagine an arbitrary
tree of W orkspaces, each managing an integrity area and communicating by
means of the publisher/subscriber pattern.

Another extension of Workspaces could handle (not implement!) the 2-
phase-commit protocol. A Workspace could have several DataStores hiding
different databases. The Workspace commit would be translated into the
well-known prepare-to-commit/commit loops . This works fine and is easy
to implement if all databases involved understand that protocol. The benefit
is that the application is not aware of anything like a 2-phase-commit.

www.manaraa.com

Segregating the Layers of Business lnjornu1tion Systems 401

A Workspace should be written in the same programming language as
the application and should be directly linked to it. A client/server cut
between application and Workspace can be compared to accessing the STL
by - say - CORBA. But a client/server cut between Workspace and
DataStore is a very natural matter. It is perfectly possible to have the
application written in Java and to provide fast access to Oracle by a
DataSrore written in C and using OCI. All you have to do is to transform
DataContainers between Java and C. There are many ways of doing that
using sockets, JNI, RMI, CORBA, or combinations thereof.

2. 7 Virtual user interface (VUI)

The virtual window contains information about things to be displayed. A
virtual window can be displayed as (part of) a physical window or distri
buted among several physical windows. Depending on the concrete API, the
VUI provides callback methods for all physical events it understands. It is
up to the designer to make virtual windows very intelligent (e.g., know
about things like tree views) or rather dumb (e.g., 3270-based). At any rate
the virtual window contains:
- The definition of virtual events. It is the VUI' s main job to map physical

events upon virtual ones thus keeping the other components free of
knowledge about screen, mouse, keyboard, and other devices.

- The data types of the input fields. The VUI performs all field related
type checks. The more data types a given implementation knows the
more checks it can perform. If a given VUI implementation encounters a
data type it doesn't know, it calls back its VDM.
The central method of the VUI is "processVirtualWindow". Within this

method, the VUI listens to physical events until it recognises a virtual event
in which case the VDM is called back. There is one instance of VUI for
each active dialog.

The mapping between an object and its representation as a virtual
window is similar to the mapping between an object and its representation
as a DataContainer. For example, it is up to the VUI to decide in function of
the screen size to represent a given virtual window as one or more physical
windows (that is, a window provided by the concrete API).

2.8 Virtual dialog manager (VDM)

The virtual dialog manager is instantiated every time a use case decides
to execute itself. Its main ability is to present Presentables (objects
implementing the to/fromVirtualWindow-methods) and to process virtual
events when being called back by its VUI-instance.

www.manaraa.com

402 Johannes Siedersleben, Gerhard Albers, Peter Fuchs, et al.

It manages the dialog by means of an lAD (interaction diagram). This is
a finite state machine that controls the states of a dialog. For each state,
there is a set of legal virtual events. The lAD indicates which action is to be
executed when a given virtual event occurs and it defines the resulting state
in function of the outcome of that action. These actions may be known to the
VDM itself (e.g., close_ window) or they are methods of the ruling use case.
The use case has to register these methods with the lAD. In general, most of
the dialogs will be covered by just a handful of standard lADs.

2.9 Virtual windows

A common argument against this kind of architecture says that
implementing virtual windows amounts to reimplementing the widget
hierarchy of A WT, Motif, or whatever. This can be avoided by using
concrete widgets directly within virtual windows, thus accepting use cases
that are no longer A but AT. When designing virtual windows, it is
important to know whether or not there is a binary link between use cases
and VUI. If so, the field's data types, for example, can be simply given as
interfaces the VUI calls back each time a field is edited. Likewise, the
concrete widget classes can be used directly by the use case. If not, all
information in the virtual window has to be coded as strings interpreted by
the VUI. This latter choice is obviously suboptimal as far as performance is
concerned, but it is ideally suited for a client/server cut between VUI and
VDM. For example, it is possible to have a VUI implemented as an applet
talking to a remote application (including VDM, use cases, business objects)
written in any language into which the string based virtual window can be
translated.

3. BENEFITS

Let us summarise the main benefits of QUASAR:
- Virtual devices only know about virtual containers. Hence, it is very

convenient to have a client/server cut between a virtual device and the
remainder of the application. The IDL contains only a handful of class
definitions (the virtual container and its items). As a general rule you
shouldn't have many business objects on both sides of a client server cut:
Maintaining consistency can be a nightmare, even with CORBA.

- It is not hard (even without CORBA) to translate a virtual container from
one programming language to another. This is obvious for Java and C++,
for example, but can also be done between C++ and COBOL. It is
possible to have a VUI written as a Java applet talking to an application

www.manaraa.com

Segregating the Layers of Business Information Systems

written in C++ talking to a DB2 database via a DataStore written in
COBOL.

403

- Virtual containers can be dumb or intelligent. A dumb container can
easily be mapped onto an intelligent one; the other direction is harder,
but often possible (an OK-button can be represented as a yes/no input
field) . Virtual containers could be standardised: The software community
doesn't need more than two or three of each kind.

- Implementation of use cases and business objects is not affected by any
technical API. There is a direct transformation from the application class
model (given in - say- UML notation) to the implementation classes.

- The database design determines the to- and fromDataContainer methods
and nothing else. Any change of the database layout only affects these
mapping methods.

- The user interface design determines the to- and fromVirtualWindow
methods and nothing else. Any change of the windows layout only
affects these mapping methods.

There are two important points beyond the QUASAR story:
1. We, the community of software designers, badly need well-defined

interfaces between the layers of the classical architecture or variants
thereof. Every working day there are many thousand software designer
thinking about basically the same design problems. There must be an
answer to that!

2. Sooner or later the tremendous, unfiltered amount of new technical
components will drive us crazy. There must be a way to enjoy new
features without being forced to migrate complete systems from Java 1.0
to 1.1 to 1.2 to l.x or from RDO to ADO to OLE-DB or to whatever is
cool next week.

REFERENCES

Ambler, Scott W. (1998), Building Object Applications That Work, Cambridge University
Press & SIGS Books

Bass, L., J. Coutaz (1991), Developing Software for the User Interface, SEI Series in
Software Engineering

Denert, E. (1991), Software Engineering, Springer Verlag.
Heuer, A. (1997), Objektorientierte Datenbanken, Addison Wesley.
Jacobson, I., M. Griss, P. Jonsson (1997), Software Reuse, Addison Wesley.

www.manaraa.com

AND
EVOLUTION OF SOr 1 WARE

www.manaraa.com

Security Issues with the Global Command and
Control System (GCCS)

Shawn A. Butler
Computer Science Department, Carnegie Mellon University Pittsburgh, PA 15213
shawn. butler@ cs.cmu. edu

Key words: Architecture, security, command and control, common operating environment,
COE,GCCS

Abstract: The Global Command and Control System (GCCS) was one of the most
ambitious and largest software integration tasks in the history of the
Department of Defense. As the Chief Systems Engineer for GCCS, I found
architectural differences among command and control systems presented
unique integration and interoperability challenges. In this paper I present 3
security-related examples of specific problems I encountered when I attempted
to integrate several systems into GCCS. I also discuss the problem of system
level security analysis and introduce a framework that software engineers can
use to evaluate security.

1. INTRODUCTION

The Global Command and Control System (GCCS) was one of the most
ambitious and largest software integration tasks in the history of the
Department of Defense. Applications in all stages of maturity were chosen to
be integrated into a seamless system, organized around the Common
Operating Environment (COE). The COE was a collection of software
components commonly found in all command and control systems. As the
Chief Systems Engineer for GCCS, I was responsible for every aspect of
integration and development including GCCS security.

Security proved the most difficult of all the system integration tasks for
two reasons. First, although security specialists talked about the "security

www.manaraa.com

408 Shawn A. Butler

architecture" of GCCS, a security checklist derived from a set of security
requirements and policies was the best they could produce. Checklists
provide a piecemeal approach to system security and usually lack a system
level perspective. GCCS interoperability requirements and the process of
integrating legacy applications highlighted the role that architectures and
system designs played in GCCS security. Second, users ' demands for
configuration flexibility presented significant challenges to maintaining a
consistent level of security with each system. A team of independent security
specialists verified the system's security just before fielding. Each security
evaluation drained off scarce resources for several weeks at a time. The
security team attempted to find security flaws using whatever means they
considered reasonable. System security was re-verified each time the
configuration of GCCS changed, which was almost monthly during initial
fielding.

The Department of Defense relies on a security process that is not
compatible with modem software development processes and designs. What
I really needed were concrete architectural and design guidance and
methodologies for analyzing system security that did not depend on a
security specialist's ability to defeat the system after I build it. My
frustrations with these two problems led to my current research and the
beginnings of a framework to help solve the second problem.

2. BACKGROUND

For many years the Department of Defense operated the World Wide
Military Command and Control System (WWMCCS) as the primary
command and control system1• WWMCCS was a distributed information
system that linked major military command centers throughout the world,
such as the European and Pacific theaters and the National Military
Command Center in the Pentagon. The system processed TOP SECRET,
SECRET, and UNCLASSIFIED information, but the bulk of information
was SECRET. Since WWMCCS did not have multi-level security, the
system operated as if all the information were TOP SECRET. The security
requirements for a TOP SECRET system are greater than for systems
processing SECRET information.

Military computer security requirements are found in a number of
military directives, regulations, and publications. The most well known set
of publications are the "rainbow" series, which consist of more than 20
books, each book a different color. The Orange Book defines the concept of

1 "Command and control" is a term used to define the activity of monitoring, planning and
directing military resources.

www.manaraa.com

Security Issues with the Global Command and Control System 409

a Trusted Computing Base (TCB) and specifies the TCB requirements for
increasing levels of security. UNIX systems are evaluated and classified
based on the criteria established in the Orange Book. Ordinary UNIX
systems usually fall into the Cl or C2 class, which is characterized by
discretionary security protection requirements. Operating systems classified
at the B or A level meet increasingly stricter security requirements and are
usually highly specialized operating systems.

The system consisted of 40 Honeywell mainframe computers that
serviced numerous dumb terminals within each major command center and
in isolated locations throughout the world. Initially built during the 1970's,
WWMCCS had become quickly outdated so a modernization program was
initiated during the early 1980's (WWMCCS 1992). Research,
development, test, and evaluation for the modernization program was
budgeted for $773 million, By 1987 the program was behind schedule and
over budget so congress cut the FY 88 budget to $21 million. Technology
rapidly passed the WWMCCS system and users became increasingly
dissatisfied with WWMCCS capabilities. By the mid-nineties most other
command and control systems had far exceeded WWMCCS functionality.
However, none of the newly developed command and control systems could
meet the WWMCCS user's functional requirements.

3. GCCS

The Global Command and Control System, a highly distributed
client/server system, was conceived as the replacement for WWMCCS. The
initial version of GCCS was a conglomeration of existing command and
control applications and new applications that increased and replaced
WWMCCS functionality. GCCS consisted of two parts: the Common
Operating Environment (COE) and the Application Layer. In order to keep
development and fielding costs to a minimum, GCCS consisted of
commercial hardware and software and processed only SECRET
information. Not only did this simplify the security requirements, but this
also meant that GCCS could be fielded on standard commercial UNIX
operating systems instead of more secure, and very expensive B2 operating
systems. I was responsible for mitigating the risks associated with security
weaknesses in the UNIX operating system.

Although most major system development efforts take 5 to 10 years, the
Joint Chiefs of Staff wanted the replacement system within 2-3 years
beginning in 1994. The primary motivation for the rapid development cycle
was the enormous cost of operating WWMCCS, estimated at
$7,000,000/month. The 2-3 year development constraint was thought

www.manaraa.com

410 Shawn A. Butler

attainable for several reasons. First, GCCS was to be built using existing
applications, therefore, GCCS was simply considered an integration
exercise, rather than new development. I believe there is a general
misconception that integration efforts take less time than new development.
Stakeholders assumed that most of the applications selected to be part of
GCCS fulfilled enough of the user's requirements that little or no additional
development needed to be done. Applications were selected from various
Department of Defense agencies and services based on how well they met
user requirements and other factors, the least of which was the ease with
which they could be integrated, maintained, scaled, or extended.

3.1 GCCS architecture

The foundation of GCCS is the Common Operating Environment (COE),
18 abstract functional components that, when implemented, form the
infrastructure services and a set of standard components for all GCCS
applications. All existing or legacy applications had to "migrate" to the
GCCS COE. Migration required applications compliance with engineering
guidance in 4 areas: integration and run-time, user interface, architecture,
and software quality. Software for the COE came from each of the services,
and the Defense Mapping Agency. I was charged with integrating the COE
components and more than 20 legacy applications, all in various stages of
development, into a single command and control system that could be
uniquely configured at each operational site. GCCS was really a set of
command and control applications, which any site could install components
as needed.

COE components fall into 3 categories (figure 1):
1. the kernel
2. infrastructure services
3. common support application components

Kernel components consist of the operating system, window libraries
(X11R5 and Motif), printing service, executive manager, name service, and
a security/system management service. Kernel components are considered
essential system components, i.e. every workstation requires these services
regardless of function. The security service provides tools to allow system
administrators to set up various types of access control accounts. The kernel
configuration is tightly controlled since slight deviations from the
established configuration could cause disastrous system integration
problems. All application developers are expected to develop to the kernel
configuration and each developer receives a copy of the kernel and a set of
tools to ensure that they follow the run-time integration engineering
guidelines.

www.manaraa.com

Security Issues with the Global Command and Control System 411

COE Standard API's

Common Support Applications

Infrastructure Services

Operating System

Figure I. Common Operating Environment

The infrastructure services provide the middleware for the applications.
The middleware consists of the following components: management
services, communication services, distributed computing services,
presentation and web services and data and object management services.
Management services are network and system management tools that system
administrators use to monitor the system. Distributed Computing
Environment (DCE) provided the distributed computing service and the
Common Object Request Broker Architecture (CORBA) served as the data
and object management service, although the initial GCCS fielded system
did not use either service. The communication service provides the interface
to external systems. Most external interfaces consisted of messages sent to
and from GCCS. Netscape and Internet Rely Chat implemented the web
services, but the presentation service was not specified at the time.

The Common Support Layer of the COE consisted of the group of
applications that are common to all command and control systems such as
office automation applications, situation displays, message generation and
management software, etc. At the time, office automation applications, such
as word processors, spreadsheets, and slide presentation software did not
compare to the products used on personnel computers. UNIX based office
automation software had considerably less functionality than PC products.
The biggest drawback to the UNIX software was the incompatibility of file
formats. Users had hundreds of Microsoft PowerPoint files that were not
exportable to the UNIX office automation software and any files created on
the UNIX system were not exportable to the PC system. Although PC
emulators could have provided a temporary fix to the office automation
problem they were too expensive.

www.manaraa.com

412 Shawn A. Butler

3.2 Interoperability issues

The primary drawback of the existing command and control systems was
their lack of interoperability between services. Since joint military
operations nearly always consist of units from the Marine Corps, Navy, Air
Force and Army working together, joint military operations require a
command and control system that is interoperable among the other service's
command and control systems. As an illustration, many of the frustrations
experienced during Desert Storm occurred because systems were not
interoperable. Information was frequently exchanged using floppy disks or
paper printouts which then had to be re-keyed into an electronic form. As a
consequence of the experiences in Desert Storm, interoperability became the
number one command and control system requirement in the Department of
Defense. Although interoperability was a critical requirement in joint
operations, it was not well defined. Interoperability meant different things to
different users and under different circumstances. Ideally, systems should be
able to efficiently exchange data without any loss of meaning or content, but
in practice this is very difficult. The Department of Defense outlines 4
levels of interoperability for command and control systems. The highest
level "is characterized by the ability to globally share integrated information
in a distributed information space."(DISA 1996). Level 4 was the ultimate
goal for GCCS, but each application implemented lower levels of
interoperability.

In some cases, application portability across different hardware platforms
or operating systems was sufficient to meet interoperability requirements.
Data is exchanged because operators from different services are co-located.
Each service purchased their own computer hardware so applications built to
run on Sun Microsystems hardware did not have to be converted to the
Hewlett Packard hardware and vice versa. The lack of portability forced
users of one service to learn the other service's application, or for the
application and hardware system to integrate with the larger system.

Interoperability could also be achieved if systems could interface using
formatted messages, e-mail, or import/export functions. In practice this
method was flawed. Currently, all command and control systems
communicate with other systems using standard message sets.
Unfortunately, the "standard" message sets are not truly standard and not
particularly efficient for transmitting all types of information. Many of the
message standards were developed before multimedia applications became
integrated into command and control systems. Each command and control
system selected from several standard message sets, which meant that each
command and control system used a different set. In addition, many of the
sets were extended with unique messages that were not compatible with the

www.manaraa.com

Security Issues with the Global Command and Control System 413

DoD standard. lnteroperability through messages design limits
interoperability for two reasons:
1. Users are limited by message content
2. The information is only available when it is sent.

A common view of the battlefield is essential to effective military
operations. A higher level of interoperability is required when users shared
information from the same source. A common view is ensured when all
users have access to the same information source. In practice, different
database schemas and data elements made it nearly impossible to share
information from a central location. In my experience, integrating databases
is one of the most difficult engineering tasks, however, it also provides the
greatest interoperability.

3.3 Architectural security issues and interoperability

3.3.1 Interoperability incompatibilities

However interoperability was achieved between two systems, there were
usually security implications. If messages were exchanged then encryption
of the messages as they pass between two systems was usually sufficient to
control access to the information. Encryption incurs maintenance costs
because the DoD relies on special hardware for all encryption. The DoD
builds many types of encryption devices, all of which are incompatible with
each other. No matter which encryption device is chosen, the hardware is
scarce and not compatible with other systems that use different encryption
devices. Incompatible encryption components make interoperability nearly
impossible. This detail is often overlooked when designing command and
control systems.

However, when two systems share a common database, then access
controls to the database become a primary security concern and
incompatibilities between systems can surface. For instance, two
applications required access to classified data in the database. One
application used database access control mechanisms to ensure that
unauthorized personnel did not get unlimited access to the data. Users were
restricted from viewing or writing to particular rows, or restricted from
certain tables in the database. The other application restricted a user's access
to the data by controlling access to the application. Implicit in the latter
design is an assumption that any user with access to the application has
unlimited access to the database. These two fundamentally different, but
valid, points of access control made integration of these applications into a
seamless system difficult.

www.manaraa.com

414 Shawn A. Butler

3.3.2 Additional integration problems

GCCS interoperability requirements, integration of legacy applications
and the user' s demand for configuration flexibility presented significant
challenges to maintaining a consistent level of security with each system.
Some other security integration problems with the GCS architecture were
access control designs and application programming (API) interface
mismatches. Access control designs of two systems created a particularly
difficult problem. Access controls were usually based on an operator's role
or position and the role could change during the operator's shift or an
operator may have several roles during the same shift. Problems arose when
one system required an operator to log out and then log in when he switched
roles, in effect restricting operators from assuming two roles simultaneously.
Although this simplified audit trails in that system, it was an unacceptable
specification in another system. Security administrators needed the
flexibility to accommodate both requirements. Eventually a scheme for
access control was developed that was acceptable to all users .

A third problem arose when we discovered incompatibilities between
security technologies. Specifically, the Fortezza system developed by the
National Security Agency (NSA) was incompatible with Kerberos.
Fortezza, NSA's smart card technology, was the latest security mechanism
that promised improved system security. NSA considered Kerberos
inadequate for GCCS and insisted that GCCS implement the Fortezza
system. Although Kerberos had recognized flaws it was available and used
in commercial systems. Fortezza didn't have Kerberos' flaws but wasn' t
available in production quantities.

Furthermore, NSA had not yet developed a Fortezza card that had been
adequately tested for SECRET systems. The initial GCCS design used
Kerberos and later integrated Fortezza when it became available.
Unfortunately, incompatibilities between the application programming
interfaces (API's) surfaced, and made integration of the two technologies
impossible until the API conflicts were resolved. NSA quickly began to
work with members of the Open Systems Foundation, however, the process
was expected to take at least two years .

3.4 Architectural integration summary

As the GCCS chief engineer, it was obvious to me that the security of a
system does not depend solely on a collection of "silver bullet" technologies
and checklists. I could not integrate two systems and plan to overlay the
security later. The system security must be designed hand in hand with the
system architecture. Interoperability requirements and legacy system

www.manaraa.com

Security Issues with the Global Command and Control System 415

integration concerns are not confined to the Department of Defense. As
commercial organizations expand and grow so do their interoperability
requirements. Companies such as SAP specialize in integrating reusable
components. Common system engineering questions include the following:
- What are the design principles and engineering guidance that system

engineers should follow?
- How does the architecture support system security?
- What security mechanisms are appropriate for a particular architectural

style?
- What are the security weaknesses associated with an architectural style?
- What security conflicts should system engineers look for? What are the

design pitfalls?
- How do interoperability requirements affect security?

The list could go on but answering any of these questions would be
extremely useful to system developers.

4. SECURITY IMPLEMENTATION

In addition to the architectural issues of integration and interoperability, I
was overwhelmed with the myriad security technologies and designs
available at the time. While some security solutions were dictated by
regulations, I retained a great deal of flexibility to select the mechanisms that
constituted the system's security. Frequently, the tension between
performance and maintainability and security, raises such questions as: Since
GCCS is unusable when full auditing is turned on, how much auditing is
enough? What are the alternatives? How does a particular technology fit
with other technologies? Are there overlaps, gaps or conflicts? Is the
technology right for the GCCS architecture? The most important question
for me is "How does a technology affect the overall security of the system?
Without this knowledge I find it difficult to make engineering tradeoffs
when deciding the right mix of security technologies for the system. System
level methodologies or frameworks to analyze security appear to be
nonexistent.

4.1 State of the art

Current security models don't seem to support the idea of the system
level perspective of security. One of the first security models, the trusted
computing base model from the government's Trusted Computer System
Evaluation Criteria (Orange Book), was criticized for not addressing
network issues and relying on the hardware and software within each

www.manaraa.com

416 Shawn A. Butler

workstation to enforce security policies. This model clearly lacks a system
perspective. Network models have an implicit boundary that separates
insiders from outsiders. Network models emphasize protective barriers that
restrict outsiders from penetrating the system, however, there are many
internal threats as well. Also, it may be difficult to determine the boundaries
of the system in a network model. The "How To" books and trade magazines
of security often offer advice along the following lines:
- Identify the system resources that need to be protected.
- Identify the threats to the resources and/or system vulnerabilities.
- Establish security policies.
- Implement cost-effective strategies to minimize the risk threats impose

against the resources.
Approaches may vary slightly, but they generally include these four

steps. Although the books outline the approach, but they don't really
provide any practical strategies. This last step is the kicker. As chief
engineer, I found it relatively easy to identify system resources and threats
for the GCCS. Implementing cost-effective strategies was difficult because I
didn't have a way of comparing alternatives and it was difficult to
understand how each alternative fit in the system context.

There has been extensive cryptanalysis research, attempts to discover
stronger cryptographic algorithms, and theoretical research in intrusion
detection. This type of research is invaluable if we are to rely on these
technologies in our systems, but its place in the overall context must be
understood. For example, encryption export controls present unique
problems when the system must be compatible with foreign military
systems. Trade magazines and security handbooks provide high level
guidance on how to approach security, and some handbooks such as Internet
Security: Professional Reference by New Riders Publishing provide very
detailed information on how to build a firewall or how to set security
sensitive system controls. Threat information taxonomies are easily found in
most security textbooks and journals. The Computer Emergency Response
Team (CERT) at the Software Engineering Institute (SEI) periodically
provides alerts and warnings about security problems and the Internet has a
wealth of information about security. How does the system engineer pull the
information together to see how all the policies, technologies and design
maintain confidentiality, availability and integrity in a system?

5. A FRAMEWORK FOR SECURITY

As Chief Systems Engineer of GCCS, my integration tasks required that I
see how each technology, design, or policy fit into the system. I wanted the

www.manaraa.com

Security Issues with the Global Command and Control System 417

framework to reveal the system security weaknesses and allow me to see
how alternatives compared in the system. I felt such a framework would
allow me to make cost-effective decisions about how to choose among all
the things I could do to maintain a particular level of security within GCCS.
I needed to be able to describe the level of the system security. Such a
framework was not available to me at the time. I am now a Ph.D. student at
Carnegie Mellon University and have the opportunity to work on
constructing such a framework.

Instead of closing this experience with a wish list of questions for
researchers to consider, I will lay out a preliminary sketch of the security
framework that forms the basis of my own research. The framework takes
advantage of the work accomplished by the Networked Systems
Survivability Program and presented in Survivable Network Systems: An
Emerging Discipline (Ellison, Fisher, Linger, Longstaff, and Mead 1997).
The following outlines the components of a security analysis approach.

The System Security Analysis Framework (SSAF) is divided into five
components:
1. the system
2. security technologies, policies, and design techniques
3. known weakness and flaws for each item described in the security

technologies component
4. threats and vulnerabilities
5. the security model.

SSAF provides a way to include both automated and non-automated
security procedures as part of the analysis. The framework accommodates
highly connected information systems and standalone systems. It is not
constrained by the network topology, nor does it ignore the topology. The
security model described in the framework places the system resources at the
center of the model and provides a mechanism for showing how the system
security mitigates the risk to those resources. The security model pulls all
the other pieces together.

1) The system component of the framework describes the system
architecture, relevant designs, and non-functional attributes. A complete
system description that includes how people interact with the system is
necessary so that the system engineer can understand how technologies,
policies and designs are implemented or fit within the planned
implementation. Many of the security technologies adversely impact the
other non-functional attributes such as performance, so it is important to
understand how the other non-functional attributes will be balanced in the
systems. Non-functional requirements such as latency, reliability, and
performance, must be identified here. The system component provides the
context in which the security analysis takes place. Most of the information

www.manaraa.com

418 Shawn A. Butler

for the system component can be obtained from architectural description
documents, design and requirement documents. Unfortunately, none of
these documents were available for GCCS, however, most of the information
could have been gathered from developers and software engineers.

2) The technologies component is a collection of security technologies,
policies and designs that make up the system security. Security technologies
include firewalls, access control lists, auditing mechanisms, intrusion
detection systems, cryptography, etc. Security policies describe how system
privileges are established, processes for reporting violations, password
procedures, and any other policy that contributes to the overall security of
the system. Configuration settings in products such as access control
mechanisms or firewalls enforce many security policies; others are strictly
procedural. Each element requires a detailed description about how it is
implemented in the system described in system section.

3) The weakness and flaws component identifies known weaknesses and
flaws of each of the items listed in the technology component. Security
policies often depend on the integrity of key individuals and systems suffer
catastrophic failures when an individual betrays his trust. Separate analysis
of weaknesses and flaws serves two purposes. First, analysis explicitly raises
the awareness of the weaknesses and flaws associated with each item so that
the system engineer can address these vulnerabilities, if possible. Second, it
identifies areas that might need special attention when the system
configuration changes.

4) The threats and vulnerabilities component addresses the system
threats and vulnerabilities. Almost all security approaches advocate a threat
identification step. None of the many threat assessment documents I have
read provided specific guidance about threats and vulnerabilities.
Documents usually identify a standard set of threats such as vulnerability to
electronic eavesdropping, mal content employees, nuclear EMP, and
hackers. Reports usually stated that hostile and non-hostile foreign countries
might be highly interested in the information the system processed. Some
reports might even identify a few flaws in the UNIX operating system for
which there were known patches. These reports had relatively little value
other than to confirm that I had followed the appropriate procedures and
conducted a threat assessment. The threat and vulnerabilities component
must be much more extensive if it is to be useful.

An initial start at improving threat assessments is a comprehensive
taxonomy of threats. Fred Cohen (Cohen, 97) identifies 94 methods of
attack. Additional detailed attack information is available from the Internet
or from CERT bulletins. Security journal articles offer occasional guidance
such as the recent article in Computer & Security (Hancock, 98), which
identified several attacks in detail. It may be impossible to collect all of the

www.manaraa.com

Security Issues with the Global Command and Control System 419

system threats because there are so many information sources and new
attacks are appearing before the old attacks have countermeasures.
Developing the threat component of the framework will probably be an
ongoing process.

5) The core component of the framework is the security model (figure 2),
which has four layers. The purpose of each of the other components is to
help populate each of the four layers of the security model. System threats
and vulnerabilities are external to the four layers. Each layer is populated
with items from the technologies and policies component. The model is
constructed using four defensive layers:
1. protection
2. detection
3. mitigation
4. recovery

Each layer plays a different role in protecting the system resources.
Consistent with other security models, the first step is to identify the system
resources that must be protected. The system component should be the
source of resource information.

Mitigation
Recovery

Resources j
Figure 2. Security framework

The first layer is the protection layer. For each threat identified, the
security engineer should identify the security technology or policy that stops
the threat from gaining or denying access to a resource. This layer should be
populated with all the security policies, products and designs that prevent an
attack from succeeding. These policies and products have may have flaws,
but they may still be effective against some (e.g. accidental) intrusions.
Items that most likely fall into this layer are firewalls, passwords,
background checks on employees, access control lists, etc. GCCS

www.manaraa.com

420 Shawn A. Butler

implemented all of these and more. Ideally, a system engineer would like a
one for one mapping between threats and prevention mechanisms.

The second layer is the detection layer. Most likely, none of the
mechanisms in the protection layer are 100% attack proof. There may not
even be a protection mechanism for a particular threat. Hancock (Hancock,
98) identified several attacks, some of which did not have known
countermeasures. Without countermeasures, the system engineer needs to
identify mechanisms that may detect an attack so that appropriate procedures
are developed to properly react to an intrusion or denial of service attack.
Intrusion detection systems, virus detection programs, audit trails and logs,
special alerts and triggers are all security mechanisms that the security
engineer should identify for the detection layer. System personnel should be
guided by policy when responding to an attack. For each relevant threat, the
system engineer should consider ways to detect an attack.

The third layer is the mitigation layer. Here the system engineer
considers technologies and mechanisms that minimize the damage an attack
may do if it is not detected or contained. System partitioning and system
redundancy might be two techniques a system engineer could design into the
system to minimize the damage from an attack. The purpose of this layer is
to consider techniques and policies that help minimize the damage done
from an intrusion that might go unnoticed for some time. Some of the
attacks may not cause much damage because they are not particularly
destructive attacks, so the system engineer may decide that a particular
attack is more a nuisance that doesn't warrant any attention.

Recovery is the fourth layer. The system engineer must be able to
recover from an attack. An attack may penetrate the preceding layers so the
system engineer should consider how the system can recover from the
damage. Back up and recovery procedures fall into this layer. Highly
distributed systems like GCCS allow system engineers to design fail over
and redundancy into the system without much trouble.

I have only begun to explore the feasibility and potential of this
framework. Even if it does not immediately provide the quantitative
analysis that most engineers hope for, I think it has potential to compare
alternatives relative to one another. It pulls together the essential pieces of
information in a uniform, structured way and gives the system engineer a
system level perspective.

If this framework had been available to GCCS it would have served us
well. The information was available to populate the framework. The GCCS
security checklist would have been an excellent starting place to gather an
initial list to populate the security technologies component of the framework.
Also, GCCS security specialists developed a GCCS security policy
document that outlined many of the security policies that would be included

www.manaraa.com

Security Issues with the Global Command and Control System 421

in this part of the framework. Although these documents were available,
there were many discrepancies between the policies identified in the
document and those actually implemented. Obviously, it is important to
distinguish between the written from the practiced.

6. CONCLUSION

GCCS presented many challenges. Security was the one area in which I
felt the most helpless. It seems so much effort is put into each technology
and so little effort into the engineering and design principles that need to
guide system developers. Trade magazines don't provide the depth of
advice that is needed to build the system security from the parts. The
research community has not yet produced a model that is of direct, system
level assistance. If we don't understand how security integrates into system
architectures today then how will know the role security plays in the domain
architectures of the future?

REFERENCES

Cohen F. (1997), Information System Attacks: A Preliminary Classification Scheme,
Computer & Security. 16, p. 29-46

Ellison, R.J., Fisher, D., Linger, R.C., Lipson, H.F., Longstaff, T., Mead, N.R. (1997),
Survivable Network Systems: An Emerging Discipline, Technical Report, CMU/SEI-97-
TR-013, 1997

Hancock, B. (1998), Security Views. Computer & Security 17, p. 99-109
Defense Information Systems Agency (DIS A) (1996), Defense Information Infrastructure

(DII) Common Operating Environment (COE) Integration and Runtime Specification
(I&RTS), Version 3.0 (Draft) December 1996

Russel D. and Gangemi, G.T. Sr. (1992), Computer Security Basics, Sebastopol, CA:
O'Reilly & Associates, July

Modernization of the Worldwide Military Command and Control System (WMCCS), (1992),
National Academy Press

www.manaraa.com

Architecture for Software Construction by Unrelated
Developers

W.M. Gentleman
National Research Council, Institute for Information Technology, Ottawa, Ontario, Canada.
phone (613) 993-90/0,fax(613) 952-0074,
e-mail Morven. Gentleman@ /IT. NRC. CA

Keywords: Software architecture, COTS, unrelated developers

Abstract: Suppose one COTS (Commercial Off the SheiO software supplier provides an
interpreter for a problem oriented language, another provides an application
generator for producing numerical solvers for a class of partial differential
equations, and a third produces a visualization package. A team of domain
specialists writes scripts in the problem-oriented language to define cases to be
solved, uses the application generator to produce an appropriate solver, solves
the generated PDE, and uses the visualization package to analyze the results
and adjust the description of cases. Such examples illustrate that large and
long-lived software systems can result from the combined efforts of various
unrelated development organizations, organizations not even known to one
another. No single design authority, to which the others report, has overall
system responsibility. Such examples also illustrate the importance of
including in software architecture the relationships between entities that exist
and are used during the construction process, instead of focusing only on
relationships between entities that exist at run time. The needs for software
architecture for such systems are not well met by the existing literature.

1. INTRODUCTION

The literature on software architecture, for instance as surveyed in Shaw
(Shaw, 1996), has largely focused on components in the sense of
computational entities that exist at run time, and their connections in terms
of data and control transfer. Various styles of how the same computational

www.manaraa.com

424 W. M. Gentleman

system could be structured have been studied, considering how the structure
could be analyzed, how individual components could be reused, and how the
structure could be reused in other situations. Alternatively, practitioners
(e.g., Whitney, 1995; Tzerpos, 1996; Finnigan, 1997) have sometimes used
software architecture as a focus on definition and use relationships of entities
that exist at runtime. These are, of course, interesting issues, but in many
situations they are not the dominant reasons for the architectural structure
adopted for the software system. Our definition of the term software
architecture is that it is a high-level description of a set of entities and their
relationships, the understanding of which is essential to the understanding of
the overall structure of the system. This is consistent with the definition
other authors have used, although the entities we might consider, and
especially the relationships we might consider, are broader than some other
authors might take.

In some systems, physical considerations dominate the software
architecture. In these systems, any single computer might run several
software components, but software entities running on different computers
are definitely considered distinct components. The software architecture thus
reflects hardware architecture issues such as geographic locality, bandwidth,
unique hardware resources, redundancy for reliability, replication for
capacity, etc. It may also reflect organizational and administrative realities of
the operators, such as what functionality is centralized, what functionality is
replicated at each branch plant or even at each workstation, and what
functionality is provided by computers belonging to the customers of the
system operator, not those of the operator itself.

In this paper we consider situations where the software is implemented
not by a single organization, but by a number of organizations, perhaps as a
prime contractor with subcontractors, perhaps as collaborating peers with
different competencies, or perhaps as suppliers and users of COTS
(Commercial-Off-the-Shelf) software products (Dean, 1997; Vigder, 1997).
The software development organizations contributing parts of the system
may not even be known to one another. These development organizations
may contribute parts of the system at very different levels of abstraction.

The situation where the development organizations are unrelated,
interacting only as suppliers and customers of COTS software products, is
particularly interesting because it is so far from the traditional development
model. No single design authority, to which the others report, has overall
responsibility for the whole system, in that, by definition, each COTS
supplier implements his product to his own specification and timetable
determined by his perception as to the market demand, of which this
application is typically an inconsequential portion. Detailed specifications
and source code for COTS products are rarely available, never mind possible

www.manaraa.com

Architecture for Software Construction by Unrelated Developers 425

to influence. More seriously, the maintenance and evolution of each COTS
component is done to its supplier's agenda, and since obsolete versions
usually become defunct, a long-lived system must adapt to the change. When
a part evolves and must be reintegrated, the enhancement may not even be
implemented by the supplier of the original part - indeed, sometimes a
plug-compatible part of completely different design is substituted. Evolution
of such systems typically results from the evolution of the different parts,
although the introduction of new parts and changes in the relationship of
parts can occur. The integrator who brings together all the parts must find a
software architecture that can use the COTS products as they are, or as they
might be in the future. The integration role may be substantial, or it may be
quite small, and may even be automated.

For systems of the kind considered here, there is often not simply a single
run time. Often components are run to produce entities, even source code,
that will be used by other entities at a later run time. It is thus important in
the software architecture also to include relationships between entities that
exist, or are used, during the construction process of other entities. Some of
the contributions, for instance macro packages, may no longer be localized at
run-time, although they may have been localized at some earlier stage in the
build process. Potential attributes of a component generated during a run are
often not determinable from specific instances generated during particular
runs, but may be inferred from the generating subsystem and the input it
might be given. Tools used in the build process may be essential in
establishing that constraints required at the run time of the application itself
are in fact satisfied. The build process itself thus must be part of the software
architecture. The system architect plans how the parts are created and
brought together. Fortuitously, box-and-arrow diagrams are traditionally
used both for explaining the build process and for explaining the software
architecture.

These issues will be illustrated by three thinly disguised examples of real
systems, systems implemented in the past that continue to be used and to be
evolved today.

2. A SIMPLE EXAMPLE

As a concrete example, consider a situation where one COTS software
supplier provides an interpreter for a special-purpose, problem-oriented
language, another provides an application generator for producing numerical
solvers for a certain class of partial differential equations, and a third
produces a visualization package. The application of the system might be,
for instance, to analyze accidental fires. A team of domain specialists writes

www.manaraa.com

426 W. M. Gentleman

scripts in the problem-oriented language to define cases to be solved in terms
of geometry, fuels, atmospheric conditions, etc.; uses the application
generator to produce an appropriate solver given the characteristics of a
specific case; compiles the generated solver; solves the generated PDE for
that case; uses the visualization package to analyze the results and adjust the
description of cases; and then repeats the cycle. Because the solution of each
individual case is a significant investment, and because investigation of an
accident involves running many cases and similar cases may show up in
future, successful results from each case would typically be stored in an
object database, keyed by parameters that characterize the case in the
potential search space.

At a sufficiently superficial level, the software architecture is simple and
uninteresting: a cycle of subsystems, each producing data for its successor
(figure 1).

Model building c:::::> Numerical solver c:::::> I Compiler I
interpreter generator

L J}
Visualization Solver
package runtime

j}

Figure 1. Superficial block-and-arrow diagram for example 1

A deeper level of software architecture elaborates on what connecting to
the successor subsystem really entails, on how to exploit previous cases to
reduce computational effort, and on how to recover from computational
failures such as might result from going beyond the domain of applicability
of the physical models or the numerical procedures. Because COTS
components produce their output in whatever representation and sequence
that they do, and because this is unlikely to conform to the rigid
representation and sequence required by the successor COTS component,
insertion of, at least, a filter between them is normally required.

www.manaraa.com

Architecture for Software Construction by Unrelated Developers 427

In this example, as is often the case, more is needed. The COTS
components will not work for every input with which they might be
presented, and consequently the architecture must be extended to make
provision for exceptions that might be raised. Moreover, a COTS component
produces whatever output it produces, and some of this is not actually used
by the immediate succeeding component in the notional cycle, but should be
passed on through to subsequent components, in the same way that passes in
the traditional compiler pipeline burned through intermediate language
constructs not operated on until a later compiler pass. Unfortunately, COTS
components are unlikely to make provision for simply passing through input
that they do not intend to process, so the glue components must facilitate
such data bypassing the COTS component. Thus the glue components are
normally more general than simple filters.

In this example, the connectors between the components in the
superficial view of the architecture are wildly different. At some level this is
sufficient, because it shows where dominant relationships exist - and do
not exist. At a deeper level we need to understand what they are. The output
of the first component, the model builder, is of three different kinds:
mathematical formulae which are the partial differential equations and also
the description in space of the region of integration; mathematical facts
which have been proved or are to be assumed about these formulae; and
large numerical arrays that represent initial values, boundary conditions, and
other parameter values. Only the mathematical facts and the mathematical
formulae, together with a few of the parameter values, are required by the
second component, the application generator. This application generator uses
these facts and formulae to select among various choices of algorithms and
data structures to produce source code for a numerical solver optimized to
the particular kind of problem to be solved and the kind of computational
resources available to solve it. The first connector thus filters a data stream,
possibly reordering typed items and changing their representation. The
second connector is a very simple pipe, taking the source code produced by
the application system and feeding it to a compilation system. The third
connector is more complicated, for it must run the executable image
produced by the compilation system, and make available to it the numerical
arrays and parameters produced by the model builder. Classically, the fourth
connector could be very simple, for numerical solvers wrote their results to
files which were later subject to analysis by techniques such as visualization.
The visualization might also have required the full output from the model
builder. Today, however, visualization is often used interactively to steer the
computation as it proceeds, so in addition to inspection of stored partial or
complete results, this connector must support debugger-like actions. The
final connector, from the visualization package back to the model builder, is

www.manaraa.com

428 W M. Gentleman

simply rev1smg the scripts that define the problems, and is probably
accomplished by a standard editor.

3. USES FOR A SYSTEM ARCHITECTURAL
DESCRIPTION

By looking at how we might use the architectural description of a system,
we can learn more about what it might contain, and how it would be usefully
represented. Who is the high level description for?

3.1 High-level description during planning stages

From the literature, one might conclude that the principal use of an
architectural description of a system was as a high-level planning document,
to agree upon what must be done and what it would be nice to do, then to
derive specifications for the components to be implemented. Such a top
down approach can be effective where all the components have to be
designed, or even when some of them pre-exist and either the others must be
designed to accommodate them or glue must be specified. It can be used to
establish properties such as completeness and correctness, and to analyze for
properties such as capacity and concurrency. It can be studied for examining
dependencies of partial results, and hence for identifying opportunities for
phasing computation and so reducing instantaneous demand for memory
and other resources. It can be used to study communication requirements
between components and hence to assess suitability for distribution in the
sense of what should run on which node of a network. If the software system
was to be operated jointly by a collection of organizations, the software
architecture might be used to study distribution, in the sense of suggesting
which components and which responsibilities be given to which
organizational units. If the system is to be sold as a commercial product to
many different customers, the software architecture might suggest packaging
for optional configurations. The software architecture can also serve as a
documentation framework, identifying where to record assumptions and
dependencies between components.

For software to be implemented jointly by a collection of organizations, a
software architecture can provide a framework for considering a number of
acquisition and implementation questions which are nontechnical but with
potentially technical consequences. What constraints are implied by
available components that could be used? Where would separate suppliers of
components possibly be effective in reducing cost or improving time to
completion? Where does intimate dependency on the same technology imply

www.manaraa.com

Architecture for Software Construction by Unrelated Developers 429

that the same subcontractor should be used to avoid duplication of startup
effort or to avoid errors due to conflicting interpretations? How should
implementation responsibilities be divided to correspond to the
competencies of different collaborators? And for systems where corporate or
national security is an issue, what are the security clearance implications for
the implementers of different components?

3.2 High-level description during operation

During operation of the system, the primary use of a system architectural
description is tutorial. Because integration of components is often not
seamless, the operators of the system often need to be aware of the roles of
different components in the production system, and the software architecture
often is a useful framework for teaching them. For example, systems often
are designed with metering for monitoring and tuning purposes. The
significance of such measurements depends on the system architecture, and
hence the operator needs to understand the system architecture in order to
properly interpret the measurements and act on them. As another example,
operational problems often arise in the production use of systems not
because of bugs in the implementation, but because intrinsic limitations in
the underlying science restrict the domain of applicability, or because
choices made during implementation in the absence of knowledge turn out
not to be consistent with operational experience. When such problems arise,
the operator needs to understand the architecture well enough to recognize
the situation and the source of the problem, to take corrective action, and to
plan workarounds. Also, as mentioned earlier, the software architecture can
be useful for establishing operational responsibilities for different
organizational units. Note that operators like this rarely have programming
skills.

3.3 High level description during maintenance

Day-to-day maintenance is normally finding and fixing minor bugs, mis
configurations, and interoperability conflicts. Minor enhancements may also
be included. For systems that operate nonstop for extended periods, simply
monitoring for outages and interpreting logs is often difficult, and the
maintainers not only need to understand the software architecture generally
but may need to make detailed reference to it in order to localize and
eventually isolate errors. Often attempting the repair immediately is not
possible, so through knowledge of the software architecture a workaround
must be found. Organizing for and actually conducting the repair requires
detailed just-in-time learning of the code at the site of the error, as well as at

www.manaraa.com

430 W. M. Gentleman

other affected sites. An understanding of the software architecture of the
system is key to knowing what to study and the context in which it must be
understood. Unfortunately, the skill level of staff employed for this kind of
maintenance is often less than that of the initial developers or developers
involved in major enhancements.

3.4 High-level description during major evolution

Major evolution of an existing system has much in common with initial
implementation, except that because it is incremental there is more incentive
to maximize reuse of components from the previous release, as well as to
ensure interoperability with data, including control data, produced by or for
the previous release. Working out a strategy for actually carrying out the
upgrade or replacement of a component is particularly important, especially
in nonstop systems. Planning as to how to add a new component or to make
other architectural changes is important, and requires a solid understanding
of the existing software architecture. That understanding can lead to
identification of required competencies and appropriate allocation of
responsibilities to carry out the change. However, such changes are
relatively rare. The dominant kind of change, especially for a successful
architecture, is change by upgrade of a single component.

4. A SECOND EXAMPLE

Another example where the software architecture is dominated by pre
existing components, although not in this case COTS software, is a training
system for operators of an embedded system, such as a weapons fire control
system, a SCADA (sensor control and data acquisition) system, or a
command and control system for air traffic control. For such systems, it is
often essential that new operators be trained on the real system, warts and
all. Only that way will the new operators get an appropriate sense of the real
system's capabilities and limitations, and get the feel of its responsiveness in
real time. Consequently, the core component of such a training system is an
instance of the real embedded system (see figure 2).

There are three other subsystems in the training system. One is a
debriefing subsystem. This is a subsystem that is able to record the student's
actions, in real time, as the system responds to interesting situations, so that
an instructor can go back through the situations with the student to point out
where the student has done well, where the student has used bad judgement
or made errors, and what the consequences of these have been. Because real
time is an essential aspect of such situations, it is necessary not just to rely

www.manaraa.com

Architecture for Software Construction by Unrelated Developers 431

on probes into the real system to log the displays produced by the system
together with the student's responses to them. It is also necessary to log
video and audio of the student's off-line activity, especially where there are
several operators working together simultaneously with the system. Many
parts of this subsystem pre-exist.

Scenario
editor

u
Simulated world ¢:::i Embedded ¢:::i Monitoring and
model system debriefing system

Figure 2. Superficial block-and-arrow diagram for example 2

Another important subsystem is the world modeller. The real embedded
system interacts with the real world through various sensors and actuators,
and since use of the real sensors and actuators may be impractical for
training purposes, they must be carefully simulated. The real sensors and
actuators are not independent of each other, but are coupled at least through
the real world, so the simulated world for the training system must properly
model such interactions. Adequate simulation of the real world requires
sufficiently precise modelling of the physical situation, with adequate
computational power and typically with a great deal of empirically
determined data. It also requires an understanding of what approximations
and shortcuts can be taken to meet real-time performance without losing
simulation fidelity . Such a simulated world may be a valuable asset that must
also be used with trainers for other embedded systems.

Of course to carry out the pedagogical purpose of the training system, the
world simulator has to be directed to produce scenarios illustrating situations
that the students are to be taught to deal with. Thus the last subsystem is a
scenario editor for the simulated world. Obviously scenario development
happens at a different runtime than the students lesson. A final wrinkle in
such training systems is that qualified instructors are usually in short supply,
so the whole training system is partially replicated to allow several students
to be trained simultaneously.

This example is interesting because qualifications for implementing each
of the four subsystems are quite different. The real embedded system was
implemented, and is frequently upgraded, by whoever, typically a systems
contractor expert in the sensors and actuators and signal processing. The

www.manaraa.com

432 W. M. Gentleman

debriefing system is best implemented by a company well versed in
pedagogical techniques, so that it will be easy to capture and to replay
appropriate aspects of the student's actions. The simulated world subsystem
is best done by a company with strong scientific computing credentials in the
appropriate science. The scenario editing subsystem is best implemented by
a company that combines usability skills with a clear understanding of what
scenarios will be needed. The example is also interesting because at a
superficial level, understanding the relationships between the four
subsystems is simple. Any attempt to provide a complete and correct
description of all the interactions becomes mired in detail.

5. A THIRD EXAMPLE

In next example, the COTS software merely provide a platform on which
the system is built rather than performing substantial parts of the
computation itself, but limitations of the COTS components are the major
cause of architectural choices, with anticipated implementation chum during
evolution of these components also playing a role. The system itself is a
small but long-lived interactive exhibit for displaying to the public current
information about air quality (see figure 3).

Two different kinds of information are presented in the exhibit. The first
is descriptive material which is generally static but changes occasionally, for
instance when administrative or legal actions affect what is being described.
The second kind of information displayed is trends in recent measured data
from a network of online monitoring stations. The core of the exhibit is a
program written in the proprietary language of a commercial authoring
system. This provides facilities from user dialogs to visual effects, and
allows the exhibit designer to focus on effective communication with users
instead of on implementation.

Unfortunately, the authoring system has functionality deficiencies. The
first is that it cannot generate and display the multicolour time series graphs
required to display trends. This is solved by a plug-in available from a third
party supplier, together with some glue to remap data structures. The second
deficiency is more serious: the network of monitoring stations must be
polled by dial-up modem and the measurements accumulated to be shared by
several instances of the exhibit, but the language of the authoring system,
even with plug-ins, is too weak to support the error handling or concurrency
control to do this. The solution is that the exhibit uses read-only optimistic
concurrency control to read from a shared database (conceptually a circular
buffer of records) maintained by another program. The program maintaining
the database is written in another proprietary language, this one being the

www.manaraa.com

Architecture for Software Construction by Unrelated Developers 433

communications control language of a tenninal emulator. The problem of
being able to keep the descriptive material up to date without manually
updating the whole exhibit each time some fact changes is addressed by
keeping all the relevant descriptive material in a database, and using scripts
in the database language to walk the database and generate the pages for the
authoring system whenever a change is needed. Since the descriptive
material includes multimedia items such as pictures, sound and video, an
appropriate commercial product is used.

h -... _...,

c:::> Circular

....... buffer

sensor stations

c::=:)

c::=:)

Exhibit program
generator

D
Exhibit program
(replicated)

3'd party graphing
plug-in

Figure 3. Superficial block-and-arrow diagram for example 3

The principal use for the system architectural description here is to
explain to the front-line non-technical maintenance staff what actions to take
when needed. Regeneration of the pages of descriptive material works well
as long as maintenance personnel understand they need to update the
database, and do not attempt to change the pages directly. Reorganizing the
pages calls for different skills, but happens rarely. The monitoring stations
have been a continuing source of operational problems: changed passwords
block access, station identification is arbitrarily changed, modems go offline
for periods stretching into months, stations are shut down and new ones are
opened, data format is changed, manual editing of data at the monitoring
stations produces records out of sequence, etc. Since the monitoring stations

www.manaraa.com

434 W. M. Gentleman

are operated by a different government agency, changes occur without
notification and they are not responsive to requests for explanation, much
less remediation. Accommodating such situations frequently requires manual
intervention, but bullet-proofing the system, so that it reports on detected
problems and continues to operate, is mandatory and has architectural
implications. The most troublesome problems however have been upgrades
to the platforms: the hardware on which the exhibit runs, the operating
system on that hardware, and the versions of the various COTS ·components.
These are typically upgraded without notice, and not infrequently the newest
versions no longer intemperate successfully. The conflicts are usually easy
to resolve, but require technical support. Since technical support is hundreds
of miles away and on a time and materials basis, front line support must have
a sufficient understanding of the software architecture to localize the
problem, perform simple corrective procedures such as reinstalling
components, and report symptoms.

6. CONCLUSIONS

Systems with characteristics similar to the examples cited are being
developed all the time. The prime purposes of the architecture descriptions
of such systems have been for communication with, and analysis by, other
people- automated analysis has not been a priority. Architectural styles are
not a central issue. For communicating with people, excessive formalism is
not necessarily more effective, and text-only descriptions have also proved
to have shortcomings. While not entirely satisfactory, the use of block-and
arrow diagrams, supplemented by text, has proved sufficient for the uses
cited. What shortcomings have been apparent relate to having consistent
presentations of the software architecture at various depths and from
different points of view. Too much detail irrelevant to one's current interest
is obfuscating.

Perhaps the flaw lies in thinking of the system architectural description as
a single document, manually composed, and viewed in its entirety. Instead,
we could think of a set of reports generated from a common database
(Finnigan, 1997), in the way some re-engineering tools present facts gleaned
from existing source code. The central focus would be the cognitive
psychology focus of how to make the presentation comprehensible, rather
than the computer science focus of how to make the basis general and
precise.

In practice, the decomposition into CSCI (Computer Software
Configuration Items) for projects constructed under 2167a, and indeed the
description of the individual CSCI themselves, often reflected more the

www.manaraa.com

Architecture for Software Construction by Unrelated Developers 435

competencies of, and relationships between, the prime and the various
subcontractors than it did functionality, data access, or allocation of software
to hardware. Perhaps this was not so wrong!

REFERENCES

Dean, J.C. and Vigder, M.R. (1997) System Implementation Using Off-the-shelf Software,
Proceedings of the 9th Annual Software Technology Conference. Department of Defense,
Salt Lake City, Utah, 27 April- 2 May 1997.

Finnigan, P. J., Holt, R. C., Kalas, I., Kerr, S., Kontogiannis, K., Muller, H. A., Myloupoulos,
J., Perelgut, S. G., Stanley, M., and Wong, K. (1997) The Software Bookshelf, IBM
Systems Journal, Vol. 30, No. 4, 564-593.

Shaw, M. and Garlan, D. (1996) Software Architecture. Prentice Hall, Upper Saddle River,
NJ.

Tzerpos, V. and Holt, R.C. (1996) A Hybrid Process for Recovering Software Architecture,
Proceedings ofCASCON '96, Toronto, ON, 12-14 November 1996, 1-6.

Vigder, M.R. and Dean, J.C. (1997) An Architectural Approach to Building Systems
fromCOTS Components, Proceedings of the 22nd Annual Software Engineering
Workshop. National Aeronautics and Space Administration- Goddard Space Flight
Center, Greenbelt, Maryland, 3-4 December 1997

Whitney, M., Kontogiannis, K., Johnson, H. J., Bernstein, M., Corrie, B., Merlo, E.,
McDaniel, J., De Mori, R., Miiller, H. A., Myloupoulos, J., Stanley, M., Tilley, S., and
Wong, K. (1995) Using an Integrated Toolset for Program Understanding, Proceedings of
CASCON '95, Toronto, ON, 7-9 November 1995,262-274.

www.manaraa.com

Integration of Heterogenous Software Architectures -
An Experience Report

Volker Gruhn, Ursula Wellen
University of Dortmund, Software Technology, D-44227 Dortmund, Germany
(gruhn, wellenj@helsinki.informatik.uni-dortmund.de

Key words: Software architecture, database integration, distributed objects, components,
migration, software landscape

Abstract: In this article we describe our experience with a software migration project in
a telecommunication company. We started from a set of heterogeneous
software systems (described by rather different types of software architectures)
and we defined a migration path towards an integrated software architecture.
On this path several intermediate versions of the software architecture were
implemented. We discuss the purpose of these intermediate versions and the
problems encountered in the migration path.

1. INTRODUCTION

The experience described in this article is from a project in the
telecommunication industry. In this project we analyzed the available
software and recognized that several software systems were developed or
purchased in a rather uncoordinated manner. In contrast to many other
companies (e.g., from the insurance or finance industry), this situation was
not due to software systems that were maintained and extended for decades,
but was due to a rather fast set-up of software systems for the support of core
business processes. The company - as a rather new competitor of the former
monopolist Deutsche Telekom- had to establish these software systems in a
short term. The systems were developed or purchased by departments
independently from each other. Each of these departments focused on its
particular problem which had to be solved as soon as possible. The

www.manaraa.com

438 Volker Gruhn and Ursula Wellen

coordination between the departments were not as tight as it would have
been in a very well-established business context.

As a consequence of this approach, software architectures of individual
systems were driven by different paradigms (some are client/server
architectures, others are not; some of the client/server systems are based on
SQL databases as distribution paradigm, others are based on transaction
processing monitors and others are based on Web servers) [Uma97]. Even
worse, the functionality of software systems overlap. For example, master
data about customers were administered in several systems. These data had
to be reconciled in order to ensure that customers are represented in a
consistent way. A mid-term goal was to avoid data redundancy. Another
drawback of the initial software architecture situation was that-after a short
time of operation-it turned out that higher levels of software system
integration were needed in order to provide homogeneous support for the
business processes (e.g., same style of user interfaces, same client
platforms).

Another organizational issue to be considered was that all systems had to
be available all the time (24 hours a day, 7 days a week) . The risks of
systems not being available after a new release varied from system to
system, but, generally speaking, unavailable systems could endanger service
delivery, customer satisfaction and business plans.

Another important issue was that the business processes to be supported
are supposed to change over time. One particularly critical aspect was that of
distribution. Even though most parts of the business processes were carried
out at the company's headquarter, the future software system infrastructure
should allow for a flexible distribution and allocation to new sites.

Starting from this situation, we developed a migration plan that starts
form the existing software infrastructure and ends with tightly integrated
software systems realized by distributed objects that support the core
business processes of the company. On this path different levels of
integration were (and still are) implemented.

In the experience described we put emphasis on different ways of
describing the software architectures we encountered in the project. These
descriptions vary from rather high-level descriptions of functionality in
terms of basic building blocks, to dataflow descriptions of individual
software systems, to rather technical descriptions of telecommunication
infrastructure needed.

In section 2 we describe the project starting point in some more detail.
Next, in section 3 we explain the migration path identified and the different
software architectures on the migration path. In section 4 we sum up what
problems occurred on this migration path. Section 5 puts our project-specific
experience into the broader context of general work on software architecture.

www.manaraa.com

Integration of Heterogenous Software Architectures 439

Finally, section 6 concludes with pointing out which compromises were key
success factors for the migration described.

2. SITUATION OF SOFTWARE ARCHITECTURES AT
PROJECT START

When the project started, several departments were developing complex
software systems to support their business processes. Because all these
projects were carried out under high time pressure, the underlying system
parts were developed and integrated without much coordination. This meant,
that many software systems were developed independently of each other as
stand-alone solutions without interfaces for data exchange. Some other
system parts like administration systems for customer master data or
provisioning systems did already exist and had to be reused and integrated
into the new business context.

2.1 Initial software landscape

Before we analyzed individual software systems in detail, we examined
the overall software situation. At this level, individual systems were
considered as black boxes and we only looked at the relationships between
the individual systems. The relationships identified were of different types:
- data exchange (pushed by the data-sending system or pulled by the data-

receiving system; in each case characterized by the frequency of data
exchange)

- access to persistent data
- call relationships

In the following we call this view of the overall software architecture
"software landscape." Figure 1 shows the initial landscape and some of the
key business objects exchanged between systems. Some details about key
business objects are discussed in section 2.2. The software landscape was
taken as starting point for the migration. A vision of the future landscape
defines the overall migration goal. Thus, any progress can be illustrated in
terms of modifications of the software landscape.

Figure 2 describes a more technical view of the software landscape. It
shows which software systems are running on which data base management
systems and on which operating systems. This view of a layered architecture
was very popular in the project, but it turned out to raise many
misunderstandings, simply because there was no consensus on the meaning
of layers and the meaning of the relationship with neighbouring layers.

www.manaraa.com

440

partner
rating plan

call detail records

8

Volker Gruhn and Ursula Wellen

activation service
tum over

8
-----.. data exchange

access to persistent data

call relationship

Figure 1. Initial software landscape

The applications are depicted as boxes on the upper level. The
communication between the several systems is realized with services of the
underlying operating system, shown at the second level. The basis for
communication within a LAN/WAN is TCPIIP.

p c '""' DD A u
I A
s T

Client Client ORACLE

Win 95 Win 951 NT AIX

TCP/IP

Figure 2. Technical infrastructure of software landscape

The obvious deficiencies of the software landsape (redundancies, manual
data exchanges) are removed during the migration described in section 3.
The result is a software landscape based on distributed objects, software
components, and an integrated compository (compare section 4).

www.manaraa.com

Integration of Heterogenous Software Architectures 441

2.2 Available software systems

The software landscape contains several software systems that are briefly
explained below. We discuss their main purpose, their key business objects
and for a few we sketch the release policy planned.

The software systems identified in the software landscape are:
a) The SAP/R3 modules used are SAPIFI for Finance and SAP/CO for

Controlling. They deal with accounting information that is received from
a provisioning system (see below). SAP/R3 impacts the vision of the
future software landscape, because the structure of SAP/R3 modules and
their relationships to other systems can hardly be modified. But because
of the integrated data base of R3 data exchange SAP/R3 modules is no
problem. Some further modules of SAP are planned to be integrated later.

b) The administration tool for customer master data SAM supports
marketing activities (analysis and control) for sales and marketing
departments. It deals with the key business objects "sales partner" and
"customer data" and does the assignment between them. These business
objects are also used by a provisioning system for sales partners (PRIS)
(see figure 1). SAM is developed as client/server application. It uses
Oracle as RDBMS, the database access is carried out with SQL-Net. The
first release of SAM is dealing with "sales partner" and is running since
the middle of 1997. At the end of 1998 the second release will deal with
private customers as further business objects. For the next extension of
SAM, WAN-wide data access is planned.

c) PRIS is a provisioning system for external sales partners. It creates
accounting information for SAP/R3. It requires some data from SAM
(business objects "sales partner" and "customer"). PRIS is client/server
based like SAM, based on a 3-tier architecture. In a next version PRIS
will administrate the business object "turnover". It receives these
information from the billing system BICOS.

d) One further individual software system is CURT, an application for
providing reports and statistical analysis results. It analyzes and
evaluates, for example, data concerning customers' call behaviour. The
report system is based on 3-tier architecture with Oracle as the
underlying database.

e) BICOS is a billing system (derived from a standard billing system). Its
key business objects are "overall turnover" and "call detail records." It
has an exchange interface to PRIS. BICOS data are exported as ASCII
files. Interfaces to other applications were planned at the beginning of
this project.
All existing software systems have their own data repository. Some of the

data exchange relationships in figure 1 represent manual exchange of data.

www.manaraa.com

442 Volker Gruhn and Ursula Wellen

This requires a lot of effort and it is the reason for frequent data
inconsistencies.

Besides the software systems discussed, several other systems are
needed. These are either developed in-house or they are purchased. In case
of purchase, the goal is to focus on standard systems as far as possible.

3. THE SOFTWARE LANDSCAPE MIGRATION PATH

The overall goal of the architecture migration was to start from the
existing software architecture and to finally obtain a software architecture
that is properly integrated (data integrated, user interface integrated, control
integrated) and easily extensible.

After analyzing the initial landscape of the software available it turned
out that the proper integration of the existing systems would affect the
architecture of the software systems available substantially. In order to
ensure that the existing systems remain usable while they are prepared for
integration and while they are actually integrated, it was decided to
subdivide the migration path into several steps. This was meant to reduce the
risks of touching working systems and to focus the effort on a few systems
in each step.

Another reason for this stepwise approach was that the owners of the
individual software systems had different ideas about how fast their systems
had to be evolved. While some wanted to stabilize their software at first
(e.g., because a version had been released recently) others wanted to
implement new architectural guidelines as soon as possible (e.g., because
they were about to plan a new release anyway). These goals and specific
ideas had to be reconciled within a common migration path.

In the following we discuss the migration steps identified and the
software architectures that were achieved after carrying out these steps.

3.1 Migration step 1: data exchange support for key
software systems

In order to avoid the most error-prone inconsistencies as soon as possible,
we had to ensure that at least key objects were harmonized. For this purpose,
we introduced the data exchange system DEXS. An example for key object
harmonization were customer master data which were provided by PRIS,
SAM, and SAP independently from each other. While it was not possible to
eliminate this multiple responsibility for customer master data, it was at least
necessary that any system that gets knowledge of customers informs all other
software systems.

www.manaraa.com

Integration of Heterogenous Software Architectures 443

This simple form of data integration based on systematic data exchange
yields an architecture as sketched in figure 3.

c=J software system

D database

dataflow

[Jil filc systcm

Figure 3. Exchange of business objects between software systems and DEXS

This figure shows that the redundancy of customer master data is not
eliminated, but that the exchange system ensures that all customer master
data identified in one system is forwarded to all other systems concerned.

business object master data flow via interface

application A B c D E F G H

sale partner SAM X X X X

customer data SAM X X X X

call detail record BICOS X X

tu rnover BICOS X X X

accounting information PRIS X X

This first kind of integration is neither very ambitious from a software
technology point of view nor does it reduce the effort that is spent for

www.manaraa.com

444 Volker Gruhn and Ursula Wellen

managing data within several software systems, but it ensures that all
customer master data is available to all software systems concerned. This
first step was quite straight-forward. After identifying the common
responsibilities for certain type of data and after identifying which data was
produced within which business processes and by which software systems,
the most difficult task was to agree on data exchange formats between
applications.

At first, the data exchange system implemented only supported the
exchange of customer master data between SAM and PRIS. After eight
weeks of operation it had to support a further five systems (not discussed in
detail in this article). Since interfaces were defined in a bilateral way (i.e., by
transforming information from the internal format of system A into the
internal format of system B), the effort spent for the exchange system grew
exponentially with each new system to be supported. That is why the
architecture of DEXS has been changed. DEXS accepts several formats of,
for example, customer master data and translates them into an internal
format, that can be accessed by all software systems.

Since the internal format cannot be directly processed by the software
systems, it has to be translated into each of the application-specific formats.
The corresponding process supported by the data exchange component is
shown in figure 4.

QJOT
Figure 4. Data exchange system DEXS with unified exchange format

www.manaraa.com

Integration of Heterogenous Software Architectures 445

It is described in terms of FUNSOFf nets [GG95,DG98], which are high
level Petri nets. Rectangular symbols represent activities, the annotations
denote the software system used. Circles represent information channels, the
annotations denote the type of information exchanged.

The data exchange component DEXS gets the data in an individual
output format from one of the several software systems. It translates the data
into a unified format, filters it into the required input format and forwards
the translated data to the concerned software system.

The effort for implementing this first step was rather low. The exchange
system as sketched in figure 3 did not require any modification of the
software systems at all. The exchange system DEXS as sketched in figure 4
meant to provide some additional interfaces for the software systems, but
their core functionality and their core structure remained unchanged. In
addition, the filter "unified to individual filter" translates the unified format
into the individual formats needed. Whenever a new system has to be
integrated the filter has to be extended by a translation mechanism (from the
unified format into the new individual format) . This modification is local
and does not affect the software systems themselves.

3.2 Migration step 2: data integration of key components

While the first migration step did not remove the data redundancy that
was introduced by sharing the responsibility for customer master data
between SAM, PRIS, SAP and CURT, the second step aimed at avoiding
data redundancy at least for key applications. In terms of software
architecture this means to identify common components and to delegate the
responsibility for the commonly used data to them. Figure 5 shows how a
common customer component is extracted from PRIS, CURT, and SAM.

PRIS

1masterdata

CURT

cus omer I
master data

SAM

Figure 5. Exchanging common subcomponents

www.manaraa.com

446 Volker Gruhn and Ursula Wellen

After splitting the software systems into two parts (key functionality and
commonly used customer component), the customer component is used by
all three systems, thus, ensuring that only one component cares for customer
master data. According to the model-view-controller paradigm, the three
components can still display customer master data in the way they were used
to do. Figure 5 shows how the architecture of applications is modified by
extracting a commonly used customer component.

3.3 Migration step 3: control integration of key
Components

The next migration step was to improve the control integration between
components that were used independently before. This control integration
implemented was oriented towards the business processes needed. An
example process supported by the systems SAM, CURT, PRIS, SAP systems
is the process "identify new customer". Figure 6 shows an overview about
this business process (again represented by a FUNSOFT net) . It illustrates
that first customer information is gathered by using SAM, that this
information is complemented by associating the customer master data with a
partner, whose provision depends on the number of customers (PRIS), that
customer master data are forwarded to SAP (where debitor accounts are
created), returned to SAM (where all information about the new customer is
gathered) and that report information are forwarded to CURT (where the
new customer is considered in the weekly "new customer report").

As soon as the business process "identify new customer" is enacted, the
supporting systems have to be called in the right order and with the right
parameters. In principle, this sounds like a workflow management problem.
In the given situation, however, we did it without a workflow management
system, but we hard-wired the business processes to be supported. The
reason for doing so was that each of the available systems covers quite large
chunks of the business process. Usually, workflow management based on
such powerful systems leads to gross-grained process models, which are not
very expressive. In our hard-wired solution, the control component (called
CTRL in figure 7) enforces business processes. It knows about the processes
to be supported (parts are directly implemented as control flow dependencies
within CTRL, others are expressed as process parameters in the business
process model) and calls SAM, CURT, PRIS and SAP accordingly. To move
to a workflow based solution following the guidelines of the workflow
management coalition demands to move the complete knowledge about a
business process model to the business process model representation and to
keep the CTRL component completely process-neutral.

www.manaraa.com

Integration of Heterogenous Software Architectures

potertial 1 mester della, 2 rncdfied n'lti'ter report daia 5
customer SAM seles partner PRIS data SAM CURT

Figure 6. Business process model "Identify new customer"

Figure 7. Integration of software systems by a control component

3.4 Migration Step 4: Implementation of Components by
Distributed Objects

447

The German telecommunications market was deregulated recently. The
business of the new telecommunication companies is not completely settled
yet, but it is subject to changing market conditions and to evolving
organizational circumstances. This highly flexible situation demands flexible
software. Existing software has to be integrated with new software, business
processes may change and have to cover more and more sites. Users to be
supported work with software clients running on different platforms (ranging
from PCs/laptops to workstations with different operating systems). Thus,
flexibility and extensibility are key requirements for the software landscape
needed. Support for various and frequently changing client platforms is a
concrete requirement derived from the general requirement for flexibility.

www.manaraa.com

448 Volker Gruhn and Ursula Wellen

The need for flexibility, easy assembly and support of various client
platforms was accepted as the general guideline for the fourth and last
migration step. Thus, we chose a component-based software architecture as
our vision of the migration. In this vision, functionality is provided by
components that can easily be assembled, distributed to various locations,
and that help to keep the software landscape flexible and extensible. In order
to provide availability on various client platforms, we decided to demand
that components should be embedded into web browsers. That means,
functionality offered by components can easily be accessed from all
platforms supported by browsers.

Obviously, the component-based vision cannot mean replacing existing
systems by componentized versions immediately because this would mean
spending software development effort without gammg any new
functionality . This is not acceptable in a situation in which key systems still
have to be developed. Instead, the vision of a component-based software
landscape serves as long-term goal towards which all software development
efforts are directed. Maintenance - if necessary - should try to identify
components and to extract them from existing software. New development
projects should deliver software components and integration into
component-based architectures should be a key requirement for any software
that is purchased.

The vision of a component-based software landscape cannot serve as
long-term goal if it is not made concrete. New software not only has to be
component-based, it also has to match the concrete component model
chosen. Thus, the vision of the software landscape has to be underpinned by
an implementation vision. For implementation purposes we had to choose
between the COM/ActiveX component model [Cha98], the CORBA
component model [MZ95] and the Java Beans/Java Enterprise Beans
component model [OH98]. It was decided to accept the CORBA component
model as our basis. COM/ ActiveX was denied because it is a proprietary
approach, Java Beans were not accepted, because it was doubted if the Java
native interface was open enough to embed the variety of available software
systems that were written in various programming languages. CORBA was
accepted not only because of the component model, but also because of its
services that provide location transparency and convenient component
naming facilities .

Another reason for the choice of CORBA was that it was rated as the best
paradigm for enabling the smooth move to a component-based and Web
integrated user interface. Using the CORBA object model provided the
chance to benefit from IIOP (Internet Inter-ORB Protocol) [OH98]. This
protocol helps to overcome the poor interaction facilities between client and
server as provided by HTTP. While HTTP is rather restricted with respect to

www.manaraa.com

Integration of Heterogenous Software Architectures 449

parameter exchange and transfer of results from the client to the server, HOP
allows full exploitation of the advantages of exchanging objects between
client and server. Since IIOP serves as standard for communication based on
objects between clients and servers, the component-based software
landscape can easily satisfy the requirement to provide the same user
interfaces for all platforms supporting the usual web browsers. Figure 8
sketches the vision of such an architecture (called the ObjectWeb). It shows
that the basic idea of flexible components managed by CORBA. In order to
access these components and the CORBA services needed, the HTIP
protocol between web browser and web server is complemented by IIOP.

applica1ion
components

SAM

Object
Request
Broker

Figure 8. Vision of the ObjectWeb

The final software landscape that results from the steps mentioned avoids
data redundancies, thus ensuring higher levels of consistency. It is based on
a: component-based architecture of software systems, thus allowing for reuse
and flexible exchange of components. It is based on web browsers, thus
ensuring a uniform user interface and it uses an object request broker,
thereby, implementing location transparency. Even though this software
landscape has not been completely reached (some software systems are not
componentized yet, some cannot be executed from within a web browser, the
CORBA based integration step has still to be implemented), it is an
important guideline for all software development activities. Each
development project can be measured against the goal to contribute to the
final software landscape.

www.manaraa.com

450 Volker Gruhn and Ursula Wellen

4. PROBLEMS ENCOUNTERED IN THE MIGRATION

The migration led from a software landscape that was determined by
loosely integrated software systems to a tightly integrated system that is
prepared for a software architecture based on a component model [Lew98]
and which is homogeneously accessible from web browsers [Uma97] . At
the end of the migration process it was beyond question that the software
architecture had been substantially improved with respect to data
consistency, data redundancy, clarity of control dependencies, extensibility
and flexibility of distribution of components. Nonetheless, during migration
we encountered some problems that had to be resolved. Generally speaking,
these problems did not occur for the initial version of the software landscape,
but they are due to the higher level of data integration, control integration
and user interface integration. In the following we discuss some of these
problems:

Security: While the protection against unauthorized access to data was
necessary for the initial version as well as for any of the following versions,
the protection against access during data transfer was an additional problem
for all versions, except of the initial one. In particular, the access to software
systems from within a web browser was a major obstacle to the new
architecture. In order to overcome these problems we implemented a firewall
with rather strict authorization checks. In addition, software systems that are
accessible from the web are double-checked before released. Unless a
system is released for this purpose, it runs on a completely separated local
network. Thus, the production environment accessible from the web is not
integrated at all with the internal local network. This, obviously, results in
some problems (how to transfer a release from one local network to the web
accessible network, which criteria have to be fulfilled before a system is
released for the web-accessible network), but this rather rigid approach was
the only way to allow access from the web to software systems at all.

Configuration management: While the initial version (consisting of just
a set of separated software systems) did not require any coordination across
the borders of applications, configuration management required more effort
the tighter the systems were integrated. It turned out that the role of a
configuration manager had to be established. While this role was not known
as an explicit one before (each leader of a development team somehow cared
for his configuration issues) the coordination of release plans for various
inter-dependent software systems turned out to be a full-time job. We expect
that configuration management will become easier the more the vision of a
truly component-based architecture is reached, because the management of
component configuration requires less coordination than the configuration

www.manaraa.com

Integration of Heterogenous Software Architectures 451

management for software architectures determined by the migration steps 2
and 3.

Convergence towards commonly used basis systems: The systems
already available at the start of the migration, and the planned systems, used
different database management systems and user interface management
systems. Sometimes they were based on certain types of middleware
(ranging from distributed database systems to message-oriented middleware
systems). The vision of the ObjectWeb allowed details of database
management systems to be abstracted away as long as they were accessible
from an object broker following the COREA architecture [MZ95] (which is
true for all database management systems used). User interface issues were
sorted out by demanding browser-compatible interfaces, which was accepted
for all systems (even though it was not implemented immediately). Thus, the
most important remaining problem was that of the middleware system used.
Here, the choice of COREA was subject to discussions, but it was finally
accepted. Tlie implementation efforts for moving systems to a COREA
based architecture varied from system to system, but it has to be admitted,
that efforts were quite substantial in a few cases (e.g., for the PRIS system,
which was based on a distributed database system and on the SQLNet
protocol from Oracle).

Common development plan I focusing of efforts: As long as software
systems were developed independently by departments or autonomous
development teams, project planning was rather easy and straightforward.
With a higher level of integration additional dependencies on the release
requirements of other systems, quality management plans, and management
goals became obvious. We are convinced that these dependencies did exist
right from the beginning, but that they were hidden. That is why we believe
that it was useful to make them explicit, even though it increased the
management overhead.

Common architecture model: The initially available software systems
not only differed with respect to the platforms used and the ways they were
subdivided into pieces, but also with respect to the architecture model
chosen for describing software systems. Single teams had agreed on a
vocabulary and on certain types of diagrams they used efficiently to
communicate internally. They used layered models of software architecture,
they used hierarchies of modules, and some used UML class and package
diagrams. Some teams provided architecture information that showed how to
associate software pieces with operating system processes, and explicitly
defined communication protocols between operating system processes.
Others just provided high-level package diagrams (which could serve as a
starting point for a work breakdown structure, but not as a sufficient
architecture description). A tighter integrated software landscape demanded

www.manaraa.com

452 Volker Gruhn and Ursula Wellen

that teams had to communicate across team borders (in order to define
requirements for components they wanted to use, in order to specify
interface of services they wanted to use and in order to agree on exchange
formats and communication protocols between their systems). In the project
we introduced a distinction between an application architecture view (data
flow between functional modules, identification of key business objects), a
software architecture view (modules, object types, call relationships) and a
technical architecture view (distribution issues, telecommunication
infrastructure needed). The use of a predefined set of architectural diagrams
and the decision to use only these diagrams was cumbersome on the one
hand because it meant to give up certain individual kinds of architectural
descriptions. On the other hand it helped to overcome misunderstandings and
useless arguments concerning the style of architecture descriptions. To sum
up, the use of a common vocabulary (represented in terms of a few types of
diagrams) and a clear - albeit still informal - description of its semantics
turned out to be of substantial benefit with respect to a homogeneous
description of the software landscape.

Management of development problems that had already started:
While it was easy to ensure that new projects adhered to the software
landscape and to the new architectural guidelines, it was rather difficult to
ensure that project teams, which were in the middle of their projects, at least
try to consider as much of landscape and guidelines as possible. In fact, we
did not succeed in transferring our vision of the ObjectWeb into these kind
of projects. This is all the more annoying since we spent some effort on
doing so (in terms of walkthroughs and review discussions). Our conclusion
from this experience is that a new vision should only be applied to new
projects and that it is hardly possible to establish new architectural
guidelines after project start.

5. RELATED WORK

The research in the roles and purposes of software architecture in general
[SG96, PW92, Gar95], in architecture description languages [MT97,
RMR98], and in patterns of software architecture [Sha95] seems to be well
ahead of the industrial practice of software architecture design. While the
research on software architecture and architecture description languages
describes well-founded approaches to the specification of software
architectures, software architectures in industrial practice seem to be
determined by vague and inconsistent descriptions. Even worse, it seems as
if we are rather far away from any kind of industrial de facto standard for
describing software architectures. We believe that the benefits of explicit and

www.manaraa.com

Integration of Heterogenous Software Architectures 453

precise architecture descriptions can at best be conveyed in the context of
smooth software migrations. Here it is possible to immediately reduce costs
(of extensions, maintenance and restructuring) and to improve quality of
systems delivered [BJN98]. Based on these benefits it is possible to ensure
the use of appropriate architecture descriptions.

The problem of describing architectures of distributed systems in
industrial practice is even harder. Once again there is some research
foundation [MDE95], but little consensus on how to describe distribution
issues. Again, it should be demonstrated which benefits are to be gained by
using homogeneous architecture descriptions.

6. CONCLUSION

We believe that the use of architecture descriptions should be embedded
into a software architecture method, that explains what has to be done when
and for what purpose. In the project discussed in this paper we introduced
such a- still rather coarse-grained - method that is set up around the term of
a software landscape. Even though this remains rather vague for the time
being, we think that it allows to start where industrial projects are and to
successively move towards more precise and expressive descriptions of
software architectures. In particular, this not very ambitious approach helped
to obtain architecture descriptions (expressed as software landscapes) that
were amenable to discussions with different levels of management.
Generally speaking, the approach to establish a common architectural model
for the software systems of a telecommunication company demands the
careful definition of a migration path that compromises between two goals:
1. fast migration to a state-of-the-art software architecture
2. smooth migration that ensures 100% availability of working systems

The compromise between these two goals must ensure that any effort
spent on evolving or replacing software systems must bring the software
architecture closer to the vision of the final software landscape.

We believe that our experience is not only typical with respect to the
intermediate migration steps taken, but also with respect to the final vision of
our migration. The current trends towards component-based software
development on the one hand and towards components being executed under
the control of a web browser on the other hand naturally lead to the vision of
the ObjectWeb.

www.manaraa.com

454 Volker Gruhn and Ursula Wellen

REFERENCES

[BJN98] K. Bohrer, V. Johnson, A. Nilsson, B. Rubin (1998). "Business Process
Components for Distributed Object Applications" Communications of the ACM 41(6), 43-
48.

[Cha96] D. Chappell (1996). Understanding ActiveX and OLE Redmond, Washington, US :
Microsoft Press.

[DG98] W. Deiters, V. Gruhn (1998). "Process Management in Practice- Applying the
FUNSOFf Net Approach to Large Scale Processes" Special Issue on Process Technology
I Automated Software Engineering 5, 7-25.

[Gar95] D. Garlan (1995). "First International Workshop on Architectures of Software
Systems: Workshop Summary" ACM SIGSOFT Software Engineering Notes 20.

[GG95] G. Graw, V. Gruhn (1995). "Process Management in-the-Many" Software Process
Technology- Proceedings of the 4'h European Software Process Modeling Workshop, W.
Schafer (editor) Noordwijkerhout, Netherlands: Springer 163-178. appeared as Lecture
Notes in Computer Science 913 .

[Lew98] S.M. Lewandowski (1998). "Frameworks for Component-Based ClientJServer
Computing" ACM Computing Surveys 30(1), 3-27.

[MDE95]J.Magee, N. Dulay, S. Eisenbach, J.Kramer (1995). Specifying Distributed Software
Architectures European Software Engineering Conference, Barcelona, Spain, 137-153,
appeared as LNCS 989.

[MT97] N. Medvidovic, R.N. Taylor (1997). A Framework for Classifying Architecture
Description Languages European Software Engineering Conference, Zurich, Switzerland,
60-76, appeared as LNCS 1301.

[MZ95] T.J. Mowbray, R. Zahavi (1995). The Essential COREA: Systems Integration Using
Distributed Objects Toronto, Canada: Wiley.

[OH98] R. Orfali, D. Harkey (1998). Client/Server Programming with JAVA and COREA
Toronto, Canada: Wiley.

[PW92] D.E. Perry, A.L. Wolf (1992). "Foundations for the Study of Software
Architectures" ACM SIGSOFT Software Engineering Notes 17(4).

[RMR98]J.E. Robbins, N. Medvidovic, D.F. Redmiles, D.S. Rosenblum (1998). Integrating
Architecture Description Languages with a Standard Design Method International
Conference on Software Engineering, Kyoto, Japan.

[SG96] M. Shaw, D. Garlan (1996). Software Architecture: Perspectives on an Emerging
Discipline Prentice-Hall.

[Sha95] M. Shaw (1995). Patterns of Software Architectures, in: Pattern Languages of
Program Design edited by J.O. Coplien and D.C. Schmidt, Addison-Wesley.

[Uma97] A. Umar (1997). Object-Oriented Client/Server Internet Environments New Jersey,
US : Prentice-Hall PTR.

www.manaraa.com

Structural Analysis of the Software Architecture - A
Maintenance Assessment Case Study

Catherine Blake Jaktman, John Leaney, and Ming Liu
Computer Systems Engineering, Faculty of Engineering, University of Technology, Sydney,
Australia
{cjaktman, jleaney, mliu} @eng.uts.edu.au

Key words: Software architecture, software evolution, maintenance measurements,
experience report, architectural erosion.

Abstract: Architectural erosion is a sign of reduced architectural quality. Quality
characteristics of an architecture, such as its ability to accommodate change,
are critical for an evolving product. The structure of an architecture is said to
be eroded when the software within the architecture becomes resistant to
change or changes become risky and time consuming. The objective of our
work is to understand the signs of architectural erosion that contribute to
decreased maintainability. A maintenance assessment case study is described
in which we apply structural measurements to a product to determine signs of
architectural erosion. It provides an understanding of a product's quality by
examining the structure of its architecture. The ability to assess architectural
erosion in an evolving software product allows the quality of the architecture
to be monitored to ensure its business and maintenance goals are achieved.

1. INTRODUCTION

1.1 Software evolution

Successful software systems experience continual evolution (Lehman
1989) due to events in the system's environment, usage, and business
domain. Software systems frequently experience increased maintenance
(Pamas 1994) and degradation from continual changes made during software
maintenance activities (Bohner 1991). Often, once a system begins to show

www.manaraa.com

456 Catherine Blake Jaktman, John Leaney, and Ming Liu

signs of degradation, the maintainability of the system will continue to
worsen over time as more software changes are implemented in a system
that has grown in size and complexity.

During software evolution, the high-level organisation of the overall
system, the software architecture, becomes the critical aspect of design
(Garlan 1995; Grisworld and Notkin 1995). The software architecture
represents the organisation of a system as a composition of components,
connections, and constraints (Garlan 1995). The structure of the architecture
includes the gross organisation of the system and global control structure;
protocols for communication, synchronisation, and data access; assignment
of functionality to design elements; physical distribution; composition of
design elements; scaling and performance; and selection among design
alternatives (Garlan and Shaw 1993). The structural properties of a software
architecture can be expressed in terms of components, interrelationships,
principles, and guidelines about their use.

1.2 Architectural quality

When the quality of the architecture deteriorates functional adaptations
become difficult (Bakker and Hirdes 1995; Kogut and Clements 1998).
Additionally, design decisions made at the architectural level have far
reaching consequences on the resultant code (Turver and Munro 1994).
Certain architectural design decisions may restrict the ability of a software
component or interface to be easily modified, or require many components
to be modified. Architectural quality is also important for organisations that
have evolving product-line architectures. A well-executed and maintained
architecture enables organisations to respond quickly to a redefined mission
or new and changing markets (Dike! et al. 1997; Morris and Ferguson 1993).

The focus of our work is to understand the signs of reduced architectural
quality leading to an increase in maintenance difficulty during the evolution
of a product. We want to be able to monitor the maintainability of a product
throughout its evolution, to allow functional and non-functional software
requirements to be implemented without affecting the following factors
- the flexibility or extendibility of the product
- the understanding of the software architecture
- the maintenance effort required to perform maintenance tasks

1.3 Architectural erosion

Our interest in architectural quality is similar to work in architectural
erosion and drift by Perry and Wolf (Perry and Wolf 1992). Perry and Wolf
define architectural erosion as "violations in the architecture that lead to

www.manaraa.com

Structural Analysis of the Software Architecture 457

increased system problems and brittleness". They define architectural drift
as "a lack of coherence and clarity of form which may lead to architectural
violation and increased inadaptability of the architecture". Their work
mentions the importance of the architecture's style to encapsulate decisions
about the architectural elements, constraints and relationships that are
needed to understand architectural violations such as erosion and drift.

We have extended Perry and Wolf's definition of erosion to include the
structure of an architecture. We define the structure of a software
architecture to be eroded when the software within the architecture becomes
resistant to change or software changes become risky and time consuming.
Erosion can also be exhibited when the software is hard to understand or
manage due to an increase in the size and complexity of the code and its
structure. Erosion can be a result of poor design decisions made whilst
implementing maintenance changes to the system, or a result of limited
architectural understanding during software maintenance that may have
constrained the flexibility of the design.

1.4 Characteristics of erosion

The characteristics of architectural erosion in an evolving product are
listed below in Table 1.

Table 1: Characteristics of erosion

The complexity of the architecture has increased from a previous release as shown by an

increase in the structural complexity measurements.

The impact of a software modification results in unpredictable software behaviour (e.g.,

ripple effect).

The architecture is not documented or its structure is not explicitly known.

The relationship between the architectural representation and the code is unclear or hard to

understand.

There is a continual increase in the defect rate that is disproportionate to the amount or

type of maintenance work performed (e.g., new functionality added or technology

upgrades).

Greater resources are required to implement a software change (i .e. understand, code and

test) .

Experience with the software becomes crucial to understanding how to implement a

software change.

Certain software changes may become too risky or costly to implement.

The design principles of the architecture are violated when implementing a product

variant (e.g., code redundancy due to cloning).

The system may become resistant to change (i.e. "brittle"), or require additional

operational procedures (e.g., manual tasks) to support new functionality.

www.manaraa.com

458 Catherine Blake Jaktman, John Leaney, and Ming Liu

1.5 Structural signs of erosion

The signs of architectural erosion are determined by studying the changes
in the size and complexity of the product's architecture. If the results of the
measurements change in such a way to indicate increased maintainability
(i.e., increased complexity), the architecture is studied further to determine
if the measurements indicate the presence of erosion. The signs of erosion
are validated by the software developers to ensure agreement that the
software has eroded. In the long term this may be developed as a sensitive
indicator of impending erosion, and the architectural quality preserved.

A description of the architectural measurements we have chosen to help
us understand architectural erosion are included in sections 2.4, 2.5, and 2.6
of this paper. The measurements were chosen on the basis of their history of
usage and understanding, and their ready availability.

2. MAINTENANCE ASSESSMENT CASE STUDY

This section describes the framework of the maintenance assessment case
study. The objective of the maintenance assessment case study is to identify
useful measurements that will allow us to determine the signs of
architectural erosion in an evolving product.

2.1 Approach

In the maintenance assessment case study we apply structural
measurements to the architectural properties of a product. The
measurements are applied to each operational release of the product
throughout the evolution of the product. They are generated using the
Logiscope™ code analysis tool (Logiscope 1997-1998). The measurements
between each release are compared and analysed to detect signs of
architectural erosion. The steps in the maintenance assessment approach are
shown in Table 2.

Table 2: Case study process

Step I: Select an architectural viewpoint for analysis of the system.

• Criterion: the architectural viewpoint should conform to some accepted viewpoint

Step 2: Take measures on selected releases of the product.

• Criterion: structural measures selected should conform to recognised measures

• Criterion: selected measures should be fair indicators of structural erosion as

described in sections 1.3 Architectural erosion and 1.4 Characteristics of erosion

• Criterion: the selected releases should give a fair view of the product

www.manaraa.com

Structural Analysis of the Software Architecture 459

Step 3: Analyse the structural measures for change.

• Criterion: change should be such as to be attributable to erosion

• Criterion: change should be defined as outside some expected 'noise' values

Step 4: Interpret the measures in terms of (structural) erosion.

• Criterion: interpretation should be consistent with structural erosion as described in

sections 1.3 Architectural erosion and 1.4 Characteristics of erosion

Step 5: Translate the structural erosion conclusions into (maintenance) programming

terms.

• Criterion: use documented maintenance programming practice terms

Step 6: Validate with project maintenance programmers (interviewees)

• Criterion: ensure the experiment is blind, i.e. the interviewees do not know of the

analysis before the interpretation is complete.

• Criterion: ensure terms are fully understood by interviewees

• Criterion: use accepted techniques such as questionnaires

• Criterion: ensure interviewees have 'last word' on conclusions

2.2 Proposed measures

The proposed measures used to determine architectural erosion include:
general measures
basic architectural measures
derived architectural measures

2.3 General measures

The general measures listed in Table 3 are taken for each selected
software release of the product. The general product measures are used to
understand the age and growth in the size of the product.

Table 3: General measures

Version No.

Date of Release

Lines of Code

No. of Runtime Files

Total Components

2.4 Basic architectural measures

Architectural measures are taken to provide an understanding of the
overall view of the system. Architectural measures are based on the call

www.manaraa.com

460 Catherine Blake Jaktman, John Leaney, and Ming Liu

graph representation of the product and represent the complexity of the
structure of the architecture. The basic architectural measures (or counts)
are defined in Table 4.

Table 4. Basic architectural measures

Components (or Nodes)

Number of Components (or Nodes)

Number of components (or nodes) in the relative

call graph. An architectural-level component

represents a source code file.

Edges

Number of Edges

Number of calls between components. This is

the same as edges in the relative call graph. A

relative call graph is a diagram that identifies the

components in a system and shows which

modules call one another.

Call Paths Number of calling paths in the relative call graph,

Number of Relative Call Graph Call- from the component to each leaf components in

Paths the graph.

Levels Number of hierarchical levels in the relative call

Number of Relative Call Graph graph.

Levels

2.5 Derived architectural measures

The derived measurements taken at the architecture-level (based on the
"counts" of Table 4) are defined and explained in Table 5. The
measurements listed in Table 5 are supported in the Logiscope™ code
analysis tool (Logiscope 1993).

Table 5: Derived architectural measures

Hierarchical Complexity

Relative Call Graph

Hierarchical Complexity

Structural Complexity

Relative Call Graph

Complexity

Average Components/Path

Average Paths/Component

Average number of components per relative call graph

level (number of components divided by number of

levels).

Average number of calls per component (number of

calls between components divided by number of

components).

Average number of components per call path

(components divided by call paths)

Average number of paths per component (call paths

divided by the number of components.)

www.manaraa.com

Structural Analysis of the Software Architecture 461

3. THE CASE STUDY

3.1 The Squid product

In the case study we applied the aforementioned measurements to the
Squid product (Squid), which was developed at the National Laboratory for
Advanced Networking Research (NLANR) at the University of California at
San Diego. Squid is an Internet object caching product. The Squid product
was chosen as historical data was publicly available for each operational
release of the product throughout its evolution. The Squid product is written
in the C programming language and is implemented in the Unix operating
environment. Six releases of Squid spaced approximately at equal time
intervals were chosen for analysis.

3.2 Approach

In our approach structural measurements are taken for each release of the
Squid product. We then interpret the measurements, and put the
interpretations to the Squid developers to see if our interpretation of the
measures made any sense to them. (Being our initial case study, there were
no hypotheses developed. The purpose of this work was to see if we could
find any encouragement for using existing structural measurements for this
research problem.) The steps followed in the case study are outlined in
Table 2; the sub-headings below follow the steps outlined in the table.

3.2.1 Step 1: Select architectural viewpoint

The ideal architectural viewpoint would be to work with the subsystems
defined by the original software developers, and understand changes in those
subsystems and the relationships between them. This would be in accord
with the software architecture definition whereby one represents the
organisation of a system as a composition of components, connections and
constraints (Garlan 1995).

From this perspective, Squid consists of the following major sub
systems:
- the Client Side (icp.c, client_side.c)
- the Server Side (proto.c, http.c, ftp.c, gopher.c, wais,c, ssl.c, pass.c)
- the Storage Manager (store.c)
- other sub-systems, including Neighbours; IP/FQDN Cache; DNS

Servers; Cache Manager; Network Probe Database; Redirectors and
Access Controls.

www.manaraa.com

462 Catherine Blake Jaktman, John Leaney, and Ming Liu

Unfortunately, to quote the Squid developers, "the Squid source code has
evolved more from empirical observation and development rather than a
solid design process over two years or more. It carries a legacy of being
'touched' by numerous individuals, each with somewhat different techniques
and terminology" (Wessels 1997).

We have created an architectural view based on "the view from the top".
The architecture viewpoint, which appears repeatable for procedural
languages such as C, is to choose the 'main' routine as a reference node for
structural measures. Our structural measures are based on the call graph,
and are taken from the main routine alone. Thus, we will only include
components that are called on a path from main.

3.2.2 Step 2: Take measures of selected releases

In this step the general, architectural, and derived architectural measures
are taken on the selected releases of the product.

3.2.2.1 Squid - general measures
The general measures for Squid, as specified in section 2.3 General

measures, are given in Table 6 below.

Table 6: Squid general measurements

Version No. Vl.O.O Vl.0.22 Vl.l.O Vl.l.lO Vl.l.l4 Vl.l.21

Date of Release Jul. 1996 Oct. 1996 Dec. 1996 Apr. 1996 Jul. 1997 Apr. 1998

No. of Files 32 33 42 44 44 44

Lines of C Code 23587 24996 27425 30008 30222 29329

Total Components 619 630 693 733 739 748

3.2.2.2 Squid - architectural measures
The architectural measures for Squid, as specified in 2.4 Basic

architectural measures are given in Table 7 below. The viewpoint is
from the main routine. The reduction in the number of nodes and edges
accords with the reduction in the lines of code in Table 6 ..

Table 7: Squid basic architectural measures (counts)

Version No. Vl.O.O. Vl.0.22 Vl.l.O Vl.l.IO Vl.l.l4 Vl.l.21

Levels 18 21 23 19 21 20

Nodes 413 421 416 429 438 434

Edges 1243 1267 1319 1399 1428 1415

Call Paths 24264 28037 32784 40616 80848 80952

www.manaraa.com

Structural Analysis of the Software Architecture 463

3.2.2.3 Squid - derived architectural measures
The derived architectural measures for Squid, as specified in 2.6 Derived

Basic architectural measures are specified in Table 8 below.

Table 8: Squid derived architectural measures

Version No. Vl.O.O Vl.0.22 Vl.l.O Vl.l.IO Vl.l.l4 Vl.l.21

Call Paths 24264 28037 32784 40616 80848 80952

Levels 18 21 23 19 21 20

Hierarchical Complexity 22.94 20.04 18.08 22.57 20.85 21.70

Structural Complexity 3.01 3.01 3.17 3.26 3.26 3.26

Average Paths/Component 58.75 66.59 78.8 94.67 184.58 186.52

Average Components/Path 0.01 0.01 0.01 0.01 0 0

3.2.3 Step 3: Analyse the structural measures for change

The major changes that occurred, and the discussion, are shown in Table
9. Other changes were considered to be too dubious to discuss. Considering
all the data presented to date, a strong observation can be made that the
system started to stabilise at Vl.l.O. This is shown by a slower growth rate
in the size of the product and a reduced rise in the complexity of the product.
Therefore, we will only comment on changes after Vl.l.O.

Table 9: Analysis of changes in Squid

Property Discussion

Components

Call paths

The number of components has been practically constant throughout the

life of the project.

The number of call paths is arguably high compared with

recommendations in (Logiscope 1993) even from the beginning of the

project. The number of call paths has changed by a factor of (about) 3.5

during the life of the project, with a sharp rise between V 1.1.1 0 and

V 1.1.14 (as shown in Table 7).

Component The components were analysed using the ISO 9126 maintainability

maintainability measures (ISO 1991). The component maintainability for Squid was

consistent thought the product evolution (i.e. 2% excellent, 89% good,

4% fair, 3% poor and 2% undefined).

3.2.4 Steps 4 and 5: Interpretation and translation

These steps involve interpreting the measures in terms of (structural)
erosion and translating the structural erosion conclusions into (maintenance)
programming terms. The analysis of changes in Squid (Table 9) suggests

www.manaraa.com

464 Catherine Blake Jaktman, John Leaney, and Ming Liu

that with the increase in call paths, and the number of components remaining
the same, that the changed (or new) components will have become much
harder to integrate with each release. However, the small change to
component maintainability suggests that changes to the component itself will
not be hard.

3.2.5 Step 6: Validate with project maintenance programmers
(interviewees).

A basic questionnaire was developed based on the conclusions of Step 4:
Interpret the measures in terms of(structural) erosion, and Step 5: Translate
the structural erosion conclusions into (maintenance) programming terms.
This was sent (via e-mail) to the Squid software team leader, in order to get a
response from a maintenance programmer. The reply was then analysed,
and interpreted back as a second series of questions. A final conclusion was
then drawn.

Based on this interpretation, the following statement was put to the Squid
programmers:

"Our conclusion would be that individual modules in
Squid are OK to maintain, but integration of the modules
into the Squid system can at times be difficult."

The first response to this statement included a lack of match between the
statement and the Squid system. This is exemplified by the two responses,
"I do not think there is a good notion of modularity in Squid." and "Thus, I
cannot answer your question since I do not see a lot of well-defined
"modules" in Squid." In the light of these responses, we sent another set of
questions:

Our statement: Typically, the extra load of a module (doing Y and Z as
well as X in your email) occurs as a result of change. Side effects can also
occur as a result of change, or simply wishing to get the job done ASAP.

Squid response: This is certainly true, but, from what I know, certain
"extra load" was there from the very beginning of Squid. Also note that
HTTP itself often forces programmers to violate many good software
engineering design principles.

Our statement: You attempt to modify some part of Squid. As a result
you find that a particular collection of code (an approximate module) is the
most likely place to start.

www.manaraa.com

Structural Analysis of the Software Architecture 465

Squid response: OK. Although any serious change would require
modification in several files/modules.

Our statement: You then find that a piece of code does other things as
well, so you have to be careful to change only what you want to change.
And then there is the question of side effects. So I relate that to being able to
change parts of code, but finding it more difficult to get Squid running
properly again.

Squid response: I somewhat agree with your last statement. You see,
when I modify a part of the code, I usually know a priori that I will have to
modify other places. Thus, if somebody asks me a question like "is it easy to
add feature W?", I reply based on the total amount of modifications that I
foresee, and not based on the first change that I will make. In other words,
most significant changes will require modification of several "modules",
which is hard. And nobody cares about minor updates, I guess.

3.3 Conclusion from the interviews

If we now return to our original statement, there seems to be considerable
reinforcement for the proposition that integration of modules into Squid is
difficult. But, it is not obvious that individual modules are easy to maintain
from the interview discussion. We can determine that the component level
maintenance measures (ISO 9126) will not reflect the increased complexity
that is shown at the architectural level (as indicated by the call path
measure).

The problem of software integration is due to multiple functional
modules and side effects. This is supported by the increase in call paths,
with little increase in the number of components. The problem of side
effects could possibly have been seen by the decrease in the number of
comments, as the system became older and more difficult to understand.

3.4 Summary and conclusions

In Table 10, a summary of the characteristics of erosion are matched with
the measurements and interviews from the Squid software team.

There is some promise in using structural measures to predict erosion.
This has been an exploratory case study, but nevertheless the ability to
predict some of the features of the Squid system are most encouraging.

www.manaraa.com

466 Catherine Blake Jaktman, John Leaney, and Ming Liu

Table 10: Characteristics of erosion matched with measures and interviews

Characteristic

The complexity of the architecture
has increased from a previous
release as shown by an increase in
the structural complexity
measurements.

The impact of a software
modification results in
unpredictable software behaviour
(e.g. , ripple effect).

Measures
Shown in structural
measures (call paths).

Shown in structural
measures (call paths).

Interviews

Not validated, we don ' t
have coverage of
enough releases, yet.

Validated

The architecture is not documented No documentation of the Validated
or its structure is not explicitly
known.

The relationship between the
architectural representation and the
code is unclear or hard to
understand.

There is a continual increase in the
defect rate that is disproportionate
to the amount or type of
maintenance work performed (e.g. ,
new functionality added or
technology upgrade).
Greater resources are required to
implement a software change (i.e.
understand, code and test).

Experience with the software
becomes crucial to understanding
how to implement a software
chan e.

Certain software changes may
become too risky or costly to
make.

The design principles of the
architecture are violated when
implementing a product variant
(e.g. , code redundancy due to
cloning).

The system may become resistant
to change (i.e. "brittle") or requires
additional operational procedures
(e.g., manual tasks) to support new
functionality.

architecture was
available.

No documentation of the
architecture was
available.

Unknown
defect rate data not
captured.

Unknown
data not captured.

Suggested by structural
measures (call paths).

Unknown data not
captured.

Unknown data not
captured, although can
be determine based on
changes in architectural
views and component
usa e.

Unknown data not
captured. May not be
displayed (yet) in a
system that is only 2
years old.

Validated

Not validated

Not validated

Validated

Not validated

Not validated

Not validated

Our study showed that in order to understand the quality of the
architecture one must look at the component measures, as well as the

www.manaraa.com

Structural Analysis of the Software Architecture 467

structural architectural measures, in order to ascertain the origin of change in
the structure of the architecture. For example, changes to the structure could
occur as a result of a redesign that gives rise to the addition of components,
thus changing the connections. Alternatively, modifications to components
can affect the structure through additional calls to other components, and
side effects. In the case of the Squid system, very little happened to the
structure through redesign, as shown by the relatively constant number of
components. However, the modules were changed to give new functionality
(as described in the interviews), this is shown by the increase in the number
of call paths. However, it is interesting that the number of call paths was
high from the beginning, suggesting an early flaw in the architecture.

4. RELATED WORK

The most extensive software evolution study has been the FEAST project
which started in 1997 (Lehman et al. 1997). This work and subsequent work
on the FEAST project formed the foundation for describing the laws of
software evolution and the properties of a E-type system. In this work the
size of modules were used to understand the growth rate and change rate of
the system, and its affect on software quality. Additional software evolution
work that applied metrics included projects to determine; code degradation
(Ash et al. 1994), entropy (Coleman 1995; Harrison and Cook 1990) and
erosion (Kogut and Clements 1994). The focus of such work is at the
program code level, using measurements such as LOC, Halstead, and
McCabe, to determine the complexity of the program that may be error
prone or change-prone.

However, quantitative approaches to understanding architectural quality
have been limited. The evolution of a telecommunications system has been
studied to identify modules or sub-systems in the architecture that should be
considered for restructuring or re-engineering (Gall et al. 1997). In their
work they considered the size of each system, the change rate and growth
rate. The complexity of the architecture has also been measured using
pattern coverage techniques: the proportion of an architecture that can be
covered by patterns and the number of patterns it takes to cover the
architecture (Kazman and Burth 1998). These are complementary measures
of the system's regularity, and hence its architectural complexity. These
quantitative approaches differ from our work as their focus in on identifying
weak areas of the architecture for re-engineering. Our work uses structural
measurements to determine the maintainability of the architecture to support
the evolution of the product.

www.manaraa.com

468 Catherine Blake Jaktman, John Leaney, and Ming Liu

Qualitative techniques such as the Software Architecture Analysis
Method (SAAM) (Kazman eta!. 1994), and the AQA (Architecture Quality
Assessment) (Hilliard, Kurland, and Litvintchouk 1997) provide a method to
gain information about a system's qualities (e.g., modifiability, security,
portability). Such techniques can be used for multiple purposes such as, to
consider future changes to the system or how an architecture will
accommodate change. However, the qualitative architecture evaluation
techniques do not clearly state a criterion for maintainability that can be
measured and verified. Additionally, architectural evaluation techniques are
limited in providing an understanding of the signs and causes of reduced
quality.

5. BENEFITS

The maintenance assessment case study provides preliminary work in
determining a set of measures that can be applied to understand the quality
of a software architecture during its evolution. The ability to identify signs
of architectural erosion allows us to make improvements to the architecture
to increase its flexibility and longevity prior to reaching further erosion. An
architectural maintenance assessment method can also be used to
- derive quality benchmarks that are necessary to evolve the product; and
- build knowledge about the factors that influence the quality of the

product -line architecture.
This work can also provide insights into the causes of erosion, allowing

us to improve architectural analysis and design techniques in the early
phases of system development. For example, proven guidelines for
assessing the extendibility and flexibility of an architecture will allow us to
assess the adaptability of an architecture using pre-design data (e.g. , module
hierarchy).

6. FUTURE WORK

We would like to continue our research with the Squid product to gather
measurements on additional software releases of the system as the product
evolves. Additionally, we would like to apply this research to a system that
is older and larger; this would allow us to study differences in the results that
may be due to varying organisational, software process, and architectural
design factors.

www.manaraa.com

Structural Analysis of the Software Architecture

REFERENCES

Ash, D., Alderete, J., Yao, L., Oman, P. W., and Lowther, B. 1994. "Using Software
Maintainability Models to Track Code Health", Proceedings of the 19941nternational
Conference on Software Maintenance. pp. 154-160.

Bakker, G., and Hirdes, F. 1995. "Recent Industrial Experiences with Software Product
Metrics". Proceedings of the Second Symposium on Software Quality Techniques and
Acquisition Criteria. Florence, Italy. pp. 179-191.

469

Bohner, S. A. 1991. "Software Change Impact Analysis for Design Evolution", Proceedings
of the 8'h lnt'l, Conference on Software Maintenance andRe-engineering. IEEE CS
Press., Los Alamitos. pp. 292-301.

Coleman, D., Ash, D., Lowther, B., and Oman, P. 1995. "The Application of Software
Maintainability Models in Industrial Software Systems". Journal of Systems and Software.
29:3-16.

Dike!, D., Kane, D., Ornburn, S., Loftus, B., and Wilson, J. 1997. "Applying Software
Product-Line Architecture". IEEE Software. 30:49-55.

Gall, H. , Jazayeri, M., Klosch, R., and Trausmuth, G. 1997. "Software Evolution
Observations Based on Product Release History", Proceedings of the International
Conference on Software Maintenance, Bari, Italy, October. pp. 160-166.

Garlan, D. 1995. "First International Workshop on Architectures of Software Systems
Workshop Summary". ACM SIGSOFT, Software Engineering Notes. 20:3:84-89.

Garlan, D., and Shaw, M. 1993. An Introduction to Software Architecture, Advances in
Software Engineering and Knowledge Engineering, Vol I, River Edge, NJ:World
Scientific Publishing Company.

Grisworld, W. G., and Notkin, D. 1995. "Introduction to the Special Issue on Software
Architecture", IEEE Transactions on Software Engineering. (April) 21:9-287.

Harrison, W., and Cook, C. 1990. "Insights on Improving the Maintenance Process Through
Software Measurement". Proceedings of the Conference on Software Maintenance. San
Diego, CA., pp. 37-45.

Hilliard III, R., F., Kurland, M. J., and Litvintchouk, S.D. 1997. Mitre's Architecture Quality
Assessment. Software Engineering & Economics Conference.

ISO 1991. International Standard ISOIIEC 9126. Information Technology Software Product
Evaluation- Quality characteristics and guide-lines for their use, International
Organization for Standardization, International Electrotechnical Commission, Geneva.

Kazman, R., Bass, L., Abowd, G., and Webb, M. 1994. "SAAM: A Method for Analyzing the
Properties of Software Architectures". Proceedings of the 16th international Conference
on Software Engineering, Sorrento, Italy.

Kazman, R., and Burth, M. 1998. "Assessing Architectural Complexity". Proceedings of the
2"d Euromicro Working Conference on Software Maintenance andRe-engineering
(CSMR'98). IEEE Computer Society Press.

Kogut, P., and Clements, P. 1994. 'The Software Architecture Renaissance", Crosstalk, The
Journal of Defense Software Engineering.1:20-24.

Lanubile, F., and Visaggio, G. 1992. "Software Maintenance by Using Quality Levels",
Workshop on Software Quality: Measurement and Practice.

Lehman, M. M. 1989. "Uncertainty in Computer Application and its Control Through the
Engineering of Software". Software Maintenance: Research and Practice. 1:3-27.

Lehman, M.M., Rami!, J. F., Wernick P.D., Perry, D. E., and Turski, W. M. 1997. "Metrics
and the Laws of Software Evolution- the Nineties View". Proceedings of the Fourth
Software Metrics Symposium. pp. 20- 32.

Logiscope™ Editor Manual, 1993.

www.manaraa.com

470 Catherine Blake Jaktman, John Leaney, and Ming Liu

Logiscope™ by Verilog, Version 2.1, 1997-1998. Supported by Prophecy Technology in
Australia, URL: http://www.prophecy.com.au

Morris, C. R., and Ferguson, C. H. 1993. "How Architecture Wins Technology Wars",
Harvard Business Review. pp. 86-96.

Pamas, D. L. 1994. "Software Aging. In Proceedings of 16'h International Conference on
Software Engineering (JCSE 16), Sorrento, Italy. pp. 279-298.

Perry, D. E., and Wolf, A. L. 1992. "Foundations for the Study of Software Architecture".
ACM S/GSOFT Software Engineering Notes. 17:4:40-52.

Squid Internet Object Cache, Source code distributions URL: http://squid.nlanr.netl
Turver, R. .J., and Munro, M. 1994. "An Early Impact Analysis Technique for Software

Maintenance". Journal of Software Maintenance: Research and Practice. 6:35-52.
Wessels, D. and Squid developers, 1997. Squid Programmers Guide (Draft).

www.manaraa.com

Architectural Evolution
Nokia Mobile Phone Case

Juha Kuusela
Nokia Research Center, Helsinki, Finland
juha.kuusela@ research.nokia.com

Key words: Architectural evolution, product family, and organization.

Abstract: Similar software products can be developed as a product family. Common
architecture, addressing all common requirements of products in the family,
provides the basis for wide scale reuse within the family. When independent
products continue their evolution, they face new requirements that may prove
to have wider scope and need addressing at the family level. However,
changes on the family level may be very costly for the product projects. Our
experience shows that architectural evolution is possible and practical if each
change has been carefully planned, taking into account its organizational
aspects. Then the change has to be carried out so that the product line does not
stop. Large architectural changes are high-risk operations; even when they
succeed, they tend to take much longer than expected.

1. INTRODUCTION

The software architecture group at Nokia Research Center was
established in 1994. Our group has now 17 members and operates both in
Helsinki and in Boston. We lead two international research projects ARES
and F AMOOS within the Esprit program but our main task is to support
Nokia business units in their product development. With the business units
we analyze, assess and model their product architectures and give
suggestions on how to improve them. We also participate in developing
architecture for new product concepts.

In the cooperation with Nokia Mobile Phones (NMP), our role has been
to facilitate the process, introduce state of the art in architectural design and
description to software architects from NMP, review and comment their

www.manaraa.com

472 Juha Kuusela

designs. The final architectural choices and their implementation have
always been the responsibility of NMP architects. During these 4 years, we
have had an opportunity to observe how software evolves in response to
changing requirements and to learn how this evolution affects a software
development organization and its development process. This experience
report gives an overview of this process, presents examples of architectural
evolution, and offers a classification of different architectural changes and
an observation on how difficult they are to implement.

Nokia Mobile Phones produces a range of similar mobile phones. It has
an opportunity to control the properties and quality, and to reduce the
development, maintenance, support, and marketing costs of each product by
sharing some of the effort and parts between these phones. In order to
manage such sharing, the phones are organized into a product family. There
are many reasons for variation in the mobile phone family. Different market
segments have different characteristics and the products must offer a choice
of functional features and capabilities to satisfy a wide spectrum of customer
requirements. National standards often impose constraints on product
functionality. Cultural differences and fashion add variation to the user
interface design. Advances in technology require frequent migration of
products to new platforms and environments.

Software architecture provides the basis for reuse within the product
family but it also ties the products together and limits their evolution
potential. Architecture can only be designed to accommodate anticipated
variation. Some of the reasons for variation in the mobile phone family are
rather stable (like different languages) but most are volatile and can only be
anticipated few years ahead. Once the architecture can no longer support the
product family, it has to be changed.

Architectural changes can be very costly. Much work is needed to update
everything and changes in the basic premises may force redesign of large
parts of the system. There are many sources of architectural changes; some
changes can be avoided by careful planning but others are unavoidable. If
the products based on the architecture are successful, new products with new
properties will be added to the family. Architecture has to be periodically
updated to support the new needs. This paper summarizes the architectural
evolution of Nokia mobile phone product family .

2. NOKIA MOBILE PHONE FAMILY

Traditionally a cellular phone consists of a transmitter and a receiver for
communication with the network, a user interface consisting of a keyboard
and a display, a battery, a microphone, and a speaker. In addition, the phone

www.manaraa.com

Architectural Evolution 473

has a processor and memory for the software needed for controlling the
hardware. The phone may also have facilities for some auxiliary services,
such as data communication.

A cellular phone communicates through the cellular network. Nokia has
developed phones for various network standards, e.g., for analogue standards
NMT, AMPS and TACS, and for digital standards such as the Japanese JDC
and the European GSM. TDMA and CDMA are adopted in North America.
For each cellular standard, Nokia provides several phones for different
market segments. These phones vary in style, functionality and price. The
variation is implemented both in the hardware and in the software. The
development organization is large and globally distributed.

The complexity of the product family, the structure of the development
organization, and the need to introduce new features as they become
available in the networks, makes mobile phone software development a
challenging task. Hardware development is the basis for competition but in
order to benefit from this potential, new phones have to be on the market
before the competitors' models using the same hardware. Software
development time costs money.

So far, the evolution of the mobile phone has had only a few basic
drivers. Miniaturization has shrunk the size from portable (like a suitcase) to
devices weighting less that 100 grams. At the same time operation-time with
a standard battery has grown from hours to weeks and price has dropped
from the status-symbol level to that of an affordable personal phones for
each family member. Through this evolution, the product concept has been
rather stable: mobile phones are used for voice communication. Now we also
see evolution of the product concept. The phone has an increasing role as a
portable terminal to an information system and as a communication device
between information systems. Intelligent add-ons see the phone as a center
of a distributed system, car electronics as a general-purpose communication
device, and Internet based systems as a portable browser. This change in the
product concept has a large impact on the product structure.

3. INITIAL ARCHITECTURE AND
DEVELOPMENT PROCESS

Initially, the software architecture of the phone addressed only the basic
requirements variation in the hardware, the communication standards, and
the user interface. These domain characteristics formed the basis for the
initial module architecture and this architecture had only three subsystems:
1. A cellular subsystem for managing the connection to the network.
2. An application subsystem that includes the user interface software.

www.manaraa.com

474 Juha Kuusela

3. A device subsystem for interfacing with the hardware.
The separation of the cellular subsystem is critical since it allows easy

development of different phones for each network and similar phones for
different networks. Separation of the device subsystem is also crucial to be
able to benefit from constant hardware evolution.

The development process for this architecture was very product centered.
The development organization would base each new project on some earlier
version of the subsystems and make the necessary modifications. This
allowed each development organization to be rather independent supporting
the rapid growth of a distributed organization.

4. TENSION IN THE INITIAL ARCHITECTURE

The initial architecture and the development process were very
successful. However, the architecture had many inherent problems. The very
separation of application software from cellular subsystem creates a
problem. Different network standards have different capabilities and thus
application software is in reality coupled with the cellular subsystem. The
coupling is visible in the specifications since some user interface
applications involve complex protocols and their specification is included in
the protocol standards.

The subsystems are too large. Divide and conquer does not really work
well if you only divide by three. Naturally subsystems have internal structure
but their interfaces are handled on a subsystem level. Consequently,
subsystem interfaces grow very wide. Wide interfaces and dependability
between the cellular subsystem and the application subsystem leads to high
coupling between them. The device subsystem does not suffer from the same
problem because it is just a composition of rather independent hardware
drivers, each having its own interface.

The subsystems are not equal. Hardware drivers and cellular software
have a clear role. The application subsystem is "everything else". It becomes
the controller of the phone, knowing its global state. This creates state
coupling and even content coupling between the subsystems. Finally, phones
are not as homogenous as assumed by the architecture. Some have special
functionality (e.g., data communication) to be accounted for.

5. EVOLUTION

Initially the variance in the subsystems was mainly functional. Some
phones had special features and accordingly there was a special part in the

www.manaraa.com

Architectural Evolution 475

software handling it. Then the coupling between application subsystems and
others started to play its role and increasingly variance in one place in the
software was just a reflection of variance in another part.

Required configurations were implemented by using a configuration
management system together with more fine grained mechanisms like
source-code pre-processing using macros and compiler flags, or
programming language based mechanisms like indirection and late binding
of functions, variables and types.

The elements of variability supported by these mechanisms (text lines,
functions, variables, and files) are not the elements of variability required by
products (features, platform differences, interface styles). In particular,
source-code preprocessing using compiler flags is problematic. It is the most
versatile variance mechanism, allowing the possibility of making every
source line a special case, but it does not build any abstractions. From the
source, it is practically impossible to determine what each flag means, or
what combinations of flags are permissible.

As the variance kept growing, it became hard to control the mapping
between desired product variance and its implementation. This happened in
the golden years of artificial intelligence and the "natural" solution was to
automate this mapping by developing an expert system setting the compiler
flags based on a list of features that the phone was supposed to have.

At the same time, the development organization was growing and
subcultures started to emerge. Since each site was mainly responsible of
development for a particular market area sites did not have to deal with
variance in network standards. They started to maintain their own versions
of application subsystems to get rid of the variation caused by multiple
network standards. This confined the reuse benefits into small groups of
products but it did also cut the cost of reuse and increased independence of
each site.

The initial architecture proved to be very stable. A number of small
subsystems were added as the mobile phones got new functions but the
initial architecture maintained its central role over several phone generations.

As the phones kept evolving, new functionality was added. Now that the
application subsystem was diversified, it became apparent that the cost of
porting new functionality across the product family is substantial.
Maintenance problems with the application subsystems also made it clear
that the application subsystem had to be redesigned to be more flexible .

The redesign was carried out according to an object oriented user
interface design style separating control, presentation and functionality Ut Ia
MVC). The redesigned application subsystem replaced the old application
subsystems and an attempt was made to keep its interface as backward
compatible as practical. This attempt succeeded. The development was

www.manaraa.com

476 Juha Kuusela

carried out parallel to the product development based on the old application
subsystem.

When the new application subsystem was taken into use, the organization
had to be restructured accordingly. We identified three different
development categories:
1. The infrastructure development group improves the application

framework and ports it on different hardware platforms.
2. The component group develops reusable presentation and application

components.
3. The product development projects compose their application subsystems

using existing components and develop new components when
necessary.
The whole process is driven by the product development projects. They

place requirements on the infrastructure and request new components.
Up to this point, we had been able to accommodate each change either by

adding new modules to the architecture or by reworking existing elements.
Recently we had to face a bigger challenge.

Markets continued to develop and new product ideas were put into
practice. This led to erosion of the basic premises underlying the initial
software architecture. We could no longer assume that there would be only
one cellular system in each phone since phones should be able to operate in
different networks. Auxiliary equipment continued to become more
intelligent. In addition to the user interface, phones could be controlled by
infrared and serial connections. In one setup, the phone had to act as a
central controller for a large distributed system and in another it was
completely subordinate. The success of the Java programming language also
pushed downloadable software to phones. Clearly, we needed a new
architecture.

The basic idea behind this new architecture is to separate the service
identity from the identity of its provider and make service usage and
provision location independent (see Figure 1). With dynamic configuration
management, we can have several providers for the same service and these
providers can be plugged in or taken out without restarting the system.
Architecture supports both local and remote message passing and object
management, task scheduling and event control. This architecture is also
much better described. It defines software components, message interfaces
between components, essential use cases, component grouping and
deployment structure. The initial architecture had only interface and runtime
architecture descriptions.

The biggest challenge in this new architecture was not how to design it
but how to adapt to it without stopping the product line. We approached the
problem by moving into the new architecture gradually. A roadmap of new

www.manaraa.com

Architectural Evolution 477

architecture versions was outlined. Each version has more capabilities than
earlier ones. Architecture versions are developed concurrently with product
development projects and each project is based on a version that satisfies its
needs. Currently our new phones are based on the second version; a third
version is being implemented, and fourth is under design.

----,

r--e &;$tern Qljec:t

<:·------------ 8 8 ' '
' ' ' ' ----, ' ' ' ' ' -----' ' '

' ' ' ---r- ' ' Client ' ' ' '
'',,, Conmncalor ---------- Evlrlt""'-

'
' '
' '

' ' ' ' ' ' '---- s.r- '
' :·

8 '
_________ 1

' ' ·------------'

Figure 1. Basic module classes for the new architecture

This architecture evolution roadmap that was planned to help us to
control the move from the old architecture to the new one is going to be
permanent. It gives a view of the future and helps the product development
projects to assess what will be possible and when. It is also a basis for
reasoning about how to develop further the product family .

6. LESSONS LEARNED

It is often assumed that the development and management of an
architecture addressing all the common requirements of a product family and
providing the basis for wide scale reuse would always be economical. This is
not quite true. When independent products continue their evolution, they
face new requirements. These requirements can be tackled only in the
product development project that control the resources and have the
responsibility. Later, some of the new requirements may prove to have wider
scope and they can be tackled on the family level. However, changes on the

www.manaraa.com

478 Juha Kuusela

family level may be very costly for the product projects. Commonality
management also requires communication and cooperation. Such a
cooperation between different organization over wide distances is complex
and costly. Reuse and modifiability must be balanced according to the
product development organization and market needs.

Our experience shows that architectural evolution is possible and
practical. We made three different types of changes.
1. Adding components, which turned out to be rather easy as long as they

required no special services.
2. Redesigning components, which was difficult whether you changed the

interface or not.
3. Redesigning the architecture with new communication mechanisms, a

new execution architecture, and new component roles, which was very
difficult and costly.
Note that all the changes were incremental; nothing was ever built from

scratch.
This experience shows that architectural change has to be carefully

planned, taking into account its organizational aspects. Then it has to be
carried out so that product line does not stop. Large architectural changes are
high-risk operations. Even when they succeed, they tend to take much longer
time than expected. New products cannot wait for the new architecture.

This history also demonstrates that variation management and reuse are
tightly connected. If your variation management runs into trouble, you may
ease the situation by decreasing reuse. The gray area between a perfectly
organized product line and completely independent development projects is
wide.

It takes time to react to the changes in the domain of requirements and a
practical product line is never optimal. Make a roadmap showing what you
intend to implement and when. Base the changes on the needs of product
projects and product concept developers . It is hard to give reliable
economical justification for each change but it is easier to compare different
change requests.

ACKNOWLEDGEMENTS

I wish to acknowledge the help provided by my colleagues Alessandro
Maccari, Anssi Karhinen and Alexander Ran and anonymous reviewers.
Their comments improved this report substantially.

www.manaraa.com

Building Systems from Parts in the Real World
Everything's Possible, But Nothing is Easy

Roy R Wei!
Michael Baker Corporation, 4301 Dutch Ridge Road, Beaver, PA 15009
WeilR@acm.org

Key words: Component reuse, software integration, component packaging, configuration
management

Abstract: As manager of the software support group for a full-service civil engineering
firm, my major challenge is in composing project-specific software solutions
from pre-existing parts. Too often, the available parts are not quite right for
the task; or the parts work individually but make incompatible assumptions
about interaction, representation, or other aspects of integration; or a solution
works on prototypes but does not scale up for production. For seven example
cases, I describe the architectural integration problems and what we did about
them. None of the specific examples presents a major challenge- my real
problem is that each such example must currently be solved as a special case.
The architecture research community could help me most by developing
general methods and tools to help me identify and resolve these integration
problems systematically and routinely.

1. INTRODUCTION

Baker Engineering is a full service civil engineering firm. We design and
build structures such as highways, bridges, buildings, airports, and
subdivisions. We have a division that operates and maintains clients'
facilities. We also have a Geographic Information Systems division that
creates geographic databases for clients. Some of our services are software
intensive. We use engineering design analysis tools, geographic information
systems, and Intranets both in-house for our engineering tasks and as
products that we deliver to clients.

www.manaraa.com

480 Roy R. Wei!

The software is bought, provided by clients or government agencies, and
developed internally to various degrees. We often adapt software and
packages from previous projects. We prefer to create projects from existing
components whenever possible, resorting to new code development only as
necessary. The various departmental groups within Baker typically develop
these projects with consultation from our small software group. When we
know in advance that the software aspect of the project is problematical
and/or requires extensive internal development, our software group may do
the primary software development and then tum over the project to a
departmental group. These groups typically do not have a person who is
dedicated to software development. They typically do have an engineer or
technician who, as a sideline to his production responsibilities, provides
immediate computer support to his department.

I manage the software development staff that provides software
consulting services to the various other units of Baker. We usually take on
projects requiring one to three man-months of effort, although we may have
one or two longer-range projects going on at any one time.

My biggest ongoing problem is the difficulty of adapting existing
software to new projects, creating the glue that makes separate software
components work together, and scaling/hardening prototypes for production
use. For example,
- Projects often create or acquire interactive tools to prototype the

production phase. When the project goes into production, we must
process large batches of data- an operation best done in batch. But the
interactive tools sometimes don't provide enough program hooks to run
in batch.
Projects adopt tools that provide good immediate functionality but have
proprietary representations. As time passes, we need to add
functionality, but available components that perform the new functions
can't handle the proprietary representation.

- Professional engineers (i.e. non-software types like civil, mechanical)
who are not programmers may develop or adapt applications that are
good for personal use and later the company wants to expand the use to
other individuals or larger projects. This may involve simply adding a
better user interface and more robust error detection and handling, or it
may require the replacement of some components with more general or
scalable ones, or it may involve re-implementing the concepts in some
language/application that will scale to a larger volume or more users.

- Cost considerations sometimes force us to assemble solutions from parts
or even write fresh code, even when technically adequate solutions
already exists. Often the critical cost is not the initial cost of the

www.manaraa.com

Building Systems from Parts in the Real World 481

application, but the cost of deploying its viewers, browsers or other client
components to all potential users.
In the body of this paper I describe several specific examples. Each of

these can be solved in isolation; the solution is often straightforward.
Indeed, the solution is often included in the example. The major challenge I
face as the manager of the software development group is not solving any
particular problem, but the sheer volume of problems like these and the drain
it places on our software development resources.

The important point behind these examples- the pervasive architectural
issue - is that these problems come along as regularly as rush-hour traffic,
and each one consumes resources, sometimes significant resources, for its
special-case solution. Further, we generally spend more resources in
discovering the incompatibilities and shortfalls, than in fixing them. The
consequence is that we don't realize the promised benefits of component
reuse, and we get less done at more cost than we should. Even worse, there
are projects we would like to do but do not even try, because we can see how
the petty aggravating integration details will more than offset the benefits.

2. EXAMPLES

2.1 LIDAR: Improved aerial mapping

2.1.1 Problem background

Lidar is an aerial mapping technology for producing high precision
contour maps to be used in engineering design. A specially equipped
airplane uses prototype technology for high-precision data acquisition.
Software developed by an external research organization does the initial
conversion from data acquisition to xyz coordinates. We (Baker) had to take
this software and tum it into a production product that would efficiently
process over 30 Gigabytes of data per county scanned. Plans are in place to
process over 50 counties in the next year.

The airplane acquires data in the form of scan lines at 3-meter spacing.
Points along the scan line are 3-meters apart. This gives us a grid of points
3-meters by 3-metters. Each point consisting of the distance from the
airplane to the ground, the GPS (Global Positioning Satellite) location of the
aircraft, and the rolVpitch/yaw information for the aircraft. The data must be
converted to topographic maps by the process:
- Do internal calibration and correction of the data acquisition system
- Calculate the <x, y, 'Z> location of each spot on the ground through

spherical trigonometry

www.manaraa.com

482 Roy R. Weil

- Transform the <x, y, 1> location for geographic projection
- Produce a contour map
- For quality control, produce difference maps for overlapping areas; also

compare the contour maps to known low-precision maps
- Merge adjacent flights where the data overlaps

We use a mixture of pre-built and custom software to accomplish this.

2.1.2 Computing obstacles and resolutions

Contouring package format incompatibility. The program was
originally developed on a Sun workstation. The developer created <x, y, 1>

output ASCII files that were formatted for a graphical display package. The
display language provides commands to specify scale, viewpoint and sun
angle. It allowed comments with a # sign in column 1. The contouring
package wanted the data in <y, x, 1> order and comments with a semicolon
in column 1. The initial workaround was a Perl script that did the format
conversion. A better one was a parameter to the conversion program that
told it which format to output. This of course required us to rework the
program to find all the places that output data.

Difference package worked in interactive mode, but failed in batch.
Some of the flights covered the same ground area. In particular one of the
early flight was flown perpendicular to most of the other flights. By
checking this flight against later flights we could verify that the data
acquisition system did not drift over time. We do this check by calculating
the difference between the two generated ground surfaces. The difference
program worked fine in the interactive environment, but produced no output
when I tried to run it in batch. Since I was planning to do about 8,000 of
these differences, this was unacceptable. I sent data to the vendor and they
were able to reproduce the problem. It took three weeks to get the fix back.
They sent me the patch, but it was for the wrong package. The software we
use is structured in 12 to 15 sub-packages each with specific functionality.
You buy as few or as many of the sub-packages as you need. There is
overlap in the functionality. The difference routine was in three of the sub
packages. They sent me the patch for the only one of the three that I had not
bought. The workaround was to get an evaluation serial number for the
unpurchased package. Hopefully they will issue the update to the package
that I have purchased before the evaluation period runs out.

Display package couldn't handle volume. Because of the high density
of the data, (a point every 3 meters) the contouring package produces lines
that are very ragged, rather than the smooth lines that are on a typical
contour map. This makes the display files 20-50 times larger then usual, and
they exceed the allowable file size of the display package. The workaround

www.manaraa.com

Building Systems from Parts in the Real World 483

was to process the data in sections. Two programs were written: one to split
the data into reasonable-sized chunks, and the second to tell the display
package to display the multiple files required to cover the specified area.

Coordination with our partner company. The development was a
joint venture with an external research organization. Each group had
separate responsibilities. We had a difference of interpretation with the
partner company. The original data met the specifications but showed a
systematic error. In our opinion, the specification was not quite right,
because it allowed systematic, correctable errors. The specs called for an
error of plus or minus one foot. The data showed a systematic error of plus 6
inches on every tenth scan line. There was a physical explanation for the
error. One of the pieces of the apparatus was a spinning ten-faceted mirror.
Since it was the partner company's responsibility to produce the <x, y, z>
data, I thought it was their job to determine the exact magnitude of the error,
and produce the 10 adjustment factors . Their response was that the data was
within specs and therefore they were not going to do anything about it.
Since I knew the eventual clients of the data would not accept data with this
kind of error, I had to modify the partner's program to accept the adjustment
factors and to determine the values.

Dropping information too soon in the process. To make the problem of
removing the systematic error a little more interesting the data acquisition
hardware reported out the rotation angle of the ten-faceted mirror in a 17 -bit
integer. Since the original programmer did not care which facet was being
processed, he simple extracted the low order sixteen bits (2 bytes) from the
data stream to obtain the angle of the mirror for each data point. This meant
that when I needed to determine which facet was being processed, I had to
determine where in the data stream the 17 bit was located and merge it with
the other 16 bits before determining the facet number. Obviously a better
interface between the modules would have made this task simpler.

Scaling up the data sizes. When the program was in the developmental
stage the length of a data collection stream was relatively small, less than 2
miles of data. At a sample rate of 30 points per second, this produced 1300
points and the programmer declared his arrays and structures at 2,000. The
production environment uses longer flight lines. There turns out to be a
system constraint of about 35 miles. These limits were nicely "#defined"
in C so I upped the limit from 2,000 to 32,000 and got "program exceptions"
for some medium size cases. It turns out when you do a rnalloc of a
double precision variable (8 bytes) for 2,000, the answer (16,000) is less than
16,384 so storing the rnalloc calculation in a small integer works. I had to
find all the rnallocs (there turned out to be 23 of them) and change the
calculated variable from an integer to a long. And, of course, after I had set
the limit to 32,000, 5 flight lines out of about 400 exceeded that limit. This

www.manaraa.com

484 Roy R. Wei/

required increasing the limit above 32,768 to process those lines. I had to
revise the program so that all array accesses were done with long integers.

Miscommunication of operator procedures. To process a flight line of
data requires 7 related files. To provide for the batch processing and to
reduce the chance for operator error, I devised a file-naming scheme in
which the first 5 characters of the file name established a relationship. This
scheme apparently was not conveyed correctly to the person producing the
files . They did not observe the naming rules. This resulted in a group of files
with the wrong names, which therefore could not be processed
automatically. Since the data was burned onto a write once CD after being
created it was not a correctable by a one time renaming of the files. To
resolve the problem I wrote a rename script that the operators must execute
each time they copy files from the CDs

2.2 GeoMedia Web

2.2.1 Problem background

One of our long-standing utility clients was interested in a web server for
displaying geographic data. He wanted to ask questions like "where are all
my open work orders" and see a display on a map with all the selected
buildings filled in red. He also wanted to click a telephone line on a map
and have the system trace it back to the central office. The drawing files
were in Intergraph CAD (Computer Aided Design) file format. Intergraph
has a product called GeoMedia Web, which will take a one of their CAD
files, or a portion there of, and reformat it to a standard web format (.CGM)
for which there exist plug-ins and ActiveX controls.

Another of our clients, with our help, had populated such a database and
had developed the queries and Perl scripts to do those kinds of queries. They
were willing to allow us to use a small sample of the data from the existing
web site and demonstrate it to the other client. So the task was to take a
working web site, move it to another server, and reduce the size of the data
set.

2.2.2 Computing obstacles and resolutions

This task turned out to be an adventure in incompatible assumptions and
hidden configuration files with hardwired information.

We installed GeoMedia Web on the new server. We copied the existing
web directories from the working server and attempted to access the home
page on the new server. We got a "404 page not found" error message.

www.manaraa.com

Building Systems from Parts in the Real World 485

Different web servers assume different default names when you request the
home page. In one case it was index.htm, in the other it was default.htm

We next discovered that the GeoMedia Web program had some internal
configuration files that it used to let itself know what "projects" were
available. It kept these files within its own directory structure, rather than in
the Web's directory structure. We had to go back to the original web and
obtain this file, and then modify it to contain only the demo project, not the
other five projects that were on the original site.

Another of the configuration files contained the name of the ODBC entry
that pointed to the database. On the new machine the ODBC name was
different and the original user id and password did not exist.

Still another configuration file contained a list of file names within the
project. These names were fully qualified and therefore had the wrong drive
letter and upper-level directories for the new web servers file location.

Once the cause of each problem and the associated configuration file was
identified, it was straightforward and easy to fix. However, to discover the
cause of the problem took some time. In general, the error messages just
indicated that something did not work or was missing. It took some
sleuthing, debug tracing and debug prints to find out exactly what was
wrong. Finding and resolving these problems could have been easier if there
had been a configuration description and updating tools.

2.3 GIS version control

2.3.1 Problem background

Intergraph offers a suite of programs for working with GIS (Geographic
Information System) data. It includes a basic nucleus package, an
administrator package, a digitizing package, several kinds of analysis
packages, etc. In all, there are about 12 to 15 specialized packages, each of
which does a collection of related tasks . The specialized packages are sold
separately. These packages use a database to store some of the configuration
and attribute information.

One of the things Intergraph did right some years ago was to develop an
interface between the packages and the various database engines. They
created an internal definition of SQL, which all the packages use. This
interface package processes the internal SQL and transforms it into
acceptable SQL for the given database engines that is attached at your site.
Microsoft users will recognize the ODBC model. lntergraph calls it RIS
(Relational Interface System).

www.manaraa.com

2.3.2 Computing obstacle and resolution

I recently needed to use another one of these packages. I downloaded
and installed the new package. When I ran it, I immediately got an invalid
database message. Since the database in question was working with the
other packages I knew that was not the problem.

Upon investigation I discovered that lntergraph was in the process of
upgrading the packages to use Microsoft's ODBC database interface rather
than RIS. The working packages were the updated versions, which I had
associated with a Microsoft Access database using the ODBC interface. The
non-working package had not been updated and would only work through
the RIS interface.

To accomplish my project I needed to be able to run the different GIS
packages that were at different version levels. The solution was to transform
my Microsoft Access database to an Oracle database and attach the Oracle
database that would work in both version levels.

2.4 Upgrade version compatibility problem

2.4.1 Problem background

I was working with a commercial package that had a number of
command-line processing commands, each of which had 6 to 10 parameters.
These were expressed in the Unix command line style of minus sign,
followed by a single letter identifying the parameter, followed by a space,
and then the parameter value:

task -I input file -0 output file -L level

We had put together an extensive series of scripts to process some data.
This collection contained over 10,000 lines of script. We have been using
these scripts in a production environment for over 12 years now.

2.4.2 Computing obstacle and resolution

As you can imagine, over the 12 year life of the system the underlying
commercial package has gone thorough a five major revisions and many
minor revisions. Each revision has brought changes in the parameters and
parameter letters. The changes generally made the letters more consistent
amongst the various commands, but sometimes additional functionality
added more parameters. To compound matters, the scripts were being run in

www.manaraa.com

Building Systems from Parts in the Real World 487

several locations, on many different machines, which made it infeasible to
do a simultaneous switch among versions.

At first, every time a new version appeared, we would install it on a
development station and proceed to test the scripts. When an incompatibility
was found, tests were inserted into the scripts to determiljle which revision
was running. Based on the revision number different sections of the script
were executed. After a while the scripts got pretty ugly looking, and it
became hard for maintainers to follow.

After the third major upgrade the software/scripts were stable enough that
we did not install the next two upgrades. So we are now running on packages
that are two versions (about 6 years) back. This gives us grief when
problems do occur because we can not get any support from the vendor. In
addition the hardware maintenance cost on the older machines is expensive
compared to the purchase cost of today's machines. At some point the
maintenance costs are going to force us to redevelop all that software.

The overall problem is that the vendor's architecture did not provide a
migration path between versions. Nor did it provide a reasonable way to run
multiple versions of the same software on multiple machines with shared
scripts.

2.5 Image library

2.5.1 Problem background

The Corporate Communications Department wanted to make available a
collection of public relation images for projects to use. These were
photographs of past projects, generally of high quality. These photos would
be used in marketing brochures and in proposals to other clients.

One of the primarily software selection criteria was the mandate to allow
as many people as possible within the corporation to have viewing, selection
and download capability of these images.

We considered several packages. Most give us the required functionality
of filing an image, assigning keywords to that image, performing a search on
the keywords, displaying thumbnails of the search results, and downloading
selected images. Of those that met the requirements the costs ranged about
$2-5K for a server and $20-30 per client plus the cost of deployment. For
the corporate communications application we estimated a need for 100-200
clients. Other departments could also use a similar system for the storage
and deliver of drawing details, inspection report photos and progress report
photos.

Instead of purchasing one of these systems, we decided to implement a
package in-house using a web-based approach. This was almost purely a

www.manaraa.com

488 RoyR. Wei/

cost decision, since some of the packages did exactly what we wanted. The
difficulty of maintaining client viewers on several hundred workstations was
also a deterrent.

2.5.2 Computing obstacle and resolution

The in-house application was built from scratch. It uses Microsoft' s
active server page technology to access a database that contains information
about the images. The images are stored in a directory on the web server.
The system consists of about eight or nine different web pages that are
populated on demand from the database.

One of the web pages consists of a display of a number of images that
had been selected by a search request. To make the system work at
acceptable speeds this display had to show a thumbnail view of the images.
The thumbnail would be a 96 by 96 pixel image that would download and
display very quickly. By clicking on this image the user could obtain a
larger, more detail picture.

We found three free or cheap applications that would convert a directory
of high resolution images to a set of thumbnails. However, all were
interactive. An operator had to select/display the images, invoke a command
from a pull-down menu and perhaps enter new file names and/or directory.
One of these applications would do some commands via a DDE interface.
Given a DDE interface it is possible to write code that will call the
application in a batch environment. However, the application did not expose
the functionality for the process that we were executing.

Since we were dealing initially with only 500 to 600 images, we decided
to grunt it out. We used the macro facility of PhotoShop to do the re-sizing
and naming work. The operator loads the image, invokes the macro, and
then goes on to the next image.

As a side note: After the 600 conversions to thumbnails were completed,
another application became available that allowed the creation of the
thumbnails in a batch environment.

2.6 Resume library

2.6.1 Problem background

The Document Services Department maintains a collection of resumes of
the professional staff to be used in writing proposals. The resumes are
formatted electronically in WordPerfect, using a house style, including
logos. They are available on a shared server. Proposal-writers who want to
incorporate a resume into proposals could attach to the server, copy the

www.manaraa.com

Building Systems from Parts in the Real World 489

relevant WordPerfect file to their hard drive and make the necessary
changes. In general, these changes would be textual, not format. The changes
might include deleting paragraphs that were not relevant to the proposal and
adding paragraphs to emphasize relevant experience. Once the proposal is
submitted the modified version is discarded.

The task was to make this collection of documents more widely
available, easier to search and easier to obtain. The obvious choose was to
make the data available on the internal Intranet.

2.6.2 Computing obstacle and resolution

No available WordPerfect-to-HTML converter works well enough.
Everything we could find butchered at least the house formatting and
sometimes everything else as well.

We needed a full-text search. Sometimes a proposal author wanted to
include a resume of an individual with a particular expertise that was not
commonly exploited by the company. In such a case knowledge of who had
that experience would not be available from mental memory.

Although the resumes are loaded on a central server, the updating is done
throughout the company by the various departments and individuals.

To avoid the problems with multiple copies of the same information, the
resumes were kept on a single shared server. Typically the remote offices
would not be attached to this server, so they would have to go through the
procedures to attach to the server before they could access the data.

We examined several alternatives:
There exist web browser plug-ins (KeyView, QuickView) that have the

capability to display the Word Perfect format. However at $30-50/client
plus installation, the plug-in route is expensive, both in initial outlay and in
distribution/installation/update costs.

PDF format is another alternative. The user would view the PDF
formatted document, but download the Word Perfect version for the
proposal. Version control is the main reason that this was rejected. Updating
is done rather frequently and by many people in the WordPerfect formats.
Getting the updater to create the PDF file whenever a change is made is
problematical, and would require the Adobe Distiller at many desktops.
Automatically invoking the PDF converter would have to be programmed.

Another package (Net-it Central) converts any printable document into
its own proprietary format (.jdoc), which is displayable by a browser using a
Java applet. This package will work in a scheduled batch mode, converting
any documents that have changed since the last time the package was run.
This batch process creates a table of contents for the documents. However,
the resulting table of contents isn't wholly satisfactory. Net-it Central does

www.manaraa.com

490 RoyR. Wei/

provide a template facility to modify the header/footer/table of contents of
the resultant pages that it is creating. This solution adopts yet another
document fonnat, and yet another user interface for controlling a display.
The buttons for moving around the document are separate controls, not
integrated into the browser buttons or scroll bar. It is yet another interface
for the user to know and use.

Any of the above solutions will work. None of them, however, would
give us an increase in functionality or availability over using the shared
server great enough to warrant the expense and aggravation of the change.
As a result, we decided not change existing procedures.

2.7 Database communication

2.7.1 Problem background

A database server provides verification of customer infonnation for small
retail companies. The current system has one server and N clients. The user
works off-line preparing query data. The client machine then calls the server
via modem. Once a connection is established, it sends the query, retrieves a
report, and hangs up. The user then displays/prints the report off-line.

The system has been in place for a number of years and was designed and
built before the widespread availability of the Internet. The users are
becoming more sophisticated and they want to replace the telephone
connections with an Internet connection.

2.7.2 Computing obstacle and resolution

The best of all possible worlds would be to find an existing Internet
interface package that provides the same procedure calls as the modem
interface package. At present we have not found such a package.

One alternative is to re-write the modem interface, to establish the
connection using sockets. The calling sequence and actions are roughly the
same whether you are using a modem or a socket. The sub tasks are to link
up with the remote machine, login a session, pass data back and forth, and
then disconnect.

Another alternative is to strip out all the modem interface code and
replace it with remote procedure calls directly to the various routines in the
server module that do the work, then use the Microsoft DCOM concept to
establish the connection between the server and the client.

This task is on the low priority list so we are still looking at technologies
and evaluating our alternatives.

www.manaraa.com

Building Systems from Parts in the Real World 491

3. DISCUSSION

As mentioned in the introduction my biggest ongoing problem is the
difficulty of adapting existing software to new projects, creating the glue that
makes separate systems work together, and scaling/hardening prototypes for
production use.

The examples show some of the problems that I deal with on a day to day
basis. They illustrate the classes of architectural problem that make a large
fraction of my work:
- Interactive programs and procedures are sometimes difficult to convert

over into a batch environment.
- Different components sometimes can not be joined together even though

the data that one component is outputting is of the type expected by
other. The problems are both simple, like format and sequence of
information and more complicated, like incompatible demands and
assumptions.

- Reasonable existing solutions may be precluded by economic
restrictions. Either projects just do not get done, or in-house solutions are
developed which have a limited but adequate set of capabilities.

- Vendor upgrades will generally cause problems for existing systems that
are built on top of the product. Vendors tend not to have backward
compatibility.

- Software may not scale in size or performance.
- Not all default assumptions are documented, or their documentation is

scattered in none obvious places.
I am trapped in a Turing tarpit: Everything is possible, but nothing is

easy. The tarpit is not one of creating individual programs to use as
components: that's pretty straightforward now. The tarpit is filled with the
glue that we create ad hoc to stick together components. The glue is
necessary either because the parts were not initially designed to fit together
(different vendors), or the connection tools are primitive (command scripts),
or the style of use does not meet production needs (interactive vs batch).

ACKNOWLEDGEMENTS

The work reported here was, for the most part, in-house software
development and configuration for Michael Baker Corporation and was
supported by the company. I wish to thank Joel Platt for one of the
examples. I wish to thank Mary Shaw for her encouragement in getting me
to write this paper and for making red marks all over the pages on many
drafts.

www.manaraa.com

TECHNIQUES AND METHODS FOR
SOFTWARE ARCHITECTURE

www.manaraa.com

Architectural Concerns in Automating Code
Generation

L. F. Andrade, J. C. Gouveia, P. J. Xardone and J. A. Camara
OBLOG Software S.A.
Alameda Antonio Sergio 7- 1 A, 2795 Linda-a-Velha, Portugal
{landrade, jgouveia, pxardone, jcamara} @oblog.pt,
tel: +351-14146930, fax:+351-I-4144125

Key words: Code generation, object-oriented modelling, contract-based architectural style

Abstract: We report on the problems (and solutions) that we have been facing in
defining an architecture that enables us to automatically synthesise production
code (COBOL, CICS, SQL) from a higher level specification language that
includes both primitives that handle business and architectural requirements.
Our experience has been drawn from a real-life project in the banking industry
where object-oriented models for large-scale projects were used. With these
models, the application architecture was conceived to be robust to change,
accommodating new behaviour in a systematic and encapsulated way.

1. INTRODUCTION

Critical aspects of today's banking management information systems
include time to market (dealing with component development and re-use),
evolution (volatility of business requirements), requirement conformance
(take decisions upon correct information), scale and complexity of systems,
parallelism, maintenance, robustness and security. Product distribution,
management information systems and decision support systems are typical
banking applications facing these problems.

A particularly acute aspect of the problems that financial companies are
facing today is the need for a technology migration plan from current
traditional systems to future open systems. An encapsulation mechanism to

www.manaraa.com

496 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

hide "legacy systems" is essential to guarantee a smooth transition, coping
with the business support extensibility.

Our purpose in this paper is to report on the experience that we have had
in the combined use of formal architecture and transformations for assisting
the migration of a banking application. More specifically, we will discuss
the role of architectures in enabling us to automatically synthesise
production code (COBOL, CICS, SQL) from a higher level specification
language that includes both primitives that handle business and architectural
requirements.

Our approach is based on the use of object-oriented models for large
scale projects. By using such models, the application architecture can be
conceived to be robust to change, accommodating new behaviour in a
systematic and encapsulated way.

In section 2, we briefly introduce some of the requirements and describe
the banking project itself. In section 3, the main problems that we had to
face are identified and the possible solutions are discussed. Finally, in
section 4, a technique for automating production code based on
transformations applied over a chosen architecture is presented.

2. PROBLEM DESCRIPTION

The global purpose of the project at hand was to migrate and improve the
information system of a European mid-size bank with the following
characteristics:
- 430 branches and 5000 PCs;
- 1 million transactions per day (average);
- 2 seconds of maximum response time;
- System hardware - IBM Mainframe;
- System software - MVS, CICS, DB2;
- Language- COBOL, SQL.

Our task was to migrate and improve the Retail Network, which meant
re-construction of the Branch Transaction System (more or less 90
transaction types - opening accounts, withdrawals, deposits, transfer orders,
etc.).

The main business requirements for this project were to:
- Improve the system functionality to deal with the new European currency

(EURO);
- "Solve" the year 2000 problem;
- Adapt the system in order to inter-operate with a new package that

manages the "financial products" offered by the bank;

www.manaraa.com

Architectural Concerns in Automating Code Generation 497

- Adapt the system so that the bank could be open 24 hours a day (mainly
because of Internet access).

The main implementation requirements for the project were:
- The client tier could not be changed, meaning that the format of all

communication messages (between the client and the server) had to be
preserved;

- The target technology (MVS, CICS, DB2, and COBOL) was fixed;
- Some functionalities, like check-digit validation, time-stamps, etc. were

supplied by already existing routines which we were obliged to use;
- The format of communication with other modules was fixed and not

changeable;
- All the technical documentation formats were also fixed and had to be

followed;
- Some customer implementation techniques had also to be followed.

The kinds of problems we had to face in this project are very common to
real projects. Even with the availability of many commercial CASE Tools
supporting object-oriented methods (and in particular supporting UML), our
main problems were to come up with answers to the following two
questions.
1. How to synthesize the final production code automatically from the high

level specifications?
2. To achieve the previous goal, what language/method should we follow to

specify the system, including all of its details?

3. OUTLINE OF THE MODELLING APPROACH

An obvious answer to the second question above was to choose UML
because it is a standard visual-modelling notation that is already in place.
However, from our experience, in order to use UML it is necessary to have
confidence in all of the notations and techniques that are offered.
Furthermore, integrating such techniques and notations seems to be a
difficult task, the feasibility of which needs to be demonstrated particularly
if the goal is to automatically obtain code from specifications.

Given these caveats, we decided instead to use a rich, yet integrated and
precise subset of the UML notations - which we called OBLOG - adding to
this subset a rigorous and formal specification language supporting the
generally accepted 00 key properties of
- support for encapsulation of services and state as objects
- the ability to create object instances from class templates

www.manaraa.com

498 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

- the ability to define new object templates by monotonic modification of
existing ones (base classes)
OBLOG introduces new specific features such as

- integration of the concept of module in the class concept as a way to
introduce different levels of abstraction and encapsulation;

- specialised language constructors to define object behaviour at distinct
levels of detail;

- visibility of objects defined by contracts as an architectural style for the
construction of complex systems.
These features are supported with full integration of graphical diagrams

and textual specifications.
- The graphical notation is compliant with the UML standard.
- It allows for a continuous path from high to low-level design

specifications, always using the same specification language.
- The textual language is mainly used for the design details.

An effort was made to provide OBLOG with a well defined semantics as
a means of supporting key aspects of object-oriented construction such as
method composition and extension, direct object interaction and event
multicast, behaviour inheritance, composability, and encapsulation. Some
properties relevant to wider software engineering were also included, namely
the ability to specify concurrent behaviour properties and to deal with non
normative behaviour (exception handling); allowing the systematic
refinement of specifications to code, preferably in a compositional manner.

According to these principles, an information system is treated as a
collection of interacting concurrent objects. An object is an abstraction of
an entity with a persistent identity, a public interface defined by the provided
services and recognised events and an internal body. The internal body
includes hidden local methods implementing the public interface, possibly
calling some hidden local auxiliary services, a computation state indicating
the object situation in its life cycle, an internal state (represented by its slot
values) storing the effects of method executions, hidden enabling conditions
constraining services and reactions, and hidden invariant conditions
constraining state changes.

In practice, specifications tend to involve a large amount of objects which
makes understanding and managing them a real problem. OBLOG deals with
this problem by providing a decomposition mechanism that allows complex
objects to be defined that can be later detailed in terms of other simpler
objects.

The ability to decompose specifications also allows the analyst to
introduce new objects at any level of the specification. The way of making
those new objects, introduced locally for a given complex object, visible to
other objects, is through a contract mechanism. In this sense, contracts are

www.manaraa.com

Architectural Concerns in Automating Code Generation 499

used to enrich the interface of a certain object, allowing some of its
components to be seen by others.

In the following example (Figure 1), an Account object makes a contract
with a Customer object (named CtWithAccount) . This allows for public
objects defined in the decomposition of Customer (e.g., CustomerProfile) to
be used by Account and any object in its decomposition. On the other hand,
the contract CtWithCustomer allows for obligations to be defined between
Customer and Account.

Figure I. Contract between Account and Customer

Contracts are the privileged architectural style for OBLOG
specifications. They are used to express dependencies that characterise
collaboration relationships between objects. These kinds of relationships
allow the analyst to perceive the way objects work together in order to
perform some task.

Table /. Withdrawal obligation requirements
Detailing obligation to define the withdrawal requirements
Involved concepts Customer obligations
X : Account Customer Y own Account
Y : Customer X
Z : Amount Balance of Account X is
W: Balance greater than Amount Z

owns (Y, X)
X.balance >= Z

Deriving formal pecifications from the above requirements
(Account withdrawal operation declaration)

Account obligations
Balance W of Account X
is decreased by Amount Z

X.balancc = X.balancc - Z

PRE-CO DITIO : ?owns(self,Y)=TRUE A D self.Balance() > Z
OPERATION: withdrawal(Y: Customer, Z: Amount)
POST-CO DITIO :self. Balance()= old.Balance()- Z

Contract-based architectures are also used for evaluating the impact of
changes and to maintain traceability of concepts. In fact, when objects
contract between them the components they need, they are explicitly,
creating strong dependencies between them. These dependencies are of the

www.manaraa.com

500 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

outmost importance, and constitute a very important input when analysing
the impact of changes in a model. Contracts between objects enable the
OBLOG tools to check for those dependencies and to make available to the
analyst, at any level of the specification, detailed reports about them.

In order to achieve the production code generation, OBLOG provides
some concepts to define detailed behaviour of operations and interactions.

Object interaction can be direct (calling a service operation of a known
target) or indirect (event multicasting). Events are incidents (or stimuli)
requiring some response.

An operation may be classified as
- service -executed by direct demand of a caller object
- event reaction - starts method execution for every object that recognises

the event
- self-initiative action- internal operation initiated only by the owner

object, when some condition holds
Conditions may constrain operation execution. Enabling conditions take

into consideration the internal state of the object, avoiding invariant
violations. Preconditions are specified only on the service and event
parameters, indicating the operation client obligations when using that
service, and giving no guarantee about the result of an operation if its
method is executed outside them.

An operation execution is supported by a main method and a set of
possible alternative methods. The main method is the one selected for
execution whenever the operation happens. Only when the main method
can't execute due to its enabled conditions, the object tries an alternative
method for that operation, if defined.

Methods are composed of local variables and quarks that exist only
within the method scope, and during a method execution. A quark is the
minimal unit of object dynamic specification, with a guard condition and a
body responsible for the effect on local state and interactions.

4. OUTLINE OF THE PROPOSED
ARCHITECTURE

Having chosen a set of concepts that is rich and precise enough to build
the intended models (as an answer to the second question posed at the end of
section 2), the problem is then reduced to the following questions.
- What architecture should be chosen for COBOL/CICS/DB2 applications

in order to support these concepts?
- How do we automatically synthesise production code from the defined

architectures?

www.manaraa.com

Architectural Concerns in Automating Code Generation 501

- How would we be able to easily interact with already existing
applications, with that interaction clearly and rigorously expressed in our
models?
Figures 2 and 3 give an overview of the approach that we implemented.

TR02

TR01

Figure 2. Logical architecture

This first figure shows the way we conceived the logical architecture for
the project. The whole model is seen as an OBLOG object and therefore has
an interface; in this interface we declared the set of transactions that could be
called from the clients. Then, for each transaction, we created an active
object that implements it, and used a delegation mechanism to direct the
client calls to the right server object.

Having an object for each transaction enabled us to locate in those
objects all the auxiliary operations needed for the transaction, implementing
specific behaviour for that transaction. General business rules were
implemented in a separate object.

We also defined two kinds of auxiliary objects.
1. objects that implemented wrappers to the data persistence mechanism

(object named DB), to the external applications we had to interact with
(objects EUCLIDE and BESDEP), and to the operating system (object
SYSTEM)

2. an object that aggregated all of the general business rules that were used
by some (or all) of our transactions (object LOGICAL)
Objects of the first kind gave us an invariant on the environment,

allowing us to develop the code of the transactions without having to
concern ourselves with the external changes that could have an impact on
our implementation. The second object had a similar objective in the sense
that it was designed to ensure that all the general business rules were

www.manaraa.com

502 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

fulfilled by all transactions, and that changes in those rules would have an
immediate impact on all transactions.

Between the wrappers referred to above, there was one that hid the data
persistence mechanism, one for which we will provide a little more detail.
The OBLOG language has a set of primitives that enables the software
engineer to directly manipulate the storage and retrieval of objects from disk.
Though it seemed to be the natural solution to implement data persistence,
there were several reasons that led us to take a different approach,
implementing it as an external object.
- Data persistence is frequently a delicate point in time-critical systems,

where fine tuning is often needed for performance reasons.
- In the first stages of development it was not yet decided if all of the data

persistence was managed by DB2 or if we had also to deal with VSAM
files.

- Using a wrapper was already the chosen solution for other "collateral"
problems.
In fact, the wrapper that was hiding the data persistence ended up being

developed as an OBLOG model on its own, and all of the data access code
was generated automatically.

TRA SACTIO
INTERFACE

Extern
Reusable
Code
(Costumer&
Account
Management)

v
[COBOL
/CICS]

Environment
Specific
Routines
(External
Code)

I

OPERATING
SYSTEM

[COBOUCICS]

BUSINESS OPERATIO S
(RESUABLE CODE)

[COBOL]

DATABASE ACCESS
OPERATIO S
(Data Model Encap ulation Code)

[COBOUSQL]

v
SQL(DB2)

Figure 3. Physical architecture

The physical architecture is organised in terms of different layers, each of
which takes care of specific tasks.
- The first layer is the interface for the clients and implements the logic of

each transaction (basically, a sequential composition of logical services).

www.manaraa.com

Architectural Concerns in Automating Code Generation

This first layer is coded in COBOL with CICS instructions for
transactional purposes.

503

- The second layer contains all the general services that are reused by the
transactions. This layer contains COBOL code only.

- The third layer implements all the data persistence operations and is
coded in COBOL with SQL instructions.

- Also present are modules that implement the connections to exterior
services, whether they be operating system services (e.g., get current
date), standard services (e.g., check-digit validation) or accesses to other
business applications (e.g. , validate client information, perform changes
on account balance).
In summary, the underlying ideas for the proposed architecture were

- choosing an architecture for COBOL programs/transactions in a way that
they can be seen as a composition of sub-routines, each one
implementing an object operation from the specification. With this
strategy, we can achieve encapsulation of objects.

- Although polymorphism cannot be implemented using traditional
COBOL, a certain degree of inheritance (in the perspective of code re
use) can be achieved using a code inclusion mechanism.

- Persistence of objects can be managed by a relational database (DB2).
For this purpose, a model object can be created for ensuring data
persistence, encapsulating all of the data accesses (either supported by
DB2 or by any other mechanism). The database and the access to SQL
tables are then defined through a module whose interface consists in
creation, modification, retrieval, and deletion operations per object,
hiding internal optimisations;

- All external components interacting with our system are isolated, in a
systematic way, clearly defining the communication points and avoiding
undesired collateral effects.
The next section describes how, given such an architecture, code can be

automatically produced from specifications in a rigorous and continuous
process.

5. SYNTHESISING PRODUCTION CODE

Automated code generation is a goal developers have been trying to
include in project life cycles for a long time. It is usually viewed in two
ways
1. as a feature that produces only part of the expected result, which makes it

largely unused (the pessimistic view), or

www.manaraa.com

504 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

2. as a feature that, when well managed, can bring significant productivity
gains (the optimistic view).
The most common view is probably the first, due to the inability of

current tools to address some key points in automated generation. The usual
problems that real projects face are, among others:
- Insufficient code is generated (most of the times only templates) .
- Code tuning may not be preserved on consecutive generations.
- Incremental generation is not available.
- There is a lack of strong customisation facilities.

We use the expression "automated generation" in the general sense of
producing automatically any written information from already built models.
This typically includes source code and several kinds of documentation.

With the OBLOG tools we have addressed the previous problems using
the following key features.
- use of a rich specification language
- use of an open repository model
- support for customisable repository query/report technology and tools

We now discuss this technology, its principles, and how it was used in
the project for enabling code generation.

The generation is a transformation process based in rewrite rules. A
model transformation process is the application of rules to a set of objects in
a certain order and according to a given strategy. The principle of a rule is to
define an elementary transformation on repository objects. By
transformation we mean the process of querying the repository and
generating information from it, either in a textual form or into another
repository (possibly the same).

In the following we briefly present the characteristics of the rule
language, with small examples.
- A rule perform actions. These actions are of several types, including

elementary actions to output text and values to files, creation and
modification of objects, output to user, manipulate variables, etc.

- Rules can access object properties and relations, including the repository
hierarchy.

- A rule can use other rules. This allows for rules to be applied in isolation,
or to be used in a call sequences (procedural way).

- Iteration mechanisms are provided to iterate over lists of objects, the
repository hierarchy, numerical intervals, etc. Several groups of actions
may be defined on iterations to help the processing of a list, like actions
to be executed before/after the iteration, as a separator/terminator of each
element, etc
A rule always has a context object of execution. This provides an object
based view of rules. Whenever a rule is applied there is always an

www.manaraa.com

Architectural Concerns in Automating Code Generation 505

underlying context object. When a rule uses another rule it is implicitly
applying it on the current context object.

- Some actions may change the current context object, like when iterating
through a list objects. An explicit way to change the context to a given
object is also provided.

- Rules are polymorphic (on the invocation context object class). A rule
body may be defined to be applicable only of objects of a certain
repository class. The same rule may have several bodies for different
classes. According to the context's class the corresponding rule is applied
at invocation time.

- Rule bodies may have pre-conditions. At invocation time, only the rule
body for which the condition is true will be applied. If no condition is
true, the rule fails and a warning is given to the user.

- Rules have a simple organisation structure based on hierarchical modules
A particular kind of model transformation is source code generation and

project documentation. In this particular case we used transformations from
OBLOG representations to RTF and HTML in order to obtain,
automatically, all the project documentation. And we used transformations
from OBLOG representations to COBOL, CICS, SQL to automatically
obtain source code. Figure 4 illustrates some of the above characteristics
using a simple text generation. The following example concerns the rules to
generate DDL code, from which we present a simplified fragment.

<$ public ddlCreateTable>

<! •creates one table">

<foreach Slot>

<before>

'-- TABLE ' $0bjName <nl>

'CREATE TABLE '$ObjName ' ('

<? v_targetDB K_DB2> ' \\ ' </?>

<nl>

</before>

<call ddlTableAttributeCreation>

<sep>

',' <? v_targetDB = K_DB2> ' \\ '</?>

<nl>

</sep>

<after>

<? v_targetDB K_DB2> ' \\ ' </?>

<nl>')'

<? v_targetDB K_SQLSERVER>

<nl>'go'

www.manaraa.com

506 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

<else>

</?>

'.'

<nl 2>

</after>

</foreach>

,

</$>

<$ COMTClass: :GenerateCHead > : :=

'cl ass ' $0bjName <nl> ' is ' <nl> String utput
<foreach Slots>

<before>
<tab> 'Attributes:' <nl>

</before>
<call GenerateCHead>
<ter> '; ' <nl> </ter>

</foreach>

-.itcratio on
object . ets

'end'
</$>

COMTSlot::GenerateCHead>
<pre isPublic = TRUE> __.... Value Output
<tab 2> 'public : ' $0bjName ' :

<@ Codomain> $0bjName </ @>

</$> ----------.

COMTSlot: :GenerateCHead> :: = Conte Switch

</$>

<pre isPublic = FALSE>
<tab 2> 'private: ' $0bjName
<@ Codomain> $0bjName </@>

I
I
I
I
I
I
I
I
I class Classl

is
Attributes:

publ ic: Slotl : int;
private: Slot2 : BOOL;

end

Figure 4. Some of the rule characteristics

www.manaraa.com

Architectural Concerns in Automating Code Generation 507

In a real project, the ability to customise the generated output is a key
issue. It is not reasonable to think that a general code generator can serve all
needs. Several aspects may contribute to this.
- A project may use a very specific underlying architecture, and specific

(non-standard) target languages.
- There are proven results for some design and architecture patterns that

work better in certain kinds of systems.
- Each organization has its own rules and standards that must be fulfilled.

The full customisation of code generation according to well defined
architectures, enabled us to develop the project with a consistent high quality
level.

OBLOG provided us with a default set of rules that performed a standard
code generation for a CICS/COBOL/DB2 architecture in a MVS
environment. However, those rules had to be changed to meet the project
needs, in terms of naming normalisation, machine-dependent details, project
dependent constraints, etc. In fact, during the development phase of this
project we had two major examples of almost importance concerning the
ability of easily customising source code generation.

First of all, as we said previously, we had to preserve the format of all
communication messages sent by the client. In those messages, together
with the semantically important parameters, there was some machine
dependent header information (totally irrelevant to the specification) and
some obsolete parameters. To make things even more complicated, all of
the message was compacted in a stream of characters that was the only real
parameter that physically arrived at the server, and that was supposed to be
sent back.

In our models, it made no sense to declare both the obsolete parameters
and the machine-dependent header parameters. Moreover, we didn't want to
embed in the specification some machine-dependent details. However, the
idea was to generate executable code from the models, and in order to do
that, those architecture-specific details had to be somewhere in our
specifications.

We solved this problem by acting upon the set of generation rules,
defining new rules where those project specifics were expressed. This way,
we were able to design "clean" models, where only the semantically relevant
information was defined and no "noise" was introduced, and yet we were
able to automatically obtain the production code, with all the needed
particularities.

The second major problem was a self-inflicted one. Our project was, at
first, designed to implement only OLTP branch transactions. As we managed
to do that before the scheduled date, our prize was to implement all of the
batch transactions as well. When we made the analysis of those transactions,

www.manaraa.com

508 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

we realised that most of the business rules that were used for the OLTP
transactions applied to the batch ones. This sounded like good news to us,
but again we had an architectural problem to solve: the "call" mechanism
that we used for communicating between the OL TP transactions and the
object that provided all of the general business rule validations was not
acceptable for a batch process, because it was too resource consuming (we
had about 1500 calls in our models) . As the code generation algorithm is
expressed in a set of rules, it was very simple to change the call mechanism
into a "code inclusion" mechanism, with no changes on the specification,
coping with the environment constraints.

There were other project activities where we envisaged the use of this
technology, namely model validation and impact analysis, although we did
not apply it to its full extent. In terms of impact analysis, it is possible to
produce reports on the interdependencies between objects, in particular the
ones that are system-critical in terms of change management.

The rule engine presented above also provides a mechanism on which
rules may be executed under the control of an integration model. This
allows for transformations between a source model and a target one to be
recorded in a way that they can be re-played later. In this way, consistency
between source and target can be maintained much more easily. Traceability
reports on transformations or inconsistency reports are easy to produce.

In the context of this project, this mechanism was applied to integrate the
conceptual object-oriented OBLOG model and the relational database
model. Rules were provided to transform a class model into a relational one,
over which the DDL/DML generation rules were applied.

We also want to stress that the power of using specific queries on the
models is increased by the facility that the tool provides in categorising
objects, and relations between them, in many different ways. By classifying
the objects according to some user-defined categories (e.g., architectural,
persistency, interface) the application of transformation rules is much more
flexible and targets correctly each object role in the system.

6. CONCLUDING REMARKS

To really have a continuous process from specification to production
code it is mandatory to have
- a rigorous specification language with concepts for business as well as

architectural requirements, a methodology to explain how to use these
concepts to create models, and a computational tool environment

- a process to obtain production code 100% automatically generated from
the specification models

www.manaraa.com

Architectural Concerns in Automating Code Generation 509

- a flexible mechanism (based in interpreted re-writing rules) to query the
repository meta-models to make the necessary transformations
In this approach, extendible transformation rules play an important role,

because they are the only way to precisely incorporate in a generic software
development process the specifics of a particular project.

Recall the three axes approach to the software development cycle (see
figure 5). The solution must be clearly expressed without any concerns with
the system architecture or the target software environment. Then, the
solution must be matched to a given system architecture, and the target
software environment must be chosen, so that the appropriate set of rules can
be used.

Technology bind Z
(e.g, Windows Clients,
Server Unix, MVS, DB2,

CJCS. OOCOBOL)

Model X
(e.g. Bank model)

Architecture Y
(e.g , client/server 3tiers,
relational database, OL TP

system)

....•. ······

Figure 5. Software construction dimensions

At the moment, we have achieved a clear separation between the domain
axis and the other ones. However, we still need to work on the separation of
the system architecture and the software environment, which are currently
too tied up in the rule scripts. In order to do that, we are working on the
definition of architecture patterns that will be recognised by rules that will
contain only the knowledge of how to translate a certain model and a given
system architecture to a target software environment.

www.manaraa.com

510 L. F. Andrade, J. C. Gouveia, P. J. Xardone, and J. A. Camara

REFERENCES

L.Andrade and A. Semadas, "Banking and management information system automation",
Proceedings of the 13th world congress IFAC, Volume L, 1996.

Rational, Unified Modeling Language, http://www.rational.com, 1997.
1. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented Modeling

Technique, Prentice Hall, 1991.

www.manaraa.com

The MBASE Life Cycle Architecture Milestone
Package
No Architecture Is An Island

Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun
Center for Software Engineering, University of Southern California, Los Angeles, CA 90089
{boehm, dport, aegyed, marwan}@sunset.usc.edu

Key words: Software architecture, systems architecting, architecture evaluation, model
based development, rationale capture.

Abstract: This paper summarizes the primary criteria for evaluating software/system
architectures in terms of key system st.akeholders' concerns. It describes the
Model Based Architecting and Software Engineering (MBASE) approach for
concurrent definition of a system's architecture, requirements, operational
concept, prototypes, and life cycle plans. It summarizes our experiences in
using and refining the MBASE approach on 31 digital library projects. It
concludes that a Feasibility Rationale demonstrating consistency and
feasibility of the various specifications and plans is an essential part of the
architecture' s definition, and presents the current MBASE annotated outline
and guidelines for developing such a Feasibility Rationale.

1. ARCHITECTURE EVALUATION CRITERIA

A good software/system architecture satisfices among a number of
potentially conflicting concerns. Table I (from Gacek et a!., 1995),
summarizes the major architecture-related concerns of a number of system
stakeholders. These serve as a set of evaluation criteria for the architecture.

For example, the customer is likely to be concerned with getting first
order estimates of the cost, reliability, and maintainability of the software
based on its high-level structure. This implies that the architecture should be
strongly coupled with the requirements, indicating if it can meet them. The
customer will also have longer-range concerns that the architecture be
compatible with corporate software product line investments. Users need

www.manaraa.com

512 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

software architectures in order to be able to clarify and negotiate their
requirements for the software being developed, especially with respect to
future extensions to the product. The user will be interested at the
architecting stage in the impact of the software structure on performance,
usability, and compliance with other system attribute requirements. As with
architectures of buildings, users also need to relate the architecture to their
usage scenarios.

Table 1. Stakeholder concerns as architecture evaluation criteria.

Stakeholder Concerns I Evaluation Criteria

Customer

User

Architect
and
System Engineer

Developer

lnteroperator
Maintainer

• Schedule and budget estimation
• Feasibility and risk assessment
• Requirements traceability
• Progress tracking
• Product line compatibility
• Consistency with requirements and usage scenarios
• Future requirement growth accommodation
• Performance, reliability, interoperability, other quality attributes
• Product line compatibility
• Requirements traceability
• Support of tradeoff analyses
• Completeness, consistency of architecture
• Sufficient detail for design and development
• Framework for selecting I assembling components
• Resolution of development risks
• Product line compatibility
• Definition of interfaces with interoperator' s system
• Guidance on software modification
• Guidance on architecture evolution
• Definition of interoperability with existing systems

Architects and systems engineers are concerned with translating
requirements into high-level design. Therefore, their major concern is for
consistency between the requirements and the architecture during the process
of clarifying and negotiating the requirements of the system. Developers are
concerned with getting an architectural specification that is sufficient in
detail to satisfy the customer's requirements but not so constraining as to
preclude equivalent but different approaches or technologies in the
implementation. Developers then use the architecture as a reference for
developing and assembling system components, and also use it to provide a
compatibility check for reusing pre-existing components. lnteroperators use
the software architecture as a basis for understanding (and negotiating about)
the product in order to keep it interoperable with existing systems. The
maintainer will be concerned with how easy it will be to diagnose, extend or
modify the software, given its high-level structure.

www.manaraa.com

The MBASE Life Cycle Architecture Milestone Package 513

2. THE MBASE LIFE CYCLE APPROACH

In order to determine whether a software/system architecture is
satisfactory, with respect to the criteria in Table 1, one needs considerably
more than a specification of components, connectors, configurations and
constraints. Considering the architecture as an island, entire of itself, puts
one at a serious disadvantage in evaluating its adequacy.

We have been developing, applying and refining an approach called
MBASE (Model-Based Architecting and Software Engineering) (Boehm
Port, 1998) to address this issue. It focuses on ensuring that a project's
product models (architecture, requirements, code, etc .), process models
(tasks, activities, milestones), property models (cost, schedule, performance,
dependability), and success models (stakeholder win-win, IKIWISI (I'll
Know It When I See It), business case) are consistent and mutually
enforcing.

3. MBASE OVERVIEW

Figure 1 summarizes the overall framework used in the MBASE
approach to ensure that a project's success, product, process and property
models are consistent and well integrated. At the top of Figure 1 are various
success models, whose priorities and consistency should be considered first.
Thus, if the overriding top-priority success model is to "Demonstrate a
competitive agent-based data mining system on the floor of COMDEX in 9
months," this constrains the ambition level of other success models
(provably correct code, fully documented as a maintainer win condition). It
also determines many aspects of the product model (architected to easily
shed lower-priority features if necessary to meet schedule), the process
model (design-to-schedule), and various property models (only portable and
reliable enough to achieve a successful demonstration).

The achievability of the success model needs to be verified with respect
to the other models. In the 9-month demonstration example, a cost-schedule
estimation model would relate various product characteristics (sizing of
components, reuse, product complexity), process characteristics (staff
capabilities and experience, tool support, process maturity), and property
characteristics (required reliability, cost constraints) to determine whether
the product capabilities achievable in 9 months would be sufficiently
competitive for the success models. Thus, as shown at the bottom of Figure
1, a cost and schedule property model would be used for the evaluation and
analysis of the consistency of the system's product, process, and success
models.

www.manaraa.com

514 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

Success Models
Win-Win, IKIW lSI, Business-Case, Mission Models , ...

Process Models
• Life-C yc Ie

-Waterfall
- E vo lutio nary
- Incremental
- WinWin Spiral

• Anchor Points
• Risk Management
• Activities

-CMM KPAs

Property Models

Product Models

- Requirements
-Architecture
-Code
-Documentation

• Packaging
-Embedded
- S brink Wrap
-Turn Key

• Product Line

Cost & Schedule , Performance, Assurance, Usability, ...

Figure I. MBASE integration framework.

In other cases, the success model would make a process model or a
product model the primary driver for model integration. An IKIWISI (I'll
know it when I see it) success model would initially establish a prototyping
and evolutionary development process model, with most of the product
features and property levels left to be determined by the process. A success
model focused on developing a product line of similar products would
initially focus on product models (domain models, product line
architectures), with process models and property models subsequently
explored to perform a business-case analysis of the most appropriate breadth
of the product line and the timing for introducing individual products.

3.1 Anchor point milestones

In each case, property models are invoked to help verify that the project's
success models, product models, process models, and property levels or
models are acceptably consistent. It has been found advisable to do this
especially at two particular "anchor point" life cycle process milestones
summarized in Table 2 (Boehm, 1996).

The first milestone is the Life Cycle Objectives (LCO) milestone, at
which management verifies the basis for a business commitment to proceed
at least through an architecting stage. This involves verifying that there is at

www.manaraa.com

The MEASE Life Cycle Architecture Milestone Package 515

least one system architecture and choice of COTS/reuse components which
is shown to be feasible to implement within budget and schedule constraints,
to satisfy key stakeholder win conditions, and to generate a viable
investment business case.

Table 2. Content ofLCO and LCA packages.

Milestone
Element

Definition of
Operational
Concept

System
Prototype(s)

Definition of
System
Requirements

Definition of
System and
Software

Architecture

Definition of
Life-Cycle
Plan

Feasibility
Rationale

Life Cycle Objectives (LCO)

• Top-level system objectives and
scope

- System boundary
- Environment parameters and

assumptions
- Evolution parameters
• Operational concept
• Operations and maintenance

scenarios and parameters
• Organizationallife-cycle

responsibilities (stakeholders)

• Exercise key usage scenarios
• Resolve critical risks

• Top-level functions. interfaces.
quality attribute levels, including:

Growth vectors
Priorities

• Stakeholders' concurrence on
essentials

• Top-level definition of at least one
feasible architecture

- Physical and logical elements and
relationships

- Choices of COTS and reusable
software elements

- Identification of infeasible
architecture options

• Identification of life-cycle
stakeholders

- Users. customers, developers,
maintainers, interfacers, general
public, others

• Identification of life-cycle process
model

- Top-level stages, increments
- Top-level WWWWWHH* by stage

• Assurance of consistency among
elements above

- Via analysis, measurement,
prototyping, simulation, etc.

• Business case analysis for
requirements, feasible architectures

Life Cycle Architecture (LCA)

• Elaboration of system objectives and
scope by increment

• Elaboration of operational concept by
increment

• Exercise range of usage scenarios
• Resolve major outstanding risks

• Elaboration of functions, interfaces,
quality attributes by increment

Identification of TBDs (to-be
determined items)

• Stakeholders' concurrence on their
priority concerns

• Choice of architecture and elaboration
by increment

- Physical and logical components,
connectors, configurations. constraints

- COTS, reuse choices
- Domain-architecture and architectural

style choices
- Architecture evolution parameters

• Elaboration of WWWWWHH* for
Initial Operational Capability (IOC)

- Partial elaboration, identification of
key TBDs for later increments

• Assurance of consistency among
elements above

• All major risks resolved or covered by
risk management plan

* WWWWWHH: Why, What, When, Who, Where, How, How Much.

www.manaraa.com

516 Barry Boehm, Dan Port, Alexander Egyed, and MarwanAbi-Antoun

The second milestone is the Life Cycle Architecture (LCA) milestone, at
which management verifies the basis for a sound commitment to product
development (a particular system architecture with specific COTS and reuse
commitments which is shown to be feasible with respect to budget, schedule,
requirements, operations concept and business case; identification and
commitment of all key life-cycle stakeholders; and elimination of all critical
risk items). The AT&T/Lucent Architecture Review Board technique
(Marenzano, 1995) is an excellent management verification approach
involving the LCO and LCA milestones. The LCO and LCA have also
become key milestones in Rational's Objectory Process or Unified
Management (Rational, 1997; Royce, 1998).

4. EXAMPLE MBASE APPLICATION

4.1 Digital library multimedia archive projects

Our first opportunity to apply the MBASE approach to a significant
number of projects came in the fall of 1996. We arranged with the USC
Library to develop the LCO and LCA packages for a set of 12 digital library
multimedia applications. The work was done by 15 6-person teams of
students in our graduate Software Engineering I class, with each student
developing one of the 6 LCO and LCA package artefacts shown in Table 2.
Three of the 12 applications were done by two teams each. The best 6 of the
LCA packages were then carried to completion in our Spring 1997 Software
Engineering II class.

Table 3. Example library multimedia problem statements.
Problem Set #2: Photographic Materials in Archives
Jean Crampon, Hancock Library of Biology and Oceanography

There is a substantial collection of photographs, slides, and films in some of the Library's
archival collections. As an example of the type of materials available, I would like to suggest
using the archival collections of the Hancock Library of Biology and Oceanography to see if
better access could be designed. Material from this collection is used by both scholars on
campus and worldwide. Most of the Hancock materials are still under copyright, but the
copyright is owned by USC in most cases.

Problem Set #8: Medieval Manuscripts
Ruth Wallach, Reference Center, Doheny Memorial Library

I am interested in the problem of scanning medieval manuscripts in such a way that a
researcher would be able to both read the content, but also study the scribe's hand, special
markings, etc. A related issue is that of transmitting such images over the network.

www.manaraa.com

The MBASE Life Cycle Architecture Milestone Package 517

Project Objectives
Create the artifacts necessary to establish a successful life cycle architecture and plan for adding a
multimedia access capability to the USC Library Information System. These artifacts are:

I. An Operational Concept Definition
2. A System Requirements Definition
3. A System and Software Architecture Definition
4. A Prototype of Key System Features
5. A Life Cycle Plan
6. A Feasibility Rationale, assuring the consistency and feasibility of items 1-5

Team Structure
Each of the six team members will be responsible for developing the LCO and LCA versions of one of
the six project artifacts. In addition, the team member responsible for the Feasibility Rationale will serve
as Project Manager with the following primary responsibilities:

I. Ensuring consistency among the team members' artifacts (and documenting this in the Rationale).
2. Leading the team's development of plans for achieving the project results, and ensuring that project

performance tracks the plans.

Project Approach
Each team will develop the project artifacts concurrently, using the Win Win Spiral approach defined in
the paper "Anchoring the Software Process." There will be two critical project milestones: the Life Cycle
Objectives (LCO) and Life Cycle Architecture (LCA) milestones summarized in Table I.
The LCA package should be sufficiently complete to support development of an Initial Operational
Capability (IOC) version of the planned multimedia access capability by a CS577b student team during
the Spring 1997 semester. The Life Cycle Plan should establish the appropriate size and structure of such
a team.

Win Win User Negotiations
Each team will work with a representative of a community of potential users of the multimedia capability
(art, cinema, engineering, business, etc.) to determine that community's most significant multimedia
access needs, and to reconcile these needs with a feasible implementation architecture and plan. The
teams will accomplish this reconciliation by using the USC Win Win groupware support system for
requirements negotiation. This system provides facilities for stakeholders to express their Win Conditions
for the system; to define Issues dealing with conflicts among Win Conditions; to support Options for
resolving the Issues; and to consummate Agreements to adopt mutually satisfactory (win-win) Options.
There will be three stakeholder roles:

• Developer: The Architecture and Prototype team members will represent developer concerns, such as
use of familiar packages, stability of requirements, availability of support tools, and technically
challenging approaches.

• Customer: The Plan and Rationale team members will represent customer concerns, such as the need
to develop an lOC in one semester, limited budgets for support tools, and low-risk technical
approaches.

• User: The Operational Concept and Requirements team members will work with their designated user
community representative to represent user concerns, such as particular multimedia access features,
fast response time, friendly user interface, high reliability, and flexibility of requirements.

Major Milestones
September 16, 1996
October 14, 1996
October 21-23, 1996
October 28, 1996
November 4, 1996
December 6, 1996

Individual Project Critique

All teams formed
Win Win Negotiation Results
LCO Reviews
LCO Package Due
Feedback on LCO Package
LCA Package Due, Individual Critique Due

The project critique is to be done by each individual student. It should be about 3-5 pages, and should
answer the question, "If we were to do the project over again, how would we do it better - and how does
that relate to the software engineering principles in the course?"

Figure 2. Multimedia archive project guidelines.

www.manaraa.com

518 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

The multimedia archives covered such media as photographic images,
medieval manuscripts, Web-based business information, student films and
videos, video courseware, technical reports, and urban plans. The original
Library client problem statements were quite terse, as indicated in Table 3.
Our primary challenge was to provide a way for the student teams to work
with these clients to go from these terse statements to an LCO package in 7
weeks and an LCA package in 11 weeks.

We enabled the students and clients to do this by providing them with a
set of integrated MBASE models focused on the stakeholder win-win
success model; the WinWin Spiral Model as process model; the LCO and
LCA artifact specifications and a multimedia archive domain model as
product models; and a property model focused on the milestones necessary
for an 11-week schedule (see Figure 2). Further details are provided in
(Boehm et al, 1997) and (Boehm et al, 1998).

4.2 MBASE model Integration for LCO stage

The integration of these models for the LCO stage is shown in Figure 3.
The end point at the bottom of Figure 3 is determined by the anchor point
postconditions or exit criteria for the LCO milestone (Boehm, 1996): having
an LCO Rationale description which shows that for at least one architecture
option, that a system built to that architecture would include the features in
the prototype, support the concept of operation, satisfy the requirements, and
be buildable within the budget and schedule in the plan.

Figure 3. MBASE model integration: LCO Stage

www.manaraa.com

The MEASE Life Cycle Architecture Milestone Package 519

The beginning point at the top of Figure 3 is the multimedia archive
extension domain model furnished to the students, illustrated in Figure 4.
The parts of the domain model shown in Figure 4 are the system boundary,
its major interfaces, and the key stakeholders with their roles and
responsibilities. The domain model also established a domain taxonomy
used as a checklist and organizing structure for the Win Win requirements
negotiation system furnished to the teams.

I. System Block Diagram:
This diagram shows the usual block diagram for extensions providing access to and
administration of multimedia information archive assets from an existing text-based
information archive (lA) System:

System Boundary A System Infrastructure Opera.
and Maintenance (O&M)

The system boundary focuses on the automated applications portion of the operation,
and excludes such entities as users, operators, maintainers, assets, and infrastructure
(campus networks, etc.) as part of the system environment. The diagram abstracts out
such capabilities as asset catalogues and direct user access to O&M support and asset
managers.

2. Some Stakeholder Roles and Responsibilities
2 .1 Asset Managers. Furnish and update asset content and catalogue descriptors.
Ensure access to assets. Provide accessibility status information. Ensure asset-base
recoverability. Support problem analysis, explanation, training, instrumentation,
operations analysis.
2.2-2.5 Similar roles and responsibilities defined for system operators, users,
maintainers, and infrastructure service providers.

Figure 4. Multimedia archive extension domain model

As shown at the left of Figure 3, this taxonomy was also used as the table
of contents for the requirements description, ensuring consistency and rapid
transition from WinWin negotiation to requirements specification. The
domain model also indicated the most frequent risks involved in multimedia
archive applications. This was a specialization of the list of 10 most

www.manaraa.com

520 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

frequent software risks in (Boehm, 1989), including performance risks for
image and video distribution systems; and risks that users could not fully
describe their win conditions, but would need prototypes (IKIWISI).

The sequence of activities between the beginning point and the LCO end
point were determined by the Win Win Spiral Model. As illustrated in Figure
5, this model emphasizes stakeholder win-win negotiations to determine
system objectives, constraints and alternatives; and early risk identification
and resolution via prototypes and other methods (Boehm-Bose, 1994).

I. Identify rext-level
Stakeholders

7. Review, comnitrrent

6. Validate prodoct
and process
definitions

5. D::fine rext level of
pr<XIoct and process -
in:luding partitions

Recrncile win corrlitions.
Fstablish next level
objectives, constraints,
alternatives

4. Evaluate prodoct and
JX'(ICeSS alternatives.
Resolve Risks

Figure 5. The Win Win spiral model

4.3 Project results

We were not sure how many of the 6-student teams would be able to
work concurrently with each other and with their Library clients to create
consistent and feasible LCO packages in 6 weeks and LCA packages in 11
weeks. With the aid of the integrated MBASE models, all 15 of the student
teams were able to complete their LCO and LCA packages on time (3 of the
applications were done separately by 2 teams). The Library clients were all
highly satisfied, often commenting that the solutions went beyond their
expectations. Using a similar MBASE and Win Win Spiral Model approach,
6 applications were selected and developed in 11 weeks in the Spring of
1997. Here also, the Library clients were delighted with the results, with one
exception: an over-ambitious attempt to integrate the three photographic
image applications into a single product.

The projects were extensively instrumented, including the preparation of
project evaluations by the librarians and the students. These have led to

www.manaraa.com

The MEASE Life Cycle Architecture Milestone Package 521

several improvements in the MBASE model provided to the student teams
for Fall 1997, in which 16 teams developed LCO and LCA packages for 15
more general digital library applications. For example, in 1996, the Win Win
negotiations were done before the LCO milestone, while the prototypes were
done after the LCO milestone. This led to considerable breakage in the
features and user interface characteristics described in the LCO documents,
once the clients exercised the prototypes. As a result, one of the top three
items in the course critiques was to schedule the prototypes earlier. This was
actually a model clash between a specification-oriented stakeholder win-win
success model and the prototype-oriented IKIWISI success model. The
1997 MBASE approach removed this model clash by scheduling the initial
prototypes to be done concurrently with the Win Win negotiations.

Another example was to remove several redundancies and overlaps from
the document guidelines: as a result, the 1997 LCO packages averaged 110
pages as compared to 160 in 1996. The 1997 LCA packages averaged 154
pages as compared to 230 in 1996. A final example was to strongly couple
the roles, responsibilities, and procedures material in the Operational
Concept Description with the product transition planning, preparation, and
execution activities performed during development. Further information on
the 1997-98 projects is provided in (Boehm et al., 1998). 1996-97 and 1997-
98 projects can be accessed via the USC-CSE web site at
http://sunset.usc.edu/classes/classes.html.

5. THE ARCHITECTURE FEASIBILITY
RATIONALE AS FIRST-CLASS CITIZEN.

As indicated in Table 2, the MBASE approach treats the Feasibility
Rationale as a first-class citizen in the Life Cycle Objective and Life Cycle
Architecture packages. For each of the LCO and LCA components in Figure
2, we have developed an annotated outline and set of guidelines for
producing the component. Below is the current version for the Feasibility
Rationale.

5.1 Document overview

Why (objective): The Feasibility Rationale (FR) is the glue that holds
the other components of the Life Cycle Objective (LCO) and Life Cycle
Architecture (LCA) packages together. It provides evidence of the feasibility
and consistency of the LCO and LCA package components.

What (content): The Feasibility Rationale includes a business case
analysis demonstrating that the resources invested in the project will

www.manaraa.com

522 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

generate capabilities providing a satisfactory return on the investment. It also
includes several satisfaction rationales addressing the various aspects of this
question:

If I build the system using the given architecture and life cycle process,
will it satisfy the requirements, support the operational concept, remain
faithful to the key features determined by the prototype, and be achievable
within the budgets and schedules in the life cycle plan?

Intended audience: The primary audiences are the LCO and LCA
Architecture Review Boards. The parts dealing with client satisfaction must
be understandable by the client representatives on the ARB. The technical
parts must be sufficiently detailed and well-organized to enable the peers and
technical experts to efficiently assess the adequacy of the technical rationale.
The FR is also of considerable value to developers and other stakeholders in
providing a rationale for key decisions made by the project.

Participants: The project manager is responsible for the overall content
of the FR. Frequently, the business case is prepared by the author of the
Operational Concept Description (OCD). Demonstrating the feasibility and
consistency of portions of the LCO and LCA packages is the shared
responsibility of the associated project participants. Other stakeholders may
make their concurrence on win-win agreements contingent on demonstration
of the agreement's feasibility in the Feasibility Rationale.

High level dependencies: The thoroughness of the Feasibility Rationale
is dependent on the thoroughness of all the other LCO and LCA
components. Issues incompletely covered in the Feasibility Rationale are a
source of risk which should be covered in the Life Cycle Plan's (LCP) Risk
Management section.

Overall tool support: Well-calibrated estimation models for cost,
schedule, performance, or reliability are good sources of feasibility rationale.
Others are prototypes, simulations, benchmarks, architecture analysis tools,
and traceability tools (See Table 4 below for further information). The
rationale capture capability in the Win Win tool is also useful.

5.2 Document outline

This section provides a table of contents for the Feasibility Rationale.
Even though not all projects are alike, the people responsible for the
Feasibility Rationale should consider all of these items carefully. If it is felt
that some of them are not applicable, it should be noted as such for future
reference. Similarly, the document outline can be expanded if there is a need.
The recommended table of contents for the Feasibility Rationale document is
as follows:

www.manaraa.com

The MBASE Life Cycle Architecture Milestone Package

1. Overview
1.1. Software Product Objectives
1.2. Feasibility Rationale Objectives

2. Product Rationale
2.1. Business Case Analysis

2.1.1. Development Cost Estimate
2.1.2. Operational Cost Estimate
2.1.3. Estimate of Value Added and Relation to Cost

2.2. Requirements Satisfaction
2.2.1 . Capability Requirements
2.2.2. Interface Requirements
2.2.3. Quality Requirements
2.2.4. Evolution Requirements

2.3. Operational Concept Satisfaction
2.4. Stakeholder Concurrence

3. Process Rationale
3.1. System Priorities
3.2. Process Match to System Priorities
3.3. Consistency of Priorities, Process and Resources

523

The following will explain in more detailed each of the items above,
provide a rationale for them, show their dependencies to other sections
within this document and to other documents, provide examples of their use,
and give tool support recommendations whenever possible.

5.3 Document guidelines and rationale'

1. Overview
This section tells why the product and the plan are being developed.

1.1. Software Product Objectives
Provide a link to Section 1.1 of the Operational Concept Description
(OCD). It contains a short description, in user terms, of the primary
functions the product will perform, of its envisioned concept of
operation, and of the user benefits expected from the product.

1.2. Feasibility Rationale Objectives
•To demonstrate that a system built using the specified architecture
and life cycle process will satisfy the requirements, support the
operational concept remain faithful to the key features determined by

1 Text in bold can be used as is. Text in roman font indicates where project specific
information needs to replace the general description provided. Text in italic font indicates
specialization for Software Engineering I that would likely be tailored differently for other
kinds of projects.

www.manaraa.com

524 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

the prototype, and be achievable within the budgets and schedules in
the life cycle plan.
•To rationalise development decisions in a way the prime audience (the
customer and users) can understand
•To enable the customers to participate in the decision process and to
express their satisfaction with the product

Integration and dependencies with other components:
• Item 1.1 is a link to the Objective items in Section 1.1 of the OCD.
• Item 1.2 may be used as is.

Additional guidelines:
None needed.

2. Product Rationale
This section furnishes the rationale for the product being able to satisfy
the system specifications and stakeholders (e.g. customer, user).

2.1. Business Case Analysis
The Section describes the impact of the product in mainly monetary
terms. How much does it cost to develop and to operate, how much
added value does it generate, and thus how high is its return on
investment. However, non-monetary factors may be also decisive. For
instance, "added value" can include the improved quality of the service
provided by the product.

2.1.1. Development Cost Estimate
Provide a summary of the full development cost, including hardware,
software, people, and facilities costs.

2.1.2. Operational Cost Estimate
Provide a summary of the operational cost. Include also maintenance and
administration cost and other costs which accumulate during transition of
the product into production use (e.g. training).

2.1.3. Estimate of Value Added and Relation to Cost
Provide a summary of cost with and without the product and how much
value is added by it. The value added may also describe non-monetary
improvements (e.g. quality, response time, etc.) which can be critical in
customer support and satisfaction. Include a return-on-investment analysis
as appropriate.

2.2. Requirements Satisfaction
This section summarizes how well a system developed to the product
architecture will satisfy the system requirements.

www.manaraa.com

The MEASE Life Cycle Architecture Milestone Package 525

2.2.1. Capability Requirements
Show evidence that the system developed to the product architecture will
satisfy the capability requirements, e.g., "capability
described/demonstrated/exercised as part of included COTS component",
with a pointer to the results. There is no need to restate obvious mappings
from the requirements to the architecture.

2.2.2. Interface Requirements
Show evidence that the system developed to the product architecture will
satisfy the interface requirements. These should include the interfaces and
standards associated with the University Computing Services infrastructure
and the USC Integrated Library System.

2.2.3. Quality Requirements
Show evidence that the system developed to the product architecture will
satisfy the quality requirements.

2.2.4. Evolution Requirements
Show evidence that the system developed to the product architecture will
satisfy the evolution requirements.

2.3. Operational Concept Satisfaction
Summarize product's ability to satisfy key operational concept elements,
such as scenarios.

2.4. Stakeholder Concurrence
Summarize stakeholder concurrence by reference to WinWin negotiation
results, memoranda of agreements, etc. Stakeholders may be anybody
involved in the development process. For instance, a developer may claim
that a certain response time cannot be achieved in a crisis mode unless
nonessential message traffic is eliminated. Similarly, a customer may claim
that the product does not satisfy his/her win conditions (e.g. cost). This
section serves as a record of how such claims were resolved to the
stakeholders' satisfaction.

Integration and dependencies with other components:
This section is highly dependent on all other documents. The cost

estimates in Item 2.1 are strongly dependent on development cost (from
LCP) and operational cost (from OCD). Item 2.2 maps requirements to
design, which create a high dependency between the System and Software
Requirements Description (SSRD), the System and Software Architecture
Description (SSAD), and often the prototype. Similarly, item 2.3 creates a
dependency between the OCD, the SSAD, and often the prototype. The
stakeholder concurrence in Item 2.4 provides the basis for stakeholders to
ratify their commitment to the project LCO and LCA packages at the ARB
meetings.

www.manaraa.com

526 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

Additional guidelines:
Table 4 summarizes the strengths and potential concerns for leading

architecture attribute analysis methods. The rationale capture capability m
the Win Win tool is also useful.

Table 4. Summary of software architecture attribute analysis methods
Method Examples Strengths Potential Concerns

Current RDD-100, StP,

ADLs UMURose

New Rapide, Unicon,

Generation Wright

ADLs

Scenario SAAM

Analysis

Simulation; Network 2.5;

Execution UNAS

Parametric COCOMO et

Modeling al., Queuing

Models,

Reliability

Block Diagrams

3. Process Rationale

• Static integrity (partial)

• Traceability

• Static, dynamic integrity

• Some performance

• Subjective attributes

- Usability, Modifiability

• Human-machine system

attributes (partial)

- Safety, security,

survivability

• Performance Analysis

• Some dynamic integrity

• Some reliability,
survivability

• Cost, schedule analysis

• Reliability, availability

analysis

• Performance Analysis

• Dynamic integrity

• Performance, cost, schedule analysis

• Subjective attributes

• Model granularity and scalability

• Cost, schedule, reliability, full

performance

• Subjective attributes

• Largely manual, expertise-dependent

• Scenario representativeness; method

scalability

• Verification/Validation/Accreditation

• Integrity, performance, cost, schedule

analysis

• Model granularity and scalability

• Input scenario representativeness

• Verification/Validation/Accreditation

• Cost, schedule, subjective attributes

• Subjective attributes

• Static, dynamic integrity

• Verification/Validation /Accreditation

• Input validation

This sections describes the rationale of the development process being
able to satisfy the stakeholders (e.g. customer).

3.1. System Priorities
Summarize priorities of desired capabilities and constraints. Priorities may
express time and date but also quality and others. (e.g. performance).

3.2. Process Match to System Priorities
Provide rationale for ability to meet milestones and choice of process model
(e.g. anchor points in spiral model or increments, etc.).

3.3. Consistency of Priorities, Process and Resources
Provide evidence that priorities, process and resources match. E.g. budgeted
cost and schedule are achievable; no single person is involved on two or
more full-time tasks at any given time.

www.manaraa.com

The MEASE Life Cycle Architecture Milestone Package 527

Integration and dependencies with other components:
Like the previous section, this section is also highly dependent on other

documents, foremost the Life Cycle Plan (LCP) and System and Software
Requirements Description (SSRD). Item 3.1 maps primarily to the
capabilities in SSRD and milestones in LCP 2.2 and 2.3. Item 3.2 is a
summary of LCP 4.2 which emphasis on priorities above. Item 3.3 is
reasoning that the LCP is consistent and doable (especially LCP 4).

5.4 Potential pitfalls/best practices

The Feasibility Rationale is highly dependent on other components.
A void duplicating these where mappings among components are obvious. In
writing the Feasibility Rationale you should keep in mind that the primary
audience is the Architecture Review Board (ARB), a mix of technical
experts and general stakeholders. Portions of the FR should be tailored to the
assessment needs of the various ARB members. Common pitfalls include
over-reliance on vendor claims, neglect of critical off-nominal scenarios, and
over-analysis of low-priority issues.

5.5 Quality criteria

The key quality criteria for the Feasibility Rationale are derived from its
pitfalls. It needs to be highly consistent with the other components and it
needs to be able to answer the key stakeholder questions about the feasibility
of the product. It also needs to present selected system views demonstrating
feasibility and consistency among the other components.

6. CONCLUSIONS

In specifying a software/system architecture, it is important not to treat
the architecture as an isolated island. The architecture needs to be related to
the operational concept it is supporting; the requirements the system will
satisfy; the life cycle plan identifying the system's stakeholders, budgets and
schedules; and any prototypes providing views of the desired system.

The satisfaction of these relationships is best recorded in a Feasibility
Rationale for the architecture. For effective management review and
commitment to the architecture, it is essential that the Feasibility Rationale
be a first-class citizen in the architecture package. It is encouraging to note
that this is so in the current draft of IEEE Standard 1471, "Recommended
Practice for Architecture Description", (IEEE, 1998, Section 5.6)

www.manaraa.com

528 Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun

REFERENCES

Boehm, B. (1989), Software Risk Management, IEEE-CS Press.
Boehm, B. (1996), "Anchoring the Software Process," IEEE Software, July, pp. 73-82.
Boehm, B. and Bose, P. (1994), "A Collaborative Spiral Process Model Based on Theory W,"

Proceedings, ICSP3, IEEE.
Boehm, B., Egyed, A., Kwan, J., and Madachy, R. (1997), "Developing Multimedia

Applications with the Win Win Spiral Model," Proceedings, ESEC/ FSE 97, Springer
Verlag.

Boehm, B., Egyed, A., Kwan, J., and Madachy, R. (1998), "Using the Win Win Spiral Model:
A Case Study," IEEE Computer, July, pp. 33-44.

Boehm, B. and Port, D. (1998), "Conceptual Modeling Challenges for Model Based
Architecting and Software Engineering (MBASE)", Proceedings, 1997 Conceptual
Modeling Symposium (P. Chen, ed.), Springer Verlag (to appear)

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B.W. (1995), "Focused Workshop on
Software Architectures: Issue Paper," Proceedings of the ICSE 17 Workshop on Software
Architecture, April.

Garlan, D., Allen, R., and Ockerbloom, J. (1995), "Architectural Mismatch: Why Reuse is So
Hard," IEEE Software, November, pp. 17-26.

IEEE Architecture Working Group (1998), "IEEE Recommended Practice for Architectural
Description, IEEE Std I47I, Draft Version 3.0, 3 July.

Kazman, R., Bass, L., Abowd, G., and Webb, M. (1994), "SAAM: A Method for Analyzing
the Properties of Software Architectures," Proceedings, JCSE 16, ACMnEEE, pp. 81-90.

Marenzano, J. (1995), "System Architecture Validation Review Findings," in D. Garlan, ed.,
ICSE17 Architecture Workshop Proceedings, CMU, Pittsburgh, PA.

Port, D. (1998), Integrated Systems Development Methodology, Telos Press (to appear).
Rational (1997) Rational Objectory Process, Version 4.1, Rational Software Corp., Santa

Clara, CA.
Royce, W.E. (1998), Unified Software Management, Addison Wesley (to appear).

www.manaraa.com

Software Architecture at Siemens:
The challenges, our approaches, and some open issues

Lothar Borrmann and Frances Newbery Paulisch
Siemens AG, Corporate Technology, Software and Engineering,
D-81730 Munich, Germany.
Lothar.Borrman@mchp.siemens.de, Francis.Paulisch@mchp.siemens.de

Key words: Software architecture, software process, frameworks , architecture assessment,
product families , evolution of software architectures

Abstract: The importance of software architecture in the design of large software
systems is unquestioned in both the academic and industrial software
engineering communities. At Siemens, software is an important, often
dominant, factor in the success of our products and this trend towards software
is increasing as software becomes even more prevalent in our product
spectrum. Our experience indicates clearly that attention to three aspects - to
people, to process, and, in particular, to architecture - are important for
successful product developments. This paper lists some of the challenges that
we face in the area of software architecture, what approaches we have taken
as well as a set of issues that require further attention in future .

1. INTRODUCTION

The importance of software architecture in the design of large software
systems is unquestioned in both the academic and industrial software
engineering communities. In the past few years, there has been a growing
body of good literature (e.g. , Bass, Clements and Kazman, 1997, Garlan and
Shaw, 1996, Jacobson, Griss and Jonsson, 1997, Kruchten, 1995, Perry,
1997) on the topic of software architecture as well as conferences and
workshops focusing on this topic. At Siemens, we welcome the efforts, such
as this Working IFIP Conference on Software Architecture, to provide a

www.manaraa.com

530 Lothar Borrnumn and Frances Newberry Paulisch

forum for practicing software architects to exchange information with the
academic and research community in this area. Practicing software
architects are, generally, very busy people because their skills are so
important and are in such high demand. We hope that this event will help
make it possible for practicing architects to learn as quickly and effectively
as possible what techniques are currently available and what techniques will
soon be sufficiently mature to be applied.

Siemens is a large, globally-operating, electrical engineering and
electronics company with a very diverse range of products. Siemens consists
of about a dozen groups that cover the core business areas:
- energy (e.g., power plants)
- industry (e.g., industrial plants)
- communication (e.g., switching systems and mobile phones)
- information (e.g., software products)
- transportation (e.g., control systems for trains and cars)
- health care (e.g., medical imaging equipment)
- components (e.g., ASICs)
- lighting

Global development (e.g., geographically distributed and culturally
diverse teams all working on one project) and global sales (e.g., country
specific customization of products) play a significant role in the product
development of software, systems, and industrial plants at Siemens. Some of
our products are highly customized individual solutions; others are more
oriented towards the mass market. Many of our products have strong
requirements in the areas of safety, reliability, robustness, and performance
and this is further complicated by the fact that this often has to be achieved
in real time. Furthermore, the maintainability and serviceability (sometimes
over decades!), as well as the evolution of our products is important for our
businesses.

Due to the nature of our products, many of the Siemens groups have had
a strong orientation towards hardware, electrical engineering, or mechanical
engineering. But software is increasingly becoming an important, often
dominant, factor in the success of their products and this trend towards
software seems to be increasing more rapidly all the time. To give you a
feeling for the importance of software at Siemens, consider that:
- More than 50% of our enterprise-wide sales stem from software-based

products or systems.
- 27,000 software engineers are employed worldwide (about 10% of our

employees).
- Some of our projects are very large, global projects, e.g., one with 2000

developers in 13 countries.
We see software as the key to being able to meet the challenges of

flexibility, time-to-market, and reducing costs while maintaining quality.

www.manaraa.com

Software Architecture at Siemens 531

Because of the importance of software for our company an enterprise-wide
"software initiative" was founded in 1995 as part of the "top" initiative
(Gonauser, 1997). A dozen groups (e.g., automation, automotive, train
transportation, health care, communication, etc.) as well as regional units
like Siemens Austria in Vienna and Siemens Switzerland in Zurich actively
participate in the enterprise-wide software initiative. One of our main goals
of this initiative is to promote an intensive and extensive exchange of
information in regards to people, process, and architecture within the
various Siemens groups, so that we can learn from each other and improve
and help maintain our software expertise. The software initiative focuses on
particular topics that are most important to their businesses, e.g., cycle time,
cost, quality, process innovation, architecture evolution, measurement-based
management, component-oriented development, etc.

The authors have a good overview of the challenges facing our business
groups in the areas of software, in particular in the areas of software
architecture, software processes, and the human factors involved in both.
This paper lists some of the challenges that we face (especially in the area of
software and systems architecture), what progress we have made thus far,
and what areas we intend to focus on in the future.

2. PEOPLE, PROCESS, ARCHITECTURE

Our experience indicates clearly that attention to all three aspects
(people, process, and architecture) are important for successful product
developments. Of course, there are many areas where process, people, and
software are intertwined, e.g., in our increased focus on component-oriented
development, we need to concentrate, not only architectures, but also the
processes, and people that support this approach. It is a well-known fact that
the capabilities and motivation of the people involved in software
development can and does vary widely. Having clearly defined processes
and architectures is an important factor both directly and indirectly (via the
thereby satisfied customers) in employee satisfaction and motivation.

One of our central research and development departments has a long
history (since 1993) of performing process and architecture assessments and
associated improvement projects. In the past five years, this group has
conducted about I 00 process assessments and 10 architecture assessments
(Mehner et al., 1998). The main objectives of the assessments are:
- to analyze and evaluate processes and architectures. Architectures are as

important as processes for optimizing the triad "costs - quality -
schedule" and simultaneously being flexible enough for introducing new
and innovative products in the market in time.

www.manaraa.com

532 Lothar Borrmann and Frances Newberry Paulisch

- to identify in detail the potential to start and perfonn improvement
projects.

- to specify in detail measurements to improve the evaluated process and
architecture and realize this potential.

We place significant emphasis on measurement and evaluation,
because our belief is that you can only effectively improve what you can
measure. To get optimal insight into the process capabilities of an
organization, various interrelated measurement and evaluation techniques
have to be applied. In order to drive changes in software and engineering
processes, it is necessary to set precisely defined goals and measure
progress towards these goals . These goals may be at the project, process,
or business level. At Siemens, we have developed and use the so-called
tops;, controlling instruments (Lebsanft and Rheindt, 1998) for the
software-related business (this includes metrics and controlling
instruments at the process, project, and management level) . These allow
us to control the six success factors :

I. customer satisfaction
2. quality
3. cycle time
4. productivity
5. process maturity
6. technology maturity

These final two, process maturity and technology maturity, are where
architecture aspects are relevant. As in the capability maturity model
(CMM) of the Software Engineering Institute, the process maturity
measurement includes a focus on design/architecture issues (e.g., to what
extent are architecture reviews perfonned, how architectures are
embedded in the product line management, etc.). The technology maturity
indicates the importance of technological trends and how well an
organization can adapt to them for business benefit. One aspect of this is
related to architecture issues (e.g., the use of COM/DCOM, CORBA,
Java, etc.).

Tailored to the needs of the various business groups, the tops;, aim to
give an objective appraisal of the current state and to allow the early
detection of changes. Furthennore, interpreted together, they provide a
good understanding of the capability of the organization to develop
software. Several of the business groups already have extensive
experience with these and other measures and can report on their
effectiveness, especially in relation to controlling and improving their
development processes.

www.manaraa.com

Software Architecture at Siemens 533

2.1 Architecture assessments

Due to the increased complexity and size of today's systems, an increased
focus on the software architecture of a system is needed. The architecture
gives the overall structure of the system and identifies the main components
and their interactions. The long-term success of a system depends in large
part on the quality of the software architecture. At Siemens, we have
developed a method called "system architecture analysis" (SAA) (Gloger et
al. 1997) that allows us to evaluate the major technical concepts of an
architecture as well as to serve as the basis for proposed improvements for
the evolution of the architecture. It includes the determination of the
evaluation and weighting of the criteria for the architecture, an analysis of
the design decisions, an analysis of the interdependencies between the
design decisions, and the evaluation of this information that makes the pros
and cons of the various design alternatives clearer (see Figure 1).

"' " .,

very
positiVe

E positove

·:; .,. .,
a:
:;;

Evaluation of Design Decisions

.. • i .
• • • ...

0 11> .l: • • • i"
acceptabl e

iii
"' (.J

<:
0 c:; negat1ve ..
Q.

.E
very
negahve

/:. 1
i"

J: Process
structure

+ System kemet

IL; I • Data now

very negative
negauve

acceptable positiVe

Impact on Development lime lor eKtensions

i
• Data

management

• Control flow

0 HW / SW
Interface

very
pos•Uve

Figure 1: Making design alternatives clearer and indicating where action is required

In comparison to the "Software Architecture Analysis Method" (SAAM)
(Kazman et al., 1994), our approach is narrower and more focused on the
immediate needs of our business groups.

www.manaraa.com

534 Lothar Borrmann and Frances Newberry Paulisch

3. EXPERIENCE AND LESSONS LEARNED

The following section describes some of our experiences and lessons
learned in the area of software architecture at Siemens.

3.1 Use innovative processes

We have found that being willing and able to use more innovative
processes that, for example, take the purchasing of commercial off-the-shelf
software and standard components into account and/or that allow regular
and incremental development (e.g., weekly builds) to be effective. Results
on the order of 50% reduction in cycle time and 35% reduction in
development costs over a period of about five years are not uncommon. An
additional advantage is the ability to meet customer requirements and/or
react to our competition more quickly. Some organizations are moving from
a product-oriented to a process-oriented development approach and the
initial results here are very positive, both for the development costs,
accuracy at meeting the deadline, as well as for the motivation of the staff.

3.2 Migrate from software "construction" to "composition"

The migration from construction to composition has a strong effect on
both the process and the architecture. It is becoming more common to at
least consider the integration of existing components (either our own or
third-party commercial off-the-shelf (COTS) products). This is considered
for various reasons, for example, to focus on our core areas of technical
expertise, to reduce costs, to enhance productivity, to adhere to standards,
etc. It is, however, very important to be aware both of the potential problems
due to architectural mismatch (Garlan, Allen and Ockerbloom, 1995) and
the potential process-related challenges associated with the integration of
components in a product, for example:
- In order to be flexible and meet the needs of a large number of potential

users, the components may be slower and larger than components
developed to more closely match the actual needs

- Changes are often impossible (e.g., "black box" components) or difficult
(because one has to understand the architecture to change it)

- There are complicated legal and contractual issues, such as liability,
associated with this approach.
Typically, we have found that incremental processes work better for

composition because they allow the integration of the "foreign" components
earlier in the development and because they allow for the early analysis of
key performance issues. Not only a good process, but also a clear software

www.manaraa.com

Software Architecture at Siemens 535

architecture, is necessary for this approach to work well.

3.3 Architecture review sessions are effective

At least one of our business groups regularly holds architecture review
sessions in which a real architecture is presented and discussed in detail.
This has been shown to have advantages both for those directly involved in
the architecture, because they receive valuable suggestions for improvement,
and for the other participants who profit from a better understanding of the
architecture.

3.4 Frameworks are useful for both process and
architecture

We have found that frameworks are a key for achieving an optimal
balance between stability and flexibility for both development processes as
well as for the software architecture. For example (Volker and Wackerbarth,
1997) cycle time was reduced in the digital switching system area by 50% in
the past five years due, to a large extent, on the structure of their
development processes. It provides a globally agreed-upon "process
framework" giving the stable structure and within the "process
components." There is a significant amount of flexibility allowed for use in
the specific business groups.

Similarly, we have found a framework approach for software
architecture to be effective for software development. In our experience,
although there is a significant investment that has to be made in such a
framework up front, in the long term the return on investment can be
substantial. In three of our business groups we have been able to show that
approaches based on components, design patterns (Gamma et al. 1995,
Buschmann et al. 1996, Beck et al. 1996), and frameworks have led to
significant reductions in cost and faster and more accurate time-to-market
(i.e., that the investment in the architecture has started to pay off). In one
business group the total software development costs that had been
increasing by 30-35% annually have now actually decreased by 10%
annually. This reduction is due to their architecture-based approach and
their investment in components, design patterns and frameworks, despite
similar time constraints and requirements.

As cited in (Buschmann et al., 1998), the decision as to whether a
framework approach for software architecture is worthwhile depends on a
number of factors, for example, the stability of the subject area and the
technology. An in-depth analysis should be done beforehand to decide
whether the investment is likely to pay off in the long run. Note also that the

www.manaraa.com

536 Lothar Borrmann and Frances Newberry Paulisch

benefit is not just in the reduced development time of the nth framework; the
stable framework is likely to be better understood and more tested (i .e.,
usually of higher quality) than a new development.

The stability and flexibility given by the framework approach is also
particularly useful in our global developments since it allows a clear
definition of the interactions involving the geographically-distributed
people, the processes, and the architecture.

3.5 Investment in domain analysis/product family/product
line can be worthwhile

Having a good software architecture is the key to building systems that
are scaleable and configurable and thus can be used effectively for a product
family or product line. We have had, for example, the case where, for
historical reasons, two independent product families had been developed
and it became clear that it would make business sense to merge them. We
applied our so-called "Harmonization of Software Architectures and
Platforms (HAP)" process (Gloger et al., 1998) to harmonize these
heterogeneous product spectrums (see Figure 2) .

I Take stock of
Determine

existing products current
requirements

I
Investigate I Analyze I

I Analyze I
economic product

technology trends

factors road maps ! I Design a proposal

' + for an arcMecture
or platform

Cost- I Present and future Trends for
benefit requirements architecture '
factors concepts Continual feedback

Phase 1:
Phase2: with product

Requirements Phase 3: development groups
Actual state and for the

cost I benefit factors reference architecture Design of the ' reference I Architecture I
architecture migration plan

Figure2: The harmonization of software architectures and platforms (HAP) process

The basic principles of this process are to:
Determine the current state (i.e., what products have harmonization
potential) and the cost-benefit factors. This is done in a set of workshops
that includes both the development teams and the marketing and sales
departments.

www.manaraa.com

Software Architecture at Siemens 537

- Determine the requirements of the reference architecture. This is a list of
requirements together with a set of priorities indicating their
significance.

- Define the reference architecture. The aforementioned SAA method
(Gloger eta!., 1997) is used here to help structure the alternatives and
make the decision-making process more transparent. As part of this
phase, we also develop a plan for the migration to the new reference
architecture.
Note that, although the harmonization approach is of benefit in the

product development phase, the benefits further down the line, especially in
the logistics (e.g., the installation, commissioning, maintenance, and service
phases of the product) are even more dramatic. Configuring, delivering, and
installing a dozen different versions of a product is time-consuming and
error-prone; architecture harmonization helps reduce the number of
alternatives.

From the business perspective it is also important to note that such a
harmonization approach can only work if the development processes are
also changed accordingly. If multiple units within an organization focus
only on their own cost/benefit scenarios, it is very difficult to get them to
support such a merged approach. Certainly, attention to the process
implications of the product line approach is essential (see also Perry, 1996).

3.6 N-tier architectures are popular, especially for
distributed systems

4-tier (user interface, web-top server, application server,
database/network) or n-tier architectures are used increasingly especially
because the browser-based interface offers increased platform
independence. This approach is particularly popular for large distributed
systems and IT systems; for example, the "ComUnity" approach of Siemens
Nixdorf Information Systems is based on such a structure. This approach
can also be very suitable for mobile devices.

3.7 Maintain an online repository of "best practices"

Several groups have established centers of particular technical
competence within their groups and have found this approach to be
effective. The software initiative has begun extending this notion by
encouraging so-called "best practice networking" in which key staff
members serve as "champions" of a particular topic area in our online
information repository.

www.manaraa.com

538 Lothar Borrmann and Frances Newberry Paulisch

4. PROBLEMS FACED BY SOFTWARE ARCHITECTS
IN INDUSTRY

Although section 3 lists some of the areas where our architecture
approaches are effective, there are a great deal of unsolved or insufficiently
solved problems in the global software architecture community. In this
section we list some software architecture problems we encountered in
professional software projects within our company. We hope that the
discussions at the WICSAl working conference will help find ways to
address these issues.

4.1 Increasing system complexity

With the move from monolithic systems to client-server architectures
and n-tier systems, system complexity was reduced by cutting the system
into pieces. At the same time, complexity was increased by introducing
distribution and heterogeneity.
a) To cope with distribution, communication layers and middleware

platforms were added which are not always understood by the average
programmer.

b) The interworking of different operating systems, GUis, database
systems, middleware platforms, etc. imposes a number of technical
difficulties and requires a combined expertise which is rarely found in a
single software architect.

c) "Standard" communication schemes and interfaces are developing
rapidly, causing incompatibility issues and necessitating continuous
updating of the system components.

d) Programming environments, testing/monitoring tools, and even most
conventional programming languages are designed for monolithic
systems, but support for distributed environments is still rudimentary.

e) Designing complex systems requires design methods which are sound,
but lead to tangible results in a reasonable time. The use of design
patterns is one example, but still, architecture design is seen as more of
an "art" and the architectural design process is not well-defined.

4.2 Architecture of high-lifetime and rapidly evolving
systems

In our company, there exist systems that have a system lifetime of 30
years, like railway control systems. Other systems have a considerable
product life time, with continuous development according to technical

www.manaraa.com

Software Architecture at Siemens 539

progress, like public telephone switching systems. Systems with a high
lifetime and/or those that evolve rapidly pose the following problems:
a) Architectural drift is a well-known issue. A properly defined architecture

is being continuously degraded by modifications and added functionality.
As designers and architects move within the organization, the knowledge
about the original architecture fades away, and developers are not
capable of preserving the proper architecture when making changes. To
improve preservation of architectural knowledge, better ways to
document architectures - in the large - are desirable.

b) Once the above has happened, the system with its degraded architecture
is considered a "legacy system". It is a common approach to avoid
changes to legacy systems, and rather complement them with new
components when functionality is to be added. Here we need standard
approaches for ensuring interoperability of old systems with new
systems. One example is the use of wrappers for legacy systems.

c) A well-designed architecture must support change - it must be stable to
allow flexibility of the systems which are built after this architecture.
This includes system scalability, in order to be able to provide a family
of systems according to user needs, but also the potential to fulfill new
requirements, interoperate with other systems, or adapt to technological
changes. To achieve this, assessment schemes for architectural quality
are required.

4.3 Issues caused by organizational structure

In large companies like Siemens, a clear organizational structure is
required for business needs . There is a strong trend to enforce the separation
of business units, product lines, etc. While this is a commercial necessity, it
can impede the enforcement of an architectural strategy:
a) When developing systems in a vertical structure, each system

architecture is typically designed independently. Different approaches
may be used and different platforms may be chosen. lnteroperability and
scalability are in question, and support for various entirely different
systems may be required, with high development and maintenance cost
incurred. In such a situation, a harmonization of these architectures (as
described in section 3) may help, but this is a non-trivial task.

b) To avoid the problem in an early stage, it is recommended to enforce an
architecture strategy across organizational boundaries. A way to achieve
this is to install an architecture group that works closely with the system
designers. In a few cases, we have seen the cooperation of system
designers with architects fail. Architects did not have the power or the
acceptance to enforce a valid strategy, and were made redundant in the

www.manaraa.com

540 Lothar Borrmann and Frances Newberry Paulisch

end. Best practice studies are required to find the correct approach for
the empowerment of the architects and the way to cooperate with
designers.

c) When the focus of a design and development team is on short-term
commercial success, a "quick and dirty" approach may be favored over a
properly designed system architecture. While this may lead to a short
term success, it may be costly in the long run. We must find ways to
properly count the value of an architecture as an investment. As an
example, consider the framework approach: As a rule of thumb, a
framework needs to be used three times before the cost of its design and
implementation is offset by the reduction in system development cost.
Framework development is thus an investment.

4.4 Architectures including COTS components or
platforms

It is a common trend in system development projects not to develop all
software from scratch, but rather include commercial off-the-shelf (COTS)
software components in the system. When we talk about software
components, we do use the term in the narrow sense of component-based
software; we mean that certain parts of the software system are obtained
from commercial software suppliers as standard products. Example of such
components include operating systems, database systems, and middleware
platforms. In a modern software development environment the portion of
COTS software in systems being developed is steadily increasing.

The goal of using COTS software is clear: Development cost and time
to-market is reduced, system functionality is improved, well-proven
components are expected to have far fewer programming errors than newly
developed code, and the component supplier is expected to take care of
component maintenance. Nevertheless, these goals are not always met and
we have seen some COTS-based development projects fail; why?
a) Traditional software engineering methods and development processes do

not take COTS components into account. A top-down design approach
will usually not lead to an architecture which fits the components
available, rather a mixture of top-down and bottom-up is required. In the
development process, a strong coupling of the requirements engineering
stage and the design stage, incorporating rapid prototyping steps, are
required, as the properties of the COTS components may strongly
influence the properties of the resulting system. Working with COTS
components is still more a matter of professional software-engieering
experience than something that is well-understood and taught in courses.

www.manaraa.com

Software Architecture at Siemens 541

b) Software components are more complex than nuts and bolts. Their
behavior is-in the best case--only partially documented. The behavior
of such a component in a given environment, where it interoperates with
custom software and-worse-with other COTS software components,
is often unpredictable. Suppliers of COTS components will in most cases
give no guarantee that certain non-functional requirements will be met.
Moreover, COTS components are not tailored for the specific purpose
they are needed for. As a result, they provide unnecessary functionality,
at the cost of increased resource consumption and degraded performance.
Quality assurance techniques for software components are required.

c) Software development effort is now substituted with different tasks:
Selection of components and suppliers, quality assurance and, often,
negotiation of licenses. These "new" tasks require different skills and the
techniques for implementing them is not widely established yet. When
component evaluation and contract negotiation are required, a
considerable amount of time may be spent-perhaps even more than the
time saved in the reduced development time.

d) When a system is built with a COTS software platform as the base, there
is a high risk that the system will be tailored to this platform, which leads
to the so-called "vendor lock-in" problem. When this occurs, the system
is strongly dependent on the base platform and its supplier. This is a
considerable commercial and technological risk. When the platform is
not available any more, for whatever reason, a major redesign of the
system can be expected. Platform updates may require costly
modifications to the overall system. Measures to reduce the risk, like the
provision of an isolation layer, are not always appropriate, or may not be
chosen, for example, due to the additional overhead and complexity. It is
also well known that certain software vendors use this issue to improve
their position in the market.
The above shows that the use of COTS components has its price, and

that there are quite a few open questions. For some of them, research is
under way, but solutions are not widely established yet.

5. OUTLOOK

In addition to the open issues mentioned in section 4, our company is
particularly interested in the following issues:
a) What are the interrelationships between product families and process

families (e.g., as discussed in Sutton and Osterweil, 1996)?
b) How can we ensure the quality of the individual components?

www.manaraa.com

542 Lothar Borrmann and Frances Newberry Paulisch

a) What can we foresee about the quality for software architectures built
out of components? In other words, if we use a set of components with
particular non-functional properties (e.g., very robust and another very
safe) are there any conclusions we can make about the non-functional
properties of the whole as opposed to the parts (e.g., as discussed in
Clements et al., 1995)?

b) What techniques have proven most effective for the evolution of
software architectures? We want to continue to build architectures that
are easy to upgrade and that maybe even can be so "clever" as to adapt to
particular configurations without human intervention.

c) Software architects are very busy and rightly so, since their knowledge is
of great value to the company. How can we make sure that they have
enough time not only to work on project-specific issues, but to stay up
to-date with current and future directions.
Within Siemens, both the software initiative and in the projects we have

been involved in, we have seen that the exchange of information in these
areas can be very beneficial. We hope that by further increasing the
interaction with the international software engineering community and
sharing some of our experiences that we can provide even more valuable
information to our practicing software architects.

ACKNOWLEDGEMENTS

We gratefully acknowledge the discussions and valuable hints provided
by Michael Stal and Axel Volker of Siemens that helped improve this paper.

REFERENCES

Buschmann,F; Meunier, R; Rohnert, H.; Sommerlad, P; Stal, M. (1996), Pattern-oriented
Software Architecture- A System of Patterns, John Wiley.

Beck,K; Coplien, J; Crocker, R; Meszaros, G; Paulisch, F; Vlissides, J. (1996), Industrial
Experience with Design Patterns, Proceedings ofiCSE-18, Berlin, Germany.

Bass, L.; Clements, P.; Kazman, R. (1997), Software Architecture in Practice, Addison
Wesley.

Buschmann, F; Geisler, A.; Heimke, T.; Schuderer, C. (1998), Framework-Based Software
Architectures for Process Automation Systems, 9'h IFAC Symposium on Automation in
Mining, Mineral, and Metal Processing, Cologne, Germany.

Clements, P; Bass, L.; Kazman, R.; Abowd, G. (1995), Predicting software quality by
architecture-level evaluation, Proceedings of the 5th Inti. Conference on Software Quality,
Austin.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. (1995), Design Patterns- Elements of
Reusable Object-Oriented Software, Addison-Wesley.

www.manaraa.com

Software Architecture at Siemens

Garlan, D.; Allen, R.; Ockerbloom, J. (1995), Architectural Mismatch: Why Reuse Is So
Hard, IEEE Software.

Garlan, D.; Shaw, M. (1996), Software Architecture- Perspectives on an Emerging
Discipline, Prentice-Hall.

543

Gloger, M.; Jockusch, S.; Weber, N. (1997), Assessment and Optimization of System
Architectures - Experience from Industrial Applications at Siemens, Proceedings of the
European Software Engineering Process Group Conference, Amsterdam, Netherlands.

Gloger, M.; Jockusch, S.; Weber, N. (1998), Harmonisierung von Software-Architekturen
und Plattformen (HAP): Eifahrungen aus dem industriellen Kontext bei Siemens (in
German), Proceedings of the Softwaretechnik '98 Conference, Paderbom, Germany.

Gonauser, M. (1997), Mit einer Software-Initiative zur Weltspitze (in German),
Computerwoche.

Jacobson, I.; Griss, M.; Jonsson, P. (1997), Software Reuse: Architecture, Process, and
Organization for Business Success, Addison-Wesley.

Kazman, R.; Bass, L.; Abowd, G.; Webb, G. (1994), SAAM: A Method for Analyzing the
Properties of Software Architectures, Proceedings of the ICSE-16, Sorrento, Italy.

Kruchten, P. (1995), The 4+ 1 View Model of Architecture, IEEE Software.
Lebsanft, K.; M. Rheindt (1998),/mprovement of the development to increase customer

satisfaction, Proceedings of the Federation of Software Metrics Associations in Europe
(FESMA), Antwerpen, Belgium.

Mehner, T.; Messer, T.; Paul, P.; Paulisch, F.; Schiess, P.; Volker, A. (1998), Siemens
Process Assessment and Improvement Approaches - Experiences and Benefits,
Proceedings of the COMPSAC '98 Conference, Vienna, Austria.

Perry, D. (1996), Product Line Implications for Process, IO'h Inti. Software Process
Workshop, Ventron, France.

Perry, D. (1997), State of the Art in Software Architecture, Proceedings of the ICSE-19,
Boston.

Sutton, S.; Osterweil, L. (1996), Product Families and Process Families, I O'h Inti. Software
Process Workshop, Ventron, France.

Volker, A.; Wackerbarth, G. (1997), Competence in Software and Engineering: Siemens
Software Initiatives, Proceedings of the European Software Engineering Process Group
Conference, Amsterdam, Netherlands.

www.manaraa.com

Architectural Design to Meet Stakeholder
Requirements

L. Chung1, D. Gross2 & E. Yu2

1 Computer Science Program, University ofTe:ms, Dallas, USA &
1 Faculty of Information Studies, University of Toronto, Toronto, Ontario, Canada
chung@utdallas.edu, (gross, yuj@jis.utoronto.ca

Key words: Software architecture, rationale, stakeholders, organization modeling,
requirements, quality attributes, architectural properties, non-functional
requirements, process-oriented, softgoal, satisficing, design reasoning

Abstract: Architectural design occupies a pivotal position in software engineering. It is
during architectural design that crucial requirements such as performance,
reliability, costs, etc., must be addressed. Yet the task of achieving these
properties remains a difficult one and it is made even more difficult with the
shift in software engineering paradigm from monolithic, stand-alone, built
from-scratch systems to componentized, evolvable, standards-based, and
product line oriented systems. Many well-established design strategies need to
be reconsidered as new requirements such as evolvability, reusability, time-to
market, etc., become more important. This paper outlines an approach that
formulates architectural properties such as modifiability and performance as
"softgoals" which are incrementally refined. Tradeoffs are made as conflicts
and synergies are discovered. Architectural decisions are traced to
stakeholders and their dependency relationships. Knowledge-based tool
support for the process would provide guidance during design as well as
records of design rationales to facilitate understanding and change
management.

1. INTRODUCTION

The importance of architectural design is now widely recognized in
software engineering, as evidenced by the recent emergence of seminal
reference texts e.g., (Shaw & Garlan, 1996; Bass, 1998) and several

www.manaraa.com

546 L. Chung, D. Gross, and E. Yu

international workshop series and special sessions in major conferences. It is
acknowledged, however, that many issues in software architecture are just
beginning to be addressed. One key task that remains a difficult challenge
for practitioners is how to proceed from requirements to architectural design.

This task has been made much more difficult as a result of today's
changing software environment. Systems are no longer monolithic, built
from scratch, or operate in isolation. Systems built in the old paradigm have
contributed to the legacy system problem. Today's systems must be
developed quickly, evolve smoothly, and intemperate with many other
systems. Today's architects adopt strategies such as reusability,
componentization, platform-based, standards-based, etc., to address new
business level objectives such as rapid time-to-market, product line
orientation, and customizability. Two important aspects may be noted in this
shift in software engineering environment:
1. There have been significant shifts in architectural quality objectives.
2. Architectural requirements are originating from a much more complex

network of stakeholders.
System-wide software qualities have been recognized to be important

since the early days of software engineering. For example, (Boehm, 1976)
and (Bowen, 1985) classified a number of software attributes such as
flexibility, integrity, performance, maintainability, etc. It is well known that
these quality attributes (also referred to as non-functional requirements) are
hard to deal with, because they are often ill defined and subjective. The
recent flurry of activities on software architecture involving researchers and
practitioners have refocused attention on these software qualities since it is
realized that system-wide qualities are largely determined during the
architectural design stage (Boehm, 1992; Perry, 1992; Kazman, 1994; Shaw
& Garlan 1996; Bass, 1998). With the shift to the new, fast-cycled,
component-oriented software environment, priorities among many quality
objectives have changed, and new objectives such as reusability and
standards compliance are becoming more prominent. While performance
will continue to be important, it must now be traded off against many kinds
of flexibility. As a result, many architectural solutions that were well
accepted in the past need to be rethought to adapt to changes in architectural
objectives.

When systems were stand-alone and had definite lifetimes, requirements
could usually be traced to a small, well-defined set of stakeholders. In the
new software environment, systems tend to be much more widely
interconnected, have a more varied range of potential customers and user
groups (e.g., due to product line orientation), may fall under different
organizational jurisdictions (at any one time, and also over time), and may
evolve indefinitely over many incarnations. The development organization

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 547

itself, including architects, designers, and managers, may undergo many
changes in structure and personnel. Requirements need to be negotiated
among stakeholders. In the case of architectural quality requirements, the
negotiations may be especially challenging due to the vagueness and open
endedness of initial requirements. Understanding the network of
relationships among stakeholders is therefore an important part of the
challenge faced by the architect practitioner.

These trends suggest the need for frameworks, techniques, and tools that
can support the systematic achievement of architectural quality objectives in
the context of complex stakeholder relationships.

In this paper, we outline an approach that provides a goal-oriented
process support framework, coupled with a model of stakeholder
relationships. The paper includes simplified presentations of the NFR
Framework (Chung, 1998) and the i* framework (Yu, 1995). A web-based
information system example, incorporating a KWIC component, is used to
illustrate the proposed approach.

2. GOAL-ORIENTED PROCESS SUPPORT FOR
ARCHITECTURAL DESIGN

Consider the design of a web-based information system. There would be
a set of desired functionalities, such as for searching information, retrieving
it, scanning it, downloading it, etc. There would also be a number of quality
requirements such as fast response time, low storage, ease of use, rapid
development cycle, adaptability to interoperate with other systems,
modifiability to offer new services, etc. The functional side of the
requirements are handled by many development methodologies, from
structured analysis and design, to recent object-oriented methods. Almost all
these methods, however, focus overwhelmingly, if not exclusively, on
dealing with functional requirements and design. While there is almost
universal agreement on the crucial importance of achieving the quality
requirements, current practice is often ad hoc, relying on after-the-fact
evaluation of quality attributes. Techniques for evaluating and assessing a
completed architectural design ("product") are certainly valuable. However,
such techniques usually do not provide the needed step-by-step ("process")
guidance on how to seek out architectural solutions that balance the many
competing requirements.

Complementary to the product-oriented approaches, the NFR Framework
(Chung, 1993, 1998) takes a process-oriented approach to dealing with
quality requirements. In the framework, quality requirements are treated as
(potentially conflicting or synergistic) goals to be achieved, and used to

www.manaraa.com

548 L. Chung, D. Gross, and E. Yu

guide and rationalize the various design decisions during the
system/software development. Because quality requirements are often
subjective by nature, they are often achieved not in an absolute sense, but to
a sufficient or satisfactory extent (the notion of satisficing). Accordingly, the
NFR Framework introduces the concept of softgoals, whose achievement is
judged by the sufficiency of contributions from other (sub-) softgoals.
Throughout the development process, consideration of design alternatives,
analysis of design tradeoffs and rationalization of design decisions are all
carried out in relation to the stated softgoals and their refinements . A
softgoal interdependency graph is used to support the systematic, goal
oriented process of architectural design. It also serves to provide historical
records for design replay, analysis, revisions, and change management.

For the purpose of illustration, let us consider a small part of the example
in which a keyword in context (KWIC) system is needed. The KWIC system
is part of a web information system, used to support an electronic-shopping
catalog. Suppose the KWIC system architect is faced with an initial set of
quality requirements: "the system should be modifiable" and "the system
should have good performance". In the aforementioned process-oriented
approach, the architect explicitly represents each of these as a softgoal to be
achieved during the architectural design process. Each softgoal (e.g.,
Modifiability [system]) is associated with a type (Modifiability) and a topic
(system), along with other information such as importance, satisficing status
and time of creation. Figure 1 shows the two softgoals as the top level nodes.

As these high level requirements may mean different things to different
people, the architect needs to first clarify their meanings. This is done
through an iterative process of softgoal refinement which may involve
reviewing the literature and consulting with domain experts. After
consultation, the architect may refine Modifiability [System] into three
offspring softgoals: Modifiability [Algorithm], Modifiability [Data
representation], and Modifiability [Function]. This refinement is based on
topic, since it is the topic (System) that gets refined, while the softgoal type
(Modifiability) is unchanged. This step may be justified by referring to the
work by Garlan and Shaw (Garlan, 1993), who consider changes in
processing algorithm and changes in data representation, and to Garlan,
Kaiser, and Notkin (Garlan, 1992), who extend the consideration with
enhancement to system function. Similarly, the architect refines Performance
[System], this time based on its type, into Space Performance [System] and
Time Performance [System], referring to work by Nixon (Nixon, 1993).

Figure 1 shows the two refinements. In the figure, a small "arc" denotes
an "AND" contribution, meaning that in order to satisfice the parent
softgoal, all of its offsprings need to be satisficed. As will be shown later,
there are also other contribution types, including "OR" and partial positive

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 549

(+) or negative (-) contributions. Contribution types are important for
deciding the satisficing status of a soft goal based on contributions towards it.

Modifia 'ty
(Algorithm]

Modifiability
[System]

Perfonnance
(System]

0

odifiability Time Performance
[Function] (System]

Figure 1. A softgoal interdependency graph showing refinements of quality requirements
based on topic and type

In parallel with the refinement of quality requirements, the software
architect will consider different ways of meeting the KWIC functional
requirements in the context of the web information system. At various points
during the design process, the architect will go through a number of
interleaving activities of componentization, composition, choice of
architectural style, etc. Each activity can involve consideration of
alternatives, where NFRs can guide selection, hence narrowing down the set
of architectural alternatives to be further considered.

For example, the architect can consider architectures with varying
numbers of (main) components:
- Input, Circular Shift, Alphabetizer, and Output
- Input, Line Storage, Circular Shift, Alphabetizer, and Output
- etc.

Each choice will make particular contributions to the NFRs. With either
choice the architect can further consider alternatives about control, for
example, one with a Master Control and one without. Yet another decision
point might concern the way data is shared: sharing of data in the main
memory, sharing of data in a database, sharing of data in a repository with an
event manager and so forth .

Figure 2 describes some of the above alternative architectures using
"conventional" block diagrams. The diagrams were redrawn by one of the
authors based on (Shaw & Garlan, 1996).

www.manaraa.com

550

Direct JfemoTY Access
Subprogram Call
System I/O

I
I

I
I

ii·JNl '}.(,..... I

Implicit Invocation

ii•JNl '}.(...... I

1 Input

/
I

llnprJJ 'M.Iiw• I

L. Chung, D. Gross, and E. Yu

Architecture 1: Shared Data

Archltecture2: Abstract Data Type

\

\
\

Architecture 3: Implicit Invocation

output

"'< I O<lti""'Mufiuml
Architecture 4: Pipe and Riter

Figure 2. Architectural alternatives for a KWIC system

Let us assume that the architect is interested in an architecture that can
contribute positively to the softgoal Modifiability [Data representation], and
considers the use of an "Abstract Data Type" style of architecture, as
discussed by Parnas (Parnas, 1972) , and Garlan and Shaw (Garlan, 1993):
components communicate with each other by means of explicit invocation of
procedures as defined by component interfaces.

As the architect would learn sooner or later, the positive contribution of
the Abstract Data Type architecture towards modifiable data representation

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 551

is made at the expense of another softgoal, namely the time performance
softgoal. Figure 3 shows the positive contribution made by the abstract data
type solution by means of "+" and the negative contribution by "-"
contribution link.

The architect would want to consider other architectural alternatives in
order to better satisfice the stated softgoals. The architect may discover from
the literature that a "Shared Data" architecture typically would not degrade
system response time, at least when compared to the Abstract Data Type
architecture, and more importantly perhaps it is quite favorable with respect
to space requirements. This discovery draws on work by Parnas (Pamas,
1972), and by Garlan and Shaw (Garlan, 1993) who considered a Shared
Data architecture in which the basic components (modules) communicate
with each other by means of shared storage. Not unlike the Abstract Data
Type architecture, however, the Shared Data architecture also has some
negative influence on several other softgoals: a negative (-) impact on
modifiability of the underlying algorithm (process) and a very negative (--)
impact on modifiability of data representation.

Figure 3 shows both design steps along with the various contributions
that each alternative makes towards the refined softgoals. Note that the
diagram is build iteratively rather than in one step, according to the
architectural "discovery process" of the architect.

Modifia 1 ity
[Algocithm]

Modifiability
[Data Rep]

Modifiability
[System]

Shared Data

+

Abstract Data Types

Perfonnance
[System]

Time Perfonnance
[System]

Figure 3. Contribution of the Shared Data and Abstract Data Type architectures

www.manaraa.com

552 L. Chung, D. Gross, and E. Yu

Interestingly, Figure 3 shows tradeoffs between the architectural
alternatives that have been considered so far. The architect can continue to
consider other architectural alternatives, including hybrid solutions, or
decide which of the two better suits the needs of the stakeholders. How can
the architect go about doing the latter, if that is what she so desires? One
way to do the tradeoff analysis is by using the degree of criticality (or
priority, or dominance, or importance) of the quality requirements. In the
context of a particular web information system, for example, the
stakeholders might indicate that performance is more critical than
modifiability. In this case, then, the architect would choose Shared Data over
Abstract Data Type, since Shared Data is more satisfactory with respect to
both space and time performance, hence the overall performance
requirements (recall the "AND refinement").

During the process of architecting, the architect needs to make many
decisions, most likely in consultation with stakeholders. As the above
discussion suggests, an interesting question is: "how can the architect
evaluate the impact of the various decisions?" The NFR Framework
provides an interactive evaluation procedure, which propagates labels
associated with softgoals representing their satisficing status (such as
satisficed, denied, undetermined, and conflict) across the softgoal
interdependency graph. Labels are propagated along the direction of
contribution, usually "upwards" from specific, refined goals towards high
level initial goals.

Because of the subjective nature of quality requirements, the software
architect will want to explain and justify her decisions throughout the
softgoal refinement process. This can be done in the NFR Framework using
"claims". Claims can be attached to contributions (links in the graph) and to
softgoals (nodes) . Claims can themselves be justified by further claims.
These rationales are important for facilitating understanding and evolution.
For example, Shared Data may by and large have advantage over Abstract
Data Type with respect to space consumption. This general relationship,
however, may need to be argued for (or against), in the context of the
particular web information system. If, for example, the volume of the data to
be maintained by the system is low, the relative advantage of Shared Data
may not matter much. If this is indeed the case, the expected data volume
can then be used as a claim against the relationship: "Shared Data makes a
strong positive (++) contribution towards meeting space requirements". This
might then lead the architect to choose Abstract Data Type as the ultimate
architecture.

Figure 4 shows a softgoal interdependency graph for the KWIC system,
taken from work by Chung, Nixon and Yu (Chung, 1995) which is based on
(Garlan, 1993) and Garlan, Kaiser, and Notkin (Garlan, 1992).

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements

PcrformiUicc
[S,....,)

Shared Data Abstract Data Type Implicit Invocation Pipe & Alter

supporll : onrong the vital few gools lfronr nrorktl survey)

supporl2: /Por110sl2/

support3: fewer astmtplkms among ffttera cling modules

sttpport4: expeded size of data is huge (from domain expert)

derry1 : marry implementors fomiUar with ADTs (from domain expert)

Legend

Link ryp.a

wealc positive satisficing

:rnong. positive satisficing.

weak oegat i"Ve satisficing

strong negative satisficing

Criticality

crit ical

vecy criticaJ

Ev.IUCton Labell

G) undetermined

0 neutrnl

(j) satisficcd

® den;ed

Figure 4. A softgoal interdependency graph for the KWIC system

3. MEETING DIFFERENT STAKEHOLDER
REQUIREMENTS

553

We now illustrate the need to relate organizational context to the process,
and consequently the outcomes, of architectural design. The illustration will
be done through three scenarios, which will show that different sets of

www.manaraa.com

554 L. Chung, D. Gross, and E. Yu

stakeholder concerns are transformed by the architectural design process into
different architectural choices for information systems. More specifically,
each different set of stakeholders and their concerns leads the architects to
reason about different quality concerns, make and evaluate different design
decisions, and finally leads, in our case, to the most appropriate architectural
designs to be used in a particular web-based information system context.

3.1 Scenario 1

An e-shopping software vendor specializes in offering software products,
which can be used in advertising, selling, and shipping goods and services in
an Internet-based virtual market. The products should generate, among other
things, e-catalogs so that any Internet user can search for goods using a web
browser. The e-catalog application architect realizes that she needs a
component which can generate an index, here an alphabetized list of the
words in the descriptive text of each catalog item such that each word in the
list is associated with a list of all catalog items pertaining to that word. Such
a list, however, is just what a KWIC system generates. Hence, the e-catalog
application architect asks a KWIC component architect to built an indexing
system. This is a brief description of the essential functional aspect of the
scenario. We will shortly describe the quality aspect of the scenario, along
with more details of the functional aspect.

Figure 5 depicts the relationships among the three types of stakeholders,
using the i* framework proposed by Yu (Yu, 1994). The i* framework
allows for the description of actors and their dependencies in organizational
settings. A circle represents an actor (e.g., e-shopping software vendor) who
may be dependent on some other actor (e.g., e-catalog application architect)
to achieve some of its goals (e.g., developing an e-catalog application). Not
unlike the NFR Framework, the i* framework also distinguishes a quality
requirement, denoted by a cloud like shape (to suggest softness), from a
functional one, denoted by a rectangle. In the i* framework, a dependency is
described by a directed link between two actors. The semi-circle on the
directed link stands for the letter "D" which denotes the notion of
dependency. This type of graph is called a Strategic Dependency model in
the i* framework (the other type of graph in i*; the Strategic Rationale
model will not be discussed in this paper).

In the current scenario, the e-shopping software vendor depends on the e
catalog application architect to deliver an e-catalog application, who in tum
depends on the KWIC component architect to deliver an indexing system.

This kind of diagram shows where requirements originate. It also serves
as a basis for determining what kind of negotiated delegations should take
place, how different architectural decisions affect the various stakeholders,

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 555

and possibly what kind of requirements to allocate to, and how to partition
the system into, sub-systems and components. Just like a softgoal
interdependency graph, it becomes a basis for justification and
system/software architectural evolution.

Figure 5. Organizational context for thee-catalog application

Now we describe the quality concerns of the stakeholders. To start with,
the e-shopping software vendor expects the application to be easy to use.
The vendor also has other concerns. As the catalog items are expected to
grow quite rapidly, storage space resource is a very important concern, as is
fast response time. Also shown in Figure 5 is multiple-vendor support,
namely, allowing for the integration of catalogs that reside on various server
machines in physically remote vendor organizations. The exclamation marks
denote the criticality of a quality. The highest priority is assigned to two
exclamation marks, medium priority to one, and low priority none.

As a matter of fact, the list of quality requirements and their criticalities
is determined through cooperation between the e-catalog application

www.manaraa.com

556 L. Chung, D. Gross, and E. Yu

architect and the e-shopping software vendor who go through a process of
recursive refinements, in the manner of the previous section, which may also
require the KWIC component architect's involvement at least occasionally.
The list then becomes what is commonly known as the user requirements.

When the user requirements are more or less satisfactory, the e-catalog
application architect directs her attention more towards defining the system
requirements, whose clarification may need more of the KWIC component
architect's involvement than before. The system requirements may inherit
some of the user requirements more or less directly, such as good space and
response time requirements. The system requirements will also come from
the system's perspective. For example, the "ease of use" requirement now
may be translated more specifically into interactivity (such as configuring
indexing options dynamically) and extensibility (such as allowing for the use
of international language character sets, categorical search and phonetic
search). Another system requirements that might be considered is the
modifiability requirement, here for changing the overall algorithm which
builds those indices transparently in a distributed setting. The criticalities
may also change, due to the new requirements and the derived requirements.
For example, in the presence of the extensibility requirement, which is new,
the criticality of the good time performance requirement is lowered from
critical to medium.

With the organizational context in place, the KWIC component architect
uses the process-oriented NFR Framework to refine the quality softgoals,
consider architectural design alternatives, carry out tradeoff analysis and
evaluate the degree to which softgoals are satisficed, all in consideration of
the context. The top portion of Figure 6 represents those softgoals that
originated from the e-shopping software vendor, and are negotiated and
delegated through the e-catalog application architect to the KWIC
component architect. The relative criticality values are preserved in the
softgoal interdependency graph. Figure 6 shows the result of the process
whereby the architect has arrived at four architectural alternatives in an
attempt to satisfice the stated softgoals.

Importantly, the diagram in figure 6 shows a number of claims, which
derive from the knowledge of the organizational context, and which are used
to argue for, or against, the types of softgoal criticalities and
interdependencies, and consequently in softgoal evaluation and selection
among architectural alternatives. For example, using the Shared Data
architectural style is expected to have a very good contribution towards
space performance. The architect uses the organizational context diagram
(figure 5) to find some argument in support (or denial) of that particular
contribution. In the current scenario, for example, the architect argues for the
validity of the contribution by pointing to the e-shopping software vendor

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 557

who wants the system to have the ability to handle a rapidly growing number
of catalog items. The "S I" arrow in figure 6 denotes this claim.

Despite the significant savings by the Shared Data architecture in data
storage, however, the Implicit Invocation architecture seems to be the most
promising for achieving extensibility of function, which is as critical as
space performance. Furthermore, Implicit Invocation helps modifiability of
the algorithm, in contrast to Shared Data, although there is a tie between the
two concerning interactivity. Although not well met by Implicit Invocation,
time performance is of lower criticality. Taking all these into account, the
KWIC component architect chooses the Implicit Invocation as the target
architectural design.

E-Catalog KWIC Component
Modifiability
[KWIC)

Shared Data

Interactivlty
[KWIC)

Time

Abstract Data Types Implicit Invocation Pipe & Filter

Figure 6. A softgoal interdependency graph for thee-catalog KWIC component

3.2 Scenario 2

A system administrator wants to offer the user a help facility, which can
retrieve all the documents that have some keyword in their description, as
indicated by the user. The administrator asks a help system architect to build
such a facility. The help system architect, in tum, asks a KWIC component
architect for an indexing software system, after realizing that the facility is
essentially a KWIC system such as used in the Unix "man -k" command.

www.manaraa.com

558 L. Chung, D. Gross, and E. Yu

Similar to figure 5 for scenario 1, we may now describe the three types of
stakeholders using the i* framework, together with the functional and quality
requirements that the stakeholders delegate among themselves, together with
the various criticalities of each of the requirements. And analogous, to figure
6 for scenario 1, the architect iteratively builds an NFR softgoal
interdependency graph in which she further refines the various quality
requirements and argues for or against certain claims. These analogous
figures for scenario 2 are not shown for lack of space, but some fragments of
the functional and quality requirements as well as the (soft) goal
interdependencies related to this scenario appear in figure 7 and 8.

Taking all contributions of each architectural style into account, together
with the various criticalities of the softgoals to be achieved, the architect
might want to choose the Pipe and Filter architectural style as the most
promising one.

3.3 Scenario 3

A reuse manager is appointed by product line management to oversee the
development of various systems in the organization. As it happens, the
KWIC component architect, the e-catalog application architect and the help
system architect all work in the same organization. The reuse manager asks
the architects to consider reuse as a critical priority and to maximize reuse of
all components developed in that organization.

This scenario is especially interesting as it introduces a stakeholder (the
reuse manager) whose quality concern (having reusable components)
prompts the KWIC component architect to find a solution that represents the
union of quality concerns of all other architects, as well as taking into
account each of their intended customer (thee-shopping software vendor and
the man administrator).

Essentially, figure 7 shows a merge of all stakeholders' quality softgoals
discussed in the previous scenarios. In addition it show that reuse manager
depends on the KWIC system architect to build a system that delivers and
maximizes the use of reusable components for all development activities in
that organization. Not shown are product line management stakeholders,
who depend on the reuse manager for reduced development costs.

For each of the two previous scenarios a different architectural solution
style was chosen according to the specific kind of organizational context and
its derived set of requirements. To find a reusable component solution the
KWIC component architect will need to re-negotiate the delegated
requirements with each of the involved stakeholders to overcome the
stakeholders conflicting requirements. Perhaps the KWIC component

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 559

architect will also need to renegotiate the degree of reusability with the reuse
manager.

Figure 7. Organizational context for the reuse requirement

Now that the KWIC component architect has an organizational
understanding (of which quality requirements and criticalities originated
from which stakeholders, and what network of relationships exists among
them), she proceeds to use the NFR framework to evaluate, and further argue
for or against the various architectural styles. During the evaluation, the
architect renegotiates conflicting quality requirements and criticalities with
the affected stakeholders and finds an architectural solution that makes
acceptable tradeoffs. Figure 8 shows the result of the architectural design
process. (The "broken" lines are not part of the NFR Framework graphical

www.manaraa.com

560 L. Chung, D. Gross, and E. Yu

notation, but are used in this paper to avoid cluttering the diagram with links
not directly related to the architectural styles shown to be evaluated. The "e"
subscript stands for the e-catalog application architect's point of view, the
"h" subscript stands for help system architect's point of view, while the "r"
subscript stands for the reuse mangers point of view).

Reuse KWIC Component Pelformance
(KWiq

wmpn,...,.
(KWic,h]

!!h X

++

Shared Data Abstract Data Types Implicit Invocation Pipe & Fllter

Figure 8. A softgoal interdependency graph for the reusable KWIC component

The figure shows the KWIC component architect evaluating the Implicit
Invocation style for meeting the quality requirements originating from the e
catalog application architect, the help system architect and the reuse
managers. While evaluating the Implicit Invocation style the architect may
renegotiate with the help system architect her demand for "Unix
compliance" which, for her, would be better dealt with when using the Pipe
& Filter style. The organizational context (such as the "approval"
dependency that the architects have on the reuse manager), will make the
negohatmg parties more forthcoming when concessions to their
requirements and/or criticalities are needed.

4. DISCUSSION AND RELATED WORK

As pointed out by Garlan and Perry (Garlan, 1994), architectural design
has traditionally been largely informal and ad hoc. Our proposal is aimed at

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 561

rectifying some of the manifested symptoms by taking a more disciplined
approach to architectural design. In particular, our proposal is aimed at
improving our ability to understand the rationales behind architectural
choices, hence making the system more easily traceable and evolvable. We
have illustrated how to carry out a finer-grained analysis, and the
comparison of architectural designs by considering quality-related concerns
of multiple stakeholders and their interdependencies.

Our proposal draws on concepts that have been identified as essential to
portray architectural infrastructure, such as elements, components, and
connectors as suggested by Perry and Wolf (Perry, 1992), Garlan and Shaw
(Garlan, 1993), Abowd, Allen, and Garlan (Abowd, 1993), and Robbins,
Medvidovic, Redrniles and Rosenblum (Robbins, 1998). In our view, our
emphasis on quality concerns and stakeholder interdependencies are
complementary to efforts directed towards identification and formalization
of concepts for functional architectural design.

Concerning the role of quality requirements, design rationale, and
assessment of alternatives, the proposal by Perry and Wolf (Perry, 1992) is
of close relevance to our work. Perry and Wolf propose to use architectural
style for constraining the architecture and coordinating cooperating software
architects. They also propose that rationale, together with elements and
form, constitute the model of software architecture. In our approach,
weighted properties of the architectural form are justified with respect to
their positive and negative contributions to the stated NFRs, and weighted
relationships of the architectural form are abstracted into contribution types
and labels, which can be interactively and semi-automatically determined.

Boehm (Boehm, 1992), and Kazman, Bass, Abowd, and Webb (Kazman,
1994) have argued convincingly for the importance of addressing quality
concerns in software architectures. Kazman, Bass, Abowd, and Webb
(Kazman, 1994) propose a basis (called SAAM) for understanding and
evaluating software architectures, and gives an illustration using
modifiability. This proposal is similar to ours, in spirit, as both take a
qualitative approach, instead of a metrics approach, but differs from ours
since SAAM is product-oriented, i.e., they use quality requirements to
understand and/or evaluate architectural products.

In comparing architectural alternatives, it is intuitively appealing to use a
tabular format. For example, in (Garlan & Shaw, 1993), a table is used to
present the quality evaluations of four architectural alternatives. Such a table
can be interpreted as depicting contributions from the architectural
alternatives to the quality attributes treated as goals. In our study, we
illustrated the importance of context and the need to trace design decisions to
stakeholder requirements. Our approach suggests that the tabular

www.manaraa.com

562 L. Chung, D. Gross, and E. Yu

representation of design alternatives and quality attributes is not sufficiently
expressive.

We might consider extending the tabular representation by distinguishing
quality requirements that come from different stakeholders, and by adding
more explanatory notes such as the claims in the softgoal interdependency
graphs.

Our approach emphasizes explicitly representing and using the quality
concerns of multiple interacting stakeholders during the design of software
architectures. Our approach is thus similar to the on-going work by Boehm
and In (Boehm, 1996), who explore a knowledge-based tool for identifying
potential conflicts among quality concerns early in the software/system life
cycle, and using quality requirements in examining tradeoffs involved in
software architectural design. Stakeholders such as user, maintainer,
developer, customer, etc., are mapped to quality attributes in a graph. Our
approach goes further by indicating that stakeholder requirements can be
traced through a network of dependency relationships in an organizational
model.

5. CONCLUSIONS AND FUTURE WORK

Achieving architectural quality requirements is a key objective in
architecture-based approaches to software engineering. Quality requirements
vary according to context and need to be negotiated among stakeholders. We
have outlined a systematic approach for representing and addressing quality
requirements during architectural design. The design reasoning is related to
context through an organization model of stakeholder dependencies.

Using an extended version of the familiar KWIC example, we have
illustrated how architectural decisions might vary depending on context, and
how the design process can be guided and assisted using appropriate
notational and reasoning support. The historical records of design decisions
and rationales will facilitate understanding and evolution.

We have been working on tools to support the approach. These include
facilities for generating and maintaining the graphs, for propagating labels,
and for design revision. Knowledge for addressing specific quality
requirements are codified in knowledge bases to assist in the refinement of
goals. Known interactions among quality requirements are codified as
correlation rules for detecting conflicts and synergies.

This paper represents a first step in an attempt to provide a systematic
architectural design support framework that takes organizational and
stakeholder relationships into account. We have drawn on the NFR
framework for dealing with software quality requirements, and the i*

www.manaraa.com

Architectural Design to Meet Stakeholder Requirements 563

framework for modeling and reasoning about strategic actor relationships. In
future work, we intend to further elaborate on issues specific to architectural
design, and to better integrate architectural design reasoning and
organizational relationships reasoning.

REFERENCES

Abowd, G., Allen R. and Garlan, D.(l993) "Using Style to Understand Descriptions of
Software Architectures", Software Engineering Notes, 18(5): 9-20, Proc. of S/GSOFT '93:
Symposium on the Foundations of Software Engineering.

Boehm, B. W. (1976) "Software Engineering", IEEE Transactions on Computers, 25(12), pp.
1226-1241

Bass, L., Clements P. and Kazman, R. (1998) Software Architecture in Practice, SEI Series in
Software Engineering, Addison-Wesley.

Boehm, B. and Scherlis, B(1992) "Megaprogramming", Proc. the DARPA Software
Technology Conference.

Boehm, B. and In, H.(l996) "Aids for Identifying Conflicts Among Quality Requirements",
Proc. International Conference on Requirements Engineering, (ICRE96), Colorado, April
1996, and IEEE Software, March 1996.

Bowen, T. P., Wigle, G. B. and Tsai, J. T. (1985) "Specification of Software Quality
Attributes", Report RADC-TR-85-37, vol. I (Introduction), vol. II (Software Quality
Specification Guidebook), vol III (Software Quality Evaluation Guidebook), Rome Air
Development Center, Griffiss Air Force Base, NY, Feb. 1985.

Chung, L.K.(l993) "Representing and Using Non-Functional Requirements: A Process
Oriented Approach". Ph.D. Thesis, Dept. of Computer Science, Univ. of Toronto, June
1993. Also Technical Report DKBS-TR-93-l.

Chung, L.K. Nixon, B. and Yu, E.(l995) "Using Non-Functional Requirements
to Systematically Select Among Alternatives in Architectural Design", Proc., 1st Int.

Workshop on Architectures for Software Systems, Seattle, April 24-28, 1995., pp. 31-43.
Chung, L.K. Nixon, B. A., Yu, E and J. Mylopoulos(l998), Non-Functional Requirements in

Software Engineering, Kluwer Publishing (to appear).
GarlanD. and Shaw, M.(l993) "An Introduction to Software Architecture Advances in

Software Engineering and Knowledge Engineering: Vol./, World Scientific Publishing
Co.

Garlan, D., Kaiser, G. E. and Notkin, D. (1992) "Using Tool Abstraction to Compose
Systems", IEEE Computer, Vol. 25, June 1992. pp. 30-38.

Garlan, D. and Shaw, M. (1993) "An Introduction to Software Architecture", in Advances in
Software Engineering and Knowledge Engineering: Vol./, World Scientific Publishing
Co.

Gar1an, D. and Perry, D.(l994) "Software Architecture: Practice, Potential, and Pitfalls",
Proc. 16th Int. Conf on Software Engineering, pp. 363-364.

Kazman, R, Bass, L., Abowd, G. and Webb, M. (1994) "SAAM: A Method for Analyzing the
Properties of Software Architectures", Proc. Int. Conf on Software Engineering, May
1994, pp. 81-90.

Nixon, B. A.(l993) "Dealing with Performance Requirements During the Development of
Information Systems.", Proc. IEEE Int. Symp. on Requirements Engineering, San Diego,
CA, January 4-6, Los Alamitos, CA: IEEE Computer Society Press, pp. 42-49.

www.manaraa.com

564 L. Chung, D. Gross, and E. Yu

Pamas, D. L. (1972) "On the Criteria to be Used in Decomposing Systems into Modules",
Communications of the ACM, Vol. 15, Dec. 1972, pp. 1053-1058.

Perry, D. E. and Wolf, A. L. (1992) "Foundations for the Study of Software Architecture",
ACM SIGSOFJ Software Engineering Notes, 17(4), pp. 40-52.

Robbins, J. E., Medvidovic, N., Redmiles, D. F. and Rosenblum, D. S. (1998) "Integrating
Architecture Description Languages with a Standard Design Method", Proc. 20th Int.
Conf on Software Engineering, pp. 209-218.

Shaw, M. and Garlan, D. (1996) "Software Architecture: Perspectives on an Emerging
Discipline", Prentice Hall.

Yu, E. S. K. and Mylopoulos, J. (1994) "Understanding "'Why"' in Software Process
Modelling, Analysis, and Design.", Proc., 16th Int. Conf on Software Engineering,
Sorrento, Italy, May 1994, pp. 159-168.

Yu, E.(1995) "Modelling Strategic Relationships for Process Reengineering", Ph.D. Thesis,
Dept. of Computer Science, Univ. of Toronto.

APPENDIX

The KWIC problem statement (Parnas, 1972): "The KWIC [Key Word in
Context] index system accepts an ordered set of lines; each line is an ordered
set of words, and each word is an ordered set of characters. Any line may be
"circularly shifted" by repeatedly removing the first word and appending it
at the end of the line. The KWIC index system outputs a list of all circular
shifts of all lines in alphabetical order."

www.manaraa.com

The Software Architect
-and the Software Architecture Team

Philippe Kruchten
Rational Software, 650 West 41st Avenue #638, Vancouver, B.C., V5Z 2M9 Canada
pbk@ rational. com

Key words: Architecture, architect, team, process

Abstract: Much has been written recently about software architecture, how to represent
it, and where design fits in the software development process. In this article I
will focus on the people who drive this effort: the architect or a team of
architects-the software architecture team. Who are they, what special skills
do they have, how do they organise themselves, and where do they fit in the
project or the organisation?

1. AN ARCHITECT OR AN ARCHITECTURE
TEAM

In his wonderful book The Mythical Man-Month, Fred Brooks wrote that
a challenging project must have one architect and only one. But more
recently, he agreed that "Conceptual integrity is the vital property of a
software product. It can be achieved by a single builder, or a pair. But that is
too slow for big products, which are built by teams."' Others concur: "The
greatest architectures are the product of a single mind or, at least, of a very
small, carefully structured team."2 More precisely: "Every project should
have exactly one identifiable architect, although for larger projects, the
principal architect should be backed up by an architecture team of modest
size."3

1 Keynote address, ICSE-17, Seattle, April1995
2 Rechtin 1991 , p. 22
3 Booch 1996, p. 196

www.manaraa.com

566 Philippe Kruchten

We speak about a software architecture team, and assume that the lone
architect is just a simpler case. We speak of a team, not just a working group
or a committee; a team in the sense defined by Katzen bach and Smith in The
Wisdom of Teams: "a small number of people with complementary skills
who are committed to a common purpose, performance goals, and approach
for which they hold themselves mutually accountable."4

2. SKILLS OF THE ARCHITECTS

Software architects must collectively have a certain number of skills:
experience (both in software development and in the application domain),
good communication skills, sense of leadership, they are proactive, and goal
oriented.

2.1 A broad range of experience

Software architects must have accumulated significant experience in
software development, especially if they are to tackle ambitious projects, but
at the same time, they must be (or should become) knowledgeable in the
problem domain. The two kinds of expertise must be well balanced.
Ambitious software architecture projects will not succeed without both.

If the architects have a good understanding of the problem domain, such
as telephony, air-traffic control, or computer-aided manufacturing, but only
limited experience with software development and software architecture,
they will not be able to rapidly develop an architecture that can be
communicated to the various development groups. Even if they do not
develop the code themselves, they must master the software design method
(e.g., OOD), the programming language(s), understand the development
environment, the development process, because they will have to interact
daily with the software designers, programmers, and database engineers.
They have to understand them and be understood. Their design decisions
must be acceptable by software engineers. They must make some decisions
very quickly, based on experience and "gut feelings" rather than pure,
thorough analysis.

In one case the resentment against an architecture team was growing.
When we were called to help, we discovered that they were excellent
people with a lot of experience in their field, doing a very good job of
analysis, building a very solid, object-oriented model of their domain, but
carefully avoiding making any software design decisions. All questions

4 Katzenbach 1994, p. 45

www.manaraa.com

The Software Architect 567

about the "how" were brushed aside as "mere implementation details"
that should not pollute their architectural description. Further
investigation showed that they were in fact afraid of making any
technical choices because of their lack of experience with similar
systems. They were also under psychological pressure from technical
leaders of the various development teams who they thought were much
more qualified to speak about the software itself. Therefore they had
shifted their focus toward analysis, even though the rest of the software
development organisation was still holding them accountable for the
major architectural decisions.

When architects have a good grasp of the software development aspect
but a poor knowledge of the domain, they will develop nice solutions for the
wrong problems, reduce the real problems to problems they know how to
solve, or impose solutions that suit software engineers but are for a user
community that works, behaves and thinks completely differently. For
example, air-traffic controllers are not software developers; they have
another view of the usefulness of menus and windows rather than the views
shared by most software engineers. Imposing Macintosh-like desktop
metaphors because it proved to be good for software types may prove to be a
mistake in this specific case.

If you agree that software architecture, like building architecture, is
concerned with more than the nuts and bolts of the software, such as how the
software is used in its context-sociological and economical i.e., looking
outwards, and not merely inwards-then it becomes clearer why a software
architecture team must be versed in both software development and the
application domain. Architects need to anticipate changes, changes in the
environment in which the system under development will be deployed,
which will in tum trigger requests for change or evolution. You can only do
this if you are looking at that context, that domain, not just looking at the
software itself. Architects need to develop a long-term vision for the project:
where do we want to be with this software in two years, five years, and ten
years from now?

Software architects are curious, they keep their ears and eyes open, read
technical publications, and try to constantly sharpen their skills, extending
and broadening the scope of their knowledge. They develop their creative
skills by looking at other fields, other domains, other disciplines, from which
they can derive more analogies.

Achieving this balance of expertise in a software architecture team is
hard. It is not enough to bring together a few people that are very good at
software development and a few people that are good at the problem
domain; they must have enough knowledge, language, and vision in
common so they can communicate and produce something.

www.manaraa.com

568 Philippe Kruchten

In another case, when we were creating a team to develop an architecture
for an air-traffic control (ATC) system, we identified some talented
software designers, and some talented ATC specialists. This was just the
beginning. All the software people were sent for hands-on training on air
traffic control, going to ATC classes, then spending days sitting next to
controllers in a live Area Control Centre, trying to understand the essence
of their activity. Similarly, the ATC specialists were sent to courses such
as Object-Oriented Design, Programming in Ada, to reach the point
where there was enough common vocabulary for them to efficiently work
together and leverage each other's skills.

This approach does not always work without resistance: "Why should I
learn about programming, since I will never program?", "Why should I
waste my time going through air-traffic controller training? I am a
software designer ... "

The real difficulty is when there is only one architect: that one person
must therefore be knowledgeable in both software development and the
domain. Finding such people on the market is not very easy. The few we
know of who are like that developed their unique combination of skills in a
given organisation or company.

lnsufficjant domain expertise

Balanced expertise, but no
common language

Insufficient software expertise

Balanced expertise and
sufficient common language

Figure I. Looking for the balanced team

www.manaraa.com

The Software Architect 569

When the scope of the project is large, the problem of finding people
with balanced expertise and a common language gets worse. Within the
software development domain, you may need to gather enough expertise
from various "specialities" such as data engineering, operating systems,
networking and security expertise. Within the application domain, there may
be also specialisation: in telecommunications, for example, there is voice
communication, call handling, voice messaging, versus data communication
and packet switching. It is not possible to find people that are experts in all
specialities, but collectively, the architecture team must be reasonably aware
of these specialities so they can bring in and interact with experts whenever
necessary.

The issue of a common language is important. By language, we mean as
well as a common spoken language, they must have a common way of
representing the architecture, and a common programming language. The
choice of a language is a choice of a model, complete with its opportunities
for creativity, its internal assumptions, and its constraints. Languages, among
people who speak them, provide a rapid transfer of knowledge, imply
consent with the underlying connectives, and agreement on stated
conclusions. 5

The wider the experience the better. People who have been working with
the same kind of architecture for 20 years have 20 years of experience but
are likely to reproduce that same architecture for a new project. A person
with only 12 years of experience with three or four different kinds of
architecture brings more experience to the table. Consider getting help from
external consultants: the very nature of their job ensures a wealth of
experience, perhaps including work with your direct competitors.

In all cases, software architects must understand software sufficiently
well to be reasonable programmers. An architect unable to express or sketch
a concept in a programming language is as suspicious as a building architect
who does not know how to use aT-square, a French curve, or a lettering pen;
he is putting the project at risk by having a wider gap to bridge with other
developers. Often I write code simply to understand what I design.

2.2 Communication skills

Communication issues grow exponentially with the size of the
development organisation. Successful architects or architecture teams
rapidly become a centre of technical communication in a project, and they
spend a significant amount of their time interacting with one or more
stakeholders: explaining the architecture to other software developers, to

5 Rechtin 1991 , p. 80

www.manaraa.com

570 Philippe Kruchten

system engineers, to customers, users, prospects, marketing people, and
managers. They must have therefore good written and verbal communication
skills. Therefore, they must persuade, understand, dig out the real issues,
convince the sceptical, and sell the architecture. As Jonathan Losk says:
"Don't ever stop talking about the system."6

On two different, large command and control systems, we noticed that
the lead software architect was dedicating more than half of his time just
communicating what architecture was and why it was important.

Software architects must also listen, listen to the project worries, to
recurring difficulties with certain tools, procedures, and design choices,
while they are constantly adjusting, correcting or merely explaining software
architecture, again and again. In many cases, they have to negotiate, finding
compromises that can be accepted by several stakeholders.

Unfortunately, there isn't a strong correlation between good technical
skills and good communication skills.

2.3 Leadership

Architects must have some leadership skills-technical leadership, that
is. This technical leadership must be based on their knowledge and their
achievement, not simply on some administrative decision. We do not mean
that they are the project leaders or managers, but they will lead the software
development in many ways: by establishing the structure in which all the
software development will be hosted, by establishing the main design rules,
by ensuring that the design principles are followed, by injecting new ideas,
new solutions, and new techniques into the project to improve its
productivity or the quality of the product, by coaching and mentoring
newcomers or more junior people.

2.4 Proactive, goal-oriented and committed

A software architecture team is not a committee, meeting every so often
to share ideas or discuss issues. It is not a review board, nor a think tank for
top management composed of selected staff technologists. It consists of a
small number of people fully committed to a very specific goal: designing an
architecture. A committee which meets two hours a week cannot design an
architecture. Software architects work at this full time. Only in some rare
cases can a member of the team split his or her time between more than one
activity. In particular, we think that the function of a software architect is

6 Jonathan Losk, cited in Rechtin 1991, p. 292

www.manaraa.com

The Software Architect 571

rarely compatible with that of project manager, except for very small
projects (eight people or less). We will address this point in another article.

Architects must be able to sustain a high degree of uncertainty and
ambiguity. Their work often consists of a long succession of suboptimal
choices, made in relative obscurity, i.e., without the luxury of examining all
alternatives and all ramifications of the choices. Many people with scientific
training- and this is aggravated by inexperience-cannot tolerate it for very
long and will tend to defer the decision-making to others.

3. THE ROLE AND PURPOSE OF THE
ARCHITECTURE TEAM

The architecture team share a common goal, or small set of goals . For the
team to remain focused and efficient, the goals must be clearly defined, both
to the architecture team and to their environment. This imposes the need to
define (for a given project) what software architecture is, what are its
boundaries, and in particular, what are the responsibilities and extent of
authority of the architecture team, how decisions are being delegated, how to
avoid "turf conflicts," and who is accountable.

One of the best ways to establish this, especially in environments where
the concept of software architecture is new, is to create and publish a charter
for the architecture team. Section 3.1 is a template we have successfully used
on several projects, with small variations.7

3.1 The charter of a software architecture team

The software architecture team is responsible for evolving and
maintaining the vision of the "name your project" software architecture.

The main activities of the software architecture team are:
- Defining the architecture of the software

Maintaining the architectural integrity of the software
Assessing technical risks related to the software design
Proposing the order and contents of the successive iterations and assisting
in their planning
Consulting services to various design, implementation, and integration
teams

- Assisting marketing in future product definition

7 This text was pinned on the wall near my office at Hughes Aircraft of Canada during most
of my time as the lead software architect for the Canadian Automated Air Traffic System.

www.manaraa.com

572 Philippe Kruchten

The main deliverables from the software architecture team are documents:
a software architecture document, some elements of software design
documents, design and programming guidelines, iteration contents, meeting
and review minutes and design audits of the running system.

3.1.1 Defining the architecture

The architecture of the software is the general framework in which all
software design is performed. The architecture defines the major design
elements, the way they are organised, structured, the way they interact, and
the way they are to be used.

To ensure that the architecture will meet the needs of the various parts of
the software and the external requirements, the architecture team works in
close relationship with the various "domain" development teams, and the
system architecture team. The architects' view is one of breadth, whereas the
domain designers' is that of depth.

3.1.2 Maintaining architectural integrity

The architecture team is responsible for the development and maintenance
of design and programming guidelines. The architecture team is involved in
the organisation of design and code reviews to ensure that those guidelines
are being followed, or to make them evolve as necessary. It plays a major
role in the organisation of end-of-iteration "post-mortem" reviews.

All changes to major interfaces and all explicit violations of a design or
programming rule must be approved by the architecture team. The
architecture team is the final arbiter in matters of software aesthetics.

Finally, the software architecture team is involved in "change control
board" decisions to resolve problems that have an impact on the software
architecture or some critical interface.

3.1.3 Assessing technical risks

The architecture teams maintain a list of perceived technical software
related risks. The team may propose exploratory studies or prototypes to
investigate the feasibility of a technical solution before inserting it in the
architecture.

3.1.4 Proposing contents of iterations

The architecture team proposes the technical contents and the order of
successive iterations by selecting a certain number of scenarios and a certain

www.manaraa.com

The Software Architect 573

number of common mechanisms (services) to be studied and implemented.
This technical proposal is completed and refined by the various development
teams based on available personnel or customer requirements in terms of
deliverables, availability of tools and COTS products, or needs of other
projects. The architecture team then helps the various development teams
with the transition from the architectural-level design to the more detailed
design.

3.1.5 Consulting services

Because of their thorough understanding of the entire system, members of
the software architecture team can provide assistance to various development
teams as a floating resource for a given study, or, when needed, to help keep
the project on schedule, or as "coaches" because of their specific skills or
knowledge.

3.1.6 Product definition

In the context of a line-of-business of Widgets, the software
architecture team provides some assistance in the definition of future
products. It can help the marketing team with the prospective customer's
requirement analysis, and during the study of the impact of a new product,
shelter the development teams from too much disruption. Although it is not
their main objective, the software architects play a major role in the project
as facilitator or arbiter between the various product teams because of their
various functions.

The software architecture team is accountable to the project manager. Its
work is reviewed by the project technical staff, and a selection of senior
software designers from the other product design teams. Project management
can also evaluate the architects' contributions to the product by auditing their
input in the final running system.

4. A TEAM AMONG OTHER TEAMS

Where do you hook an architecture team in your "organisation chart"? A
software architecture team is a team of software designers and developers
which should be organised no differently than any other software
development team. It just happens that they are focused on different levels of
abstraction or granularity, and may, on the average, be more experienced
than others. But it would be a mistake to separate them, either in terms of the

www.manaraa.com

574 Philippe Kruchten

reporting structure or geographically, from the other software development
groups they are supposed to interact with on a daily basis.

Being on the software architecture team is not a honorific position, nor a
sinecure, it is not a staff position, nor a research job. Its schedule is tied to
that of the other teams, which are its main customers. It reports to the same
project manager.

One way to picture this is to consider the software architecture team as
playing a symmetrical role to that of an integration and test team-the
architecture team precedes the development teams, scouting the terrain,
drafting the design, while the integration team follows, collecting debris and
the wounded. In some circumstances we have called this the "engine, box
cars, and caboose" model. The software architecture team is the engine
pulling the train, the box-cars are the 'softcrafters' who are very good in one
specific domain; and the integration team is the caboose, getting the pieces
of software and making sure they can be integrated in a continuous manner.
Note again that software architecture is not project management.

Engine

Software

Integration
Team

a boose

Software Development Management

Software Team D

Figure 2. The engine and caboose model

This does not preclude a large company or organisation from having
some R&D activity related to software architecture, nor some staff-level
working group that overlooks the overall practice of software architecture

www.manaraa.com

The Software Architect 575

across projects, but we are describing the software architecture team of a
given project.

Some large organisations have set up two levels of software architecture
activity:
- one group at the corporate level, whose purpose is to capture and diffuse

the best practice in that area, or to oversee large-scale architectural reuse,
and

- architecture teams closely associated to actual projects,
with some circulation of individuals from one group to another (cf. Fig. 3)

Leverage your skill at the corporate
level; broaden your views; review
other architectures.

Leverage your vast and dual
experience in an architecture
team

Corporate Architecture
Group

Project X architecture
team

Project V Development
group

Figure 3. Recycling software architects

4.1 Size of the team

Become a software
architect again on a
real project

Go and learn new
skills in a
development group

There is no simple absolute answer to this question. However, we will
share a rule of thumb we have used which seems to correspond to the few
data points we know from successful architecture teams that have been in
place for years.

For a new, large, unprecedented project, one software developer out of 10
is on the architecture team during the inception and elaboration phase when
architectural design is the preponderant activity. Then this can be reduced to
one out of 12 or 15 as the project moves into the construction phase or
during evolution cycles.

What happens to the disappearing architects? It is likely that the overall
software development organisation will grow during the construction phase,
hence the ratio is reduced. Also some of the software architects of the initial
team can become technical leads for the various development groups. This
evolution is beneficial from several aspects: since they have been part of the
initial architecture team, they play a positive role in communicating the
architecture and its principles to various parts of the project, or conversely,
they bring new issues and difficulties to the attention of their former team-

www.manaraa.com

576 Philippe Kruchten

mates, with whom they had developed "high bandwidth communication
links." In a large project, they play the role of "remote sensors" for the core
architecture team, thereby contributing to maintaining the system's integrity.
As a result, the evolution of the architecture through the latter phases of
development can be smoother, based less on adversarial or conflicting
relations between an architecture team and relatively foreign development
teams.

Continuity is a key aspect. Eb Rechtin pleads for the architect to remain
in charge until the project is delivered to the customer, whereas management
may be tempted to "recycle" an architecture team to work on a new project
as soon as the architecture of the current project is deemed "complete", i.e.,
at or soon after the end of the elaboration phase. The right balance is
probably half way: keep enough architects on the project to guarantee the
architectural integrity and to make any changes and improvements to drive it
to a successful conclusion. This is where a team of architects offers more
flexibility than a single architect.

4.2 System architecture and software architecture

In organisations that develop and integrate systems (composed of
hardware and software, sometimes with all kinds of other devices), usually
there is a strong system architecture function. Is software architecture just
part of it? We have found that software issues are sufficiently distinct from
system issues, and that the skill set of a software architect is significantly
different from the other specialities present in the system architecture group
to warrant the creation of a well-defined separate group to deal with software
within the system architecture group.

However, software is more often the central issue, as hardware becomes
more and more of a commodity, and the system architecture and software
architecture functions tend to merge into a single entity.

5. TRAPS AND PITFALLS

Even when all of the pre-conditions are met, software architecture teams
still fail. Over a large range of projects, Rational consultants have seen and
analysed some of the reasons for these failures. We addressed some of them
indirectly already such as
- Inexperience.
- Lack of domain experience
- Lack of software development experience
- Architecture team acts as a committee

www.manaraa.com

The Software Architect 577

Other reasons why the architecture fails to meet the needs of the software
developers are:
- Undefined authority, undefined responsibilities
- Architecture team works in an "ivory tower"
- Not focused on design
- Imbalance in the team composition
- Procrastination
Let us examine some of these traps and how to avoid them.

5.1 Lack of authority

Another story to illustrate the importance of authority.

A complex telecommunication system started without much of a software
architecture. After some time, an architecture team of talented people was
created. But the group leaders of the development organisation-the
"barons" as the architects called them-took this innovation as a serious
challenge to their position and authority. Therefore they ignored
whatever was corning out of the software architecture effort, protected
what had been their "turf' for a couple of years now and blocked most of
the communication between developers. Things did not progress well, the
architects became tired and disillusioned and management-unfamiliar
with the concept of a software architecture team-did not provide much
support. The architects then left the company one after another. The
"barons" had won, but the project was now two years late, and still
without much of an architecture.

Defining the exact extent of the architects' authority is even more important
when a consultant or an external organisation is fulfilling this role.

5.2 Ivory tower

We met the software architecture team of the large multinational
company in various public events, and liked their views on software
architecture. A few months later, we were called to help one of their
divisions and we referred to the company's architecture group. The division
management had never heard of the group.

There are other simpler ways of developing the ivory tower syndrome:
- Put the team in another building
- Present software architecture as some kind of sinecure for ageing, or

weary designers
The best way to avoid this is to communicate, communicate,

communicate. The architecture team, especially when recently created, must

www.manaraa.com

578 Philippe Kruchten

make its actlVlty visible by publishing a partial draft of a software
architecture document, designing notes, and inviting other people to
contribute or review. Every week they should be interacting with the rest of
the development organisation.

5.3 Imbalance

An unbalanced software architecture team may have difficulties
producing a complete and balanced architecture. A lack of understanding of
the domain may lead to an architecture that solves computer science
problems only; the same is true if the speciality or main field of interest or
experience of the architecture team dominates.

On a project that had no clearly defined software architecture team, we
were trying to find out what the architecture of the system was in order to
assess it. Interviewing various groups, we got four totally different
'architectures', each group claiming that it was in its charter to define the
architecture (cf. Fig. 4).

OSI OSI

u

Figure 4. Four specialities, four architectures

1. The telecommunications specialists told us that the main characteristic of
the system was its distribution over a vast wide-area network, and that
the telecommunication aspect was driving everything. They described
OSI protocol stacks, and mentioned some 'code' to be developed as
application services elements, hooked at OSI layer six and above.

2. The data engineering leader described the system as one huge database
(with impressive E-R diagrams to support this) described the commercial
database at the core of the system, and how everything could be managed

www.manaraa.com

The Software Architect 579

by the database, networking, computer-human interface, with only a few
algorithms that would have to be programmed in some other language
than SQL.

3. The Computer-Human Interface group had done some in-depth study of
ergonomic issues, and claimed that the single biggest differentiator
between the system under development and its predecessor was in the
Graphical User Interface. They spoke about X servers and clients,
revolutionary widgets and gadgets, as well as new peripherals.

4. Finally, the systems engineers had a view entirely centred on the
computers and the networks. Software was only a strange ingredient you
sprinkle on top of the boxes, once you have defined them.

It was hard to believe that they spoke about the same system. Moreover, they
were not very concerned about the lack of architecture. Each group had
enough to satisfy its concerns in terms of architecture as they defined it.

Morale: find people who have broad experience. Learn about the fields
that are under-represented. Eventually bring in specialists to consult with the
architecture team.

5.4 Confusing a tool and the architecture

This story also illustrates another danger, which is to acquire a tool or a
component that plays a major role in the architecture, and then being led to
believe that the architectural design is done-that the tool has defined the
architecture.

Vendors of certain major products, especially databases or GUI, would
like you to believe that they provide a complete architecture so that once you
have bought their product your architectural design is done, that everything
will gravitate around their product.

5.5 Procrastination

Attendre d'en savoir assez pour agir en toute lurniere, c'est se condamner
a !'inaction. Waiting to know enough to act in full light is to condemn
oneself to permanent inaction. Jean Rostand, French biologist

Procrastination is the worse trap of all; it is insidious, and the best teams
can easily fall in it. We have already written that the practice of software
architecture is a long and rapid succession of suboptimal tactical decisions,
mostly made in partial light. There is a great tendency (especially with
people who have scientific training) to want to analyse more, find more
options, go further down the paths in order to make the "right" choice, the
optimal choice. This slowly kills the project. When decisions are not made,
other teams cannot make any progress, or their progress is in jeopardy. They

www.manaraa.com

580 Philippe Kruchten

will sit on their hands, waiting for the architects to decide or lose confidence
in the architects and make their own decisions.

A project was selecting a tool set to build one of its major components
its graphical user interface (GUI). Several candidate tools were studied:
each had its advantages and disadvantages, none was a perfect match.
The team delayed the choice, hoping for a better product to appear or for
one of the three products to make some significant progress. Meanwhile,
the development organisation in charge of the Computer-Human
Interface could not make any progress as too much of its work was held
back by the lack of tools. Then some hardware choices were not made,
because of the lack of understanding of the consequences on the
software. It came to a point where the whole project started to suffer
significantly because a choice was not being made. The differences
between the various GUI products were minimal. Drawing the winner out
of a hat would have been better than waiting. But this was not rational.
More requests for proposal were issued, more evaluation copies bought,
more studies commissioned to establish more criteria for the choice and
so on. The sad conclusion of this story is that the final choice was made
outside of this team, on a purely political basis, with no consideration
whatsoever for any of the technical arguments.

We have found that, in many respects, it is better to make a decision now, in
the dark, explaining clearly that it was made with little knowledge of the
consequences, rather than suspend a whole project for weeks. Then it is up to
the architects watch in the following weeks and months to see if the decision
brings more trouble or solutions. If it really becomes a problem, then do not
hesitate for one minute: change it. Do not compromise or tergiversate, be
very decisive. But do not leave a known evil for another that you do not
know, yet. You have put the development back on track. Explore your
alternatives, including the cost of changing tracks.

Le courage consiste a savoir choisir le moindre mal, si affreux qu'il soit
encore. Courage is knowing how to choose the lesser evil, as awful as it
still is. Stendhal

Do not become too focused on the technical optimality of the solution;
there is rarely an optimum when taking into account all factors, cost and
schedule included. The relative advantages of this or that solution are often
minor, and are not enough to justify important delays.

This ability to rapidly make tactical decisions and live with the associated
anxiety is one of the elements that distinguishes the software architect from
other software developers. It takes a while to get used to it. Some people
never do it, and will always hide behind an architect that has more courage

www.manaraa.com

The Software Architect 581

than themselves. The life of a software architect is a long and sometimes
painful succession of suboptimal decisions taken partly in the dark.

Finally, it is very hard to eradicate the idea that software development is
not a linear process: it proceeds by trying out ideas to validate them.
Therefore, it is OK to start coding things before extensively studying every
detail on paper. It is also better to make a choice now (even though it may be
the wrong one) and discover early in the project that it is wrong, than to wait
forever for the ideal, complete, perfect answer to fall from the sky.

Architects can act as the "conscience" of the products. When
management appears to be procrastinating on key issues affecting the
product, the architects need to prod them to get the decisions made early.
Architects also need to tell management the bad news, including negative
results and failed prototypes, early enough so that adjustments can be made.

6. THE PERSONALITY OF THE ARCHITECT

Is there a certain psychological profile that suits the role of the software
architect? Maybe. Based on original ideas of the Swiss psychologist Carl
Jung, American psychologists Isabel Myers and David Kersey developed, in
the 50's and the 60's, a classification of personalities which has had some
success in corporations throughout North America, most notably under the
label "Myers-Briggs Type Indicator." They developed psychological tests to
classify individuals according to four major traits:
1. Extroversion (E) versus Introversion (D
2. Sensation (S) versus Intuition (N)
3. Thinking (T) versus Feeling (F)
4. Perceiving (P) versus Judging (J).

Although these four characteristics are not binary, but rather a scale--one
can be extroverted to some degree-one may classify individuals in 16
"bins" of irregular size, labelling each bin with the letters indicated above:
ESTP, ISFJ, etc. The type ESTP would therefore describe a person whose
personality leans towards Extroversion, preferring Sensation over Intuition,
relying on Thinking more than on Feeling and using Perceiving rather than
Judging. Over three decades psychologists studied common characteristics
of each of the 16 groups of individuals, notably how they fit in their working
environment. They refined the model to introduce "mixed types," taking into
account the traits where the test does not clearly lean towards a letter or
another, marking this with the letter X, such as EXTP for someone who
would be in between ESTP and ENTP.

All this preamble is to tell you that it seems that good software architects
are found among the INTJ or INTP types. Not much surprise about the 'I':

www.manaraa.com

582 Philippe Kruchten

most people in scientific or technological fields are introverted. The NT part
is the Promethean temperament: the 12% of the population who loves
intelligence, power over nature, competence, skills, and their work. NT types
like to be liked for their ideas. When in a leadership position, they are
visionary leaders. They do not like routine. They are the vectors of change.

David Keirsey nicknames the INTP the "Architect", the "Abstractionist".
Abstract design is their forte and coherence is the primary issue. They are
curious, rational, and theoretical. The world exists to be understood. They
are the logicians, the philosophers of systems. They exhibit a great precision
in thought and language. They easily detect contradictions and flaws . But
they can also become obsessed with analysis or the gathering of more data.

Keirsey nicknames the INTJ the "Scientist." INTJs are the most self
confident of all 16 types, with a great awareness of their own power.
Authority or slogans have little impact on them, unless it makes sense. They
can easily make decisions, bringing issues to closure. Unlike the INTPs, they
need only to have a vague, intuitive impression of the unexpressed logic of a
system to continue surely on their way. They rapidly discard theories that
cannot be made to work. They are better at generalising, classifying and
demonstrating than INTPs. They are less likely to procrastinate.

Although we do have some very limited evidence that successful
architecture teams are primarily composed of INTJ and INTP, other types
are useful to achieve a good balance as the team grows: for example an
ISTJ-the highly dependable "trustee"-would keep track of things in a
large project. While some extroverted types could improve communication.
Thus, we would satisfy one of Katzenbach and Smith's axioms for a team: a
blend of technical and functional skills, problem-solving and decision
making skills, and interpersonal skills. The bad news is that INTJs and
INTPs represent only 2% of the general population. After selecting people
based on their expertise, you may not have much latitude left, unless you are
in a big company with deep pockets.

7. SUMMARY

- Designate a software architect, or assemble a small team of software
architects who share a common goal or vision of the product.

- The software architecture team must be experienced in both the problem
domain and software development.

- Software architects should be fully dedicated to their task; in particular,
the role of software architect is usually not compatible with that of
project manager.

- The architect(s) and the project manager are joined at the hip.

www.manaraa.com

The Software Architect

Establish a charter of the software architecture team which clearly
defines its role and responsibilities, and establishes its authority.
Do not isolate the software architecture team-it is a software
development group among other software development groups.
Common pitfalls for a software architecture team include: lack of
experience, undefined authority or isolation, an unbalanced mix of
technical skills, lack of focus on the design, and procrastination.

REFERENCES AND FURTHER READING

Grady Booch, Object Solutions, Addison-Wesley, Menlo Park, CA, 1996.

583

Frederick P. Brooks, Jr., The Mythical Man-Month-Essays on Software Engineering, 2nd
edition, Addison-Wesley, Reading MA, 1995.

Carl Jung, Psychological Types , Harcourt Brace, New York, 1923.
Jon R. Katzenbach and Douglas K. Smith, The Wisdom of Teams, Harper Business, New

York NY, 1993. They give good examples from business cases of good, great, and not-so
good teams. Then they extract from their examples the underlying principles of what
makes teams tick and become "high performance organisations".

David Keirsey and Marilyn Bates, Please Understand Me-Character and Temperament
Types, Prometheus Nemesis Book Co., Del Mar, CA, 1984. A very practical and easy-to
read explanation of the Myers-Briggs classification, and its use in everyday life, at work
and elsewhere.

John A. Mills, "A Pragmatic View of the System Architect," Comm. ACM, 28 (7), July 1985,
pp. 708-717. In this very lively paper, Mills describes the roles of the system architect: "A
whole-system designer, fire-fighter, mediator, and jack-of-all-trades, the system architect
brings unity and continuity to a development project-offsetting the inevitable
compartmentalisation of modem modular designs." He depicts three slightly different
organisations each with a system architect or a team of system architects. He also justifies
the necessity of a central architectural function when a project reaches a certain critical
mass, so that the number of one-to-one communication links between the various
development groups is reduced.

Isabel Myers, Manual: The Myers-Briggs Type Indicator, Consulting Psychologists Press,
Palo Alto, CA, 1962. She describes the 16 types and the associated assessment procedure.

Eberhardt Rechtin, Systems Architecting: Creating and Building Complex Systems, Prentice
Hall, Englewood Cliffs NJ, 1991. Chapter 14 (p.289-293) describes the profile of a system
architect, as does the following paper.

Eberhardt Rechtin, 'The Systems Architect: Specialty, Role and Responsibility," Proceedings
of NCOSE, 1994.

Mary Shaw & David Garlan, Software Architecture: Perspectives on an Emerging Discipline,
Prentice-Hall, 1996. Chapter 9 speaks about the Education of Software Architects and
describes the course being taught at CMU.

www.manaraa.com

Aspect Design with the Building Block Method

Jtirgen K. Miiller
Philips Research Laboratories, Prof Holstlaan 4 (WLp), NL - 5656 AA Eindhoven
mueller@ nat lab. research. com

Key words: Software architecture, software component, object-oriented modelling,
function-oriented modelling, design method

Abstract: Aspects are a way to supplement object-oriented modelling with function
oriented modelling. The Building Block Method (BBM) identifies 3
dimensions of independent design. Besides an object dimension and a process
dimension also an aspect dimension is present. Object design, process design
and function design are done independently. Building Blocks (BB), which are
software components, cluster functionality according to criteria such as
configurability in a product family and incremental system integration. The
BBM is used to design families of telecommunication infrastructure, digital
broadcasting and medical imaging systems. The paper introduces the concept
of aspects and shows how they are identified and used in the BBM.

1. INTRODUCTION

Today's electronic systems implement more and more of their
functionality in software. The flexibility of software and the price erosion of
standard computing hardware further this trend. Despite all kinds of
modularity in hardware and software, the integrating system characteristics
of the larger systems are always implemented in software. These
architectural software structures are much harder to change than more local
hardware and software parts. The continuous evolutionary development
requires that software and hardware needs to be changed and extended in a
piecemeal way. To enable this the basic architectural structures must be
designed to do this with moderate effort.

www.manaraa.com

586 Jiirgen K. Muller

The use of object-oriented modelling has advanced the conceptual level
of implementations as consisting of a network of objects. For small and
medium size systems this may be enough. Large systems, however, easily
become monolithic, i.e., an unmanageable web of objects. They therefore
need more modularity and more locality of changes in an evolutionary
development situation. Object-oriented concepts should be complemented by
other concepts from other modelling techniques, for example functional
modelling. The goal is to create systems that are modelled naturally for their
application domain [10]. BB aspect design is a means to cope with this
problem.

The next section gives an introduction to the BBM. Section 3 defines
software aspects and shows by means of examples how software aspects are
derived from a system level perspective. Software aspects are an important
means to relate software functionality to the overall system functionality.
Section 4 and 5 look at the consequences for components and component
based development. Section 6 compares the aspects in the BBM with other
approaches.

2. OVERVIEW OF THE BBM

The BBM is a component based [18] design method for the development
of the software for central controllers of embedded systems. These central
controllers integrate, control, and manage the overall system. They are points
of great complexity.

Many of the concepts that we will present can (or better, should) be used
for all of the software of an embedded system; in fact they are useful in the
structuring of any large software system. However, we focus on the specific
problem of central controllers to be able to reason very specifically, which
would be more difficult if we dealt with software systems in general [9].
Furthermore, the basic ingredients of the method presented have been tried
out successfully in the design of these central controllers.

Experiences with the method stem from the development of systems in
the telecommunications, video broadcasting and medical imaging domain.
The most complete overview of the BBM can be found in [12] . Some
quantitative figures are given in [16].

The method presented is designed to support the creation of product
family architectures [4] . Composing a product from pre-manufactured
components is how software reuse in a product family architecture is
achieved [13]. The product management requirements of short lead time,
low development effort, and high quality products have been translated into
the architectural requirements of conceptual integrity, managed complexity,

www.manaraa.com

Aspect Design with the Building Block Method 587

delta development, extensibility, reusability, configurability, and testability
[12]. These requirements have been taken as the main ones to be achieved in
a system architecture constructed via our method.

However, it is clear that architecture can only lay a good foundation on
which the system is built. A good product needs more than just a good
architecture. Errors can be made at all levels of system development:
requirements, architecture, detailed design, implementation, deployment,
documentation, to name the most important ones. In the next section we take
a look at the architectural meta-model (AM-M) of the BBM.

2.1 The AM-M of the building block method

Traditionally the description of an architecture and its models have been
very much dependent on the persons presenting them. Depending on the
major problems to be solved by the architecture, or the personal preferences
of the persons involved, structures like hardware boundaries, modules,
processes or state machines have been presented as the architecture.

However, experiences from different projects show that besides the
specific nature of a product the architecture had to address a number of
common problems. These problems are, for example, the units in which a
software system is broken down, composed and evolved; or the way in
which processing resources are to be used by the application. The solutions
to those problems are part of an architecture.

Different methods define different things to be part of an architecture.
We call those parts of an architecture that are required by a method the
architectural meta-model of a method.

The architectural meta-model of the BBM consists of
- a logical model,
- the building block design dimensions (BBDD), and
- components, the so-called building blocks (BB).

We explain the AM-M of the BBM in the rest of this section.

2.1.1 Logical model

The logical model is the model of the functionality of the systems to be
built. It describes the externally observable (and the made-known internal)
functionality . The language used is the one of the customer (or user) and of
the product managers. The intention of the model is to precisely describe
- the "what" of the system.
- the environment of the system, e.g., to which interfaces it has to comply.
- other conditions for the system.

The "how" of the implementation is left to design.

www.manaraa.com

588 Jiirgen K. Muller

2.1.1.1 Modelling language and domain modelling
A lot of different modelling languages have been proposed. Examples

include data flow diagrams, entity-relationship diagrams, state machines,
object-oriented modelling. However, no standard has yet evolved, and it is
questionable if that will ever happen.

If you look at a very mature domain, say cars, a lot of domain-specific
objects are used to describe and compare cars. Also new cars are described
in terms of the attributes of domain objects, e.g., the number of cylinders of
the motor and its horse power, the type of gearbox, the interior design, its
maximum speed, etc. In a new domain a description of a product uses many
more functions of that product than attributes of domain objects. The objects
are still a matter of design.

However, in many domains object-oriented modelling will be the
modelling language of choice. The most prominent one is the Unified
Modelling Language UML [6]. There are many methods to develop such an
00 model.

As a domain matures and companies want to cover a complete
application domain with their products the focus of the logical model
changes. Being initially the model of the functionality of a product, the
logical model is used to describe a complete application domain (together
with a selection list for each specific product).

The BBM does not use a specific modelling language nor a specific
method to develop such a logical model. It assumes that one exists and takes
it as basis for the further architectural design.

2.1.2 Design dimensions

The idea of dimensional structuring is introduced to support intellectual
control of system functionality. If common concepts or structures that apply
to the same item can be separated such that there are no mutual restrictions,
the concepts or structures are orthogonal; we can talk about design
dimensions. Thus, design can be carried out independently for every
dimension. Each item in the design space can be reduced (projected) to one
specific dimension. The BBM identifies 3 design dimensions that will be
motivated below. Of course functionality of the 3 dimensions has to be
related. Design guidelines for each dimension and for relating the 3 are
given. However, the BBM views every such relation as a design decision.

The first point is to separate object structuring from the use of execution
units. Objects stem from the modelling of domain functionality. Execution
units determine the use of processing resources for independent, co
operating and/or sequential actions. The designer should be free to do the
process design without consequences for the object design. They build two

www.manaraa.com

Aspect Design with the Building Block Method 589

orthogonal dimensions, i.e., a method of an object may be driven by one or
more processes and a process may drive methods from different objects.

The second point is to introduce functional structuring in addition to
object-based structuring. Those global functions that deal with potentially all
objects (i.e., they cross-cut objects) are handled as aspects. Thus each object
method in the system is part of an object and part of an aspect.

The BBM combines these two points, which leads to three design
dimensions: the object dimension, the aspect dimension, and the process
dimension (figure 1).

Aspect

Figure 1. Design dimensions

In the BBM, an object method is defined to be the minimal block of
functionality. This corresponds to a point in the design space. The first
dimension is the object dimension, which covers the decomposition of the
system into data units with their access procedures. The second dimension is
according to aspects. Each aspect deals with a specific view of the
functionality of the systems, such as recovery, configuration management,
fault handling, etc. The whole system functionality is partitioned by the set
of aspects. The third dimension is the process dimension, viz. the whole
system is driven by a set of processes. The guidelines to identify and define
objects and processes are not the subject of this paper.

The consequence is that design for each dimension can be made
independent of the other two, which gives the freedom to make a design that
is best suited for the application. The structuring in the design dimensions is
a structuring at the meta-level of the system.

2.1.2.1 System evolution and design dimensions
With respect to system evolution, the aspect dimension is not handled in

the same way as the object dimension. We assume that a system is primarily
modelled using objects. For most application areas this gives the most stable
modelling. The most common extensions of the system are via extended
objects and new objects (i.e., there exists a locality of change).

The two design dimensions, object and aspect, are a specific union of
object-oriented and functional modelling. Aspects are seen as a secondary

www.manaraa.com

590 Jurgen K. Muller

form of modelling. They are functions that cross-cut all or most objects. To
achieve stable software structures aspects should be standardised for a
complete product family. Adding a new aspect affects all related objects.

Process design starts by looking for independence of objects. But for
most systems we assume that a situation is aimed for where the structure of
independent execution units is standardised, either in specific classes or in
some rules that guide the creation of classes and instances (see Gomaa [7]).
Without such rules the understanding of a large evolving system is very
difficult.

Because of the above-described situation, that aspects and processes
should be stable, we say that the evolution of the system is mainly in the
object dimension.

2.1.3 Components

Components are deployment units that are identified in the architectural
phase [18]. This means that they are present during all of the development
phases. They are called Building Blocks (BB). They are the main focus of
the BBM. An architecture identifies the BBs. A specific product is built out
of BBs. This means that a BB has a specific representation in all the phases.

There are two important points for BBs: what is the content of a BB and
what are the relations between BBs? Through the design dimensions the
functionality of a complete system is designed. A BB usually consists a
collection of objects. It does usually not contain complete processes or
aspects. The set of BBs covers the complete functionality in a non
overlapping way. There are certain criteria for identifying BBs; the main one
is configurability. These criteria may also influence the design along the 3
design dimensions. A design process evolves typically in several steps until
stability is reached.

A system architecture has to define inter- and intra-BB structures.
Aspects are used for intra-BB structuring (see below). lnter-BB structures
are defined via the concepts of layers, subsystems, classification of BBs, and
a skeleton.

The include relations of all BBs form a partial order. Each BB resides in
a layer [3] and can only use BBs in strictly lower layers. During the
initialisation phase a BB in a higher layer binds itself to a BB in a lower
layer (post-load linking). Through this binding BBs in a higher layer
establish call-back procedures at lower-layer BBs. This guarantees that on
the syntactic level no mutual relation exists. Design rules exist that avoid
that on the semantic level.

BBs are classified into generic and specific BBs. Generic BBs implement
the generic part of some functionality. Specific BBs implement the delta part

www.manaraa.com

Aspect Design with the Building Block Method 591

of that functionality. The classification in generic and specific functionality
is a relative one. A BB is generic or specific with respect to a specific
functionality. A BB can be generic and specific with respect to several
functionalities. Examples of infrastructure functionality are a device driver
abstraction vs. specific device drivers, a BB implementing a fault handling
concept vs. those implementing specific faults, etc. One generic BB has
usually several specific BBs. A generic BB is always located in a lower layer
than a specific BB, i.e., a specific BBs uses functionality of the generic BB.

Several layers of BBs can be grouped into subsystems [5]. Subsystems
follow the rules for layers: subsystems are stacked above each other. To
allow configurability even in lower subsystems some of the BBs have only
"requires" interfaces, i.e., their functionality is only accessed via call-back
interfaces. They can be added and removed without syntactical
consequences for BBs in higher subsystems. Subsystem access generics
connect functionality from higher subsystems with those configurable BBs.

3. SOFTWARE ASPECTS

Software aspects are global functions that cross-cut domain objects. To
identify aspects we have to look at a functional structuring of the application
domain. Relating these functional structures to the identified objects can lead
to 3 cases:
1. a function has relations to, and/or defines functionality of, a few objects

only,
2. a function is to be used by almost all objects,
3. a function defines the functionality of almost all objects.

In the first case the function will be handled as (part of) some functional
object of the object dimension. In the second case the function will also be
handled as a functional object of the object dimension but will be part of the
system infrastructure. In the third case the function will be an aspect. Such a
function cross-cuts objects. Aspects are a non-hierarchical, potentially
complete, functional decomposition of software functionality. The list of
aspects should be anchored in the application domain and be defined for a
complete product family.

The decision to model such a function as aspect or not depends on the
required functionality. Let us take the function of access control as an
example. If access control is to be done whenever a user wants to enter a
system and, if access is granted, the user is free to use all functionality,
access control can be localised as an "access control object" that implements
all required functionality. On the other hand, if access control should be
more sophisticated depending on users and user groups that have certain

www.manaraa.com

592 Jiirgen K. Muller

rights at certain times, the functionality may logically belong to the
application objects. A design may use access control lists and a state model
for each object to decide if access is granted. Access control could be
defined as an aspect of all objects. An implementation could be split into a
generic access control object that implements all common functionality,
while any other object has to implement its specific access control
functionality. The generic component would be part of the system
infrastructure. This example shows how the second and third case of
function object relations can sometimes be related. A file system is a simple
case of such a system where access rights are located with the files while the
processing of the access rights is handled in the "file handling object."

To identify aspects we have to look at the functionality from a system
perspective. We give several examples of ways to look at system
functionality . Some are general, while others stem from specific domains.
From these views we derive system aspects. In a further step, ways to derive
software aspects from system aspects are described. The identification of
aspects has to be done for a specific domain, as it is with objects.

views upon systems

system aspects

software aspects

Figure 2. Deriving software aspects

3.1 Aspects of system design

System design is a multi-stakeholder and multi-disciplinary task. Besides
the functional requirements of the system, non-functional requirements of
the customer and the developing organisation have to be met. These different
views of a system' s functionality constitute the concerns of system design.
An architect has to take all these concerns into consideration.

In the following, four different sets of views of a system are presented.
They are from different contexts and we do not discuss their pros and cons;
they are used as a starting point for the definition of software aspects. In a
first step, however, we classify these views according to whether they are
directly relevant for system implementation or whether they only shape the
context of system implementation. We call views that directly influence
system implementation system aspects (figure 2).

www.manaraa.com

Aspect Design with the Building Block Method 593

3.1.1 Functional and non-functional requirements

Requirements are often classified into functional and non-functional
requirements. The intention of this classification is to emphasise the fact that
besides functional characteristics many more qualities are expected from a
well-designed system. Depending on the system and also the customers,
system attributes such as performance, safety, technology choices,
testability, reuse, portability, use of standards, etc., are part of the customer
requirements or not. A customer can specify these requirements either not at
all, partially, or fully. Implicit system attributes that are expected to be
present in all systems of a certain class in a specific market segment have to
be added. A development organisation will add requirements because of
internal benefits or consistency. Therefore the classification into functional
and non-functional requirements is, in general, somewhat vague. It cannot
directly be used to guide a design. System aspects cover functional and non
functional behaviour.

3.1.2 System quality attributes

Quality attributes are another view upon the system. Bass et al. [1]
classify system qualities in 4 classes:
1. business qualities, such as time to market, cost, projected lifetime of the

system, targeted market, roll-out schedule, extensive use of legacy
systems

2. quality attributes discernible at run time, such as performance, security,
availability, functionality, usability

3. quality attributes not discernible at runtime, such as modifiability,
portability, reusability, integrability, testability

4. intrinsic architecture qualities, such as conceptual integrity, correctness
and completeness, buildability
These qualities are intended to guide the process of architecting a system.

Business qualities determine the context of system implementation. Quality
attributes discernible at runtime and those not discernible at runtime are
system aspects. Intrinsic architecture qualities guide the process of making
an architecture but do not directly influence system implementation.

3.1.3 Architectural concerns

G. Muller made a list of architectural concerns [14] for the design of
medical imaging systems. He made the point that the system architect has to
take all these concerns into consideration (i.e., know the specific

www.manaraa.com

594 Jurgen K. Muller

requirements, communicate with the respective stakeholders, judge on the
relative importance, etc.). The architectural concerns are:
- application requirements *,
- functional behaviour *,
- typical load *,

resource usage (CPU, memory, disk, network, etc.)*,
installation, configuration, customisation, etc. *,
factory and field testability *,
configuration management (technical and commercial) *,
safety, hazard analysis*,

- security *,
- image quality *,
- functional chain specifications (print, store, etc.)*,
- interoperability, other systems, selected partners, other vendors *,
- interfacing to other applications *,

technology choices (software, hardware, computer, dedicated digital,
make/buy),
selection and use of mechanisms,
module design, process design, function allocation (method, file,
component, package)*,
information model: world standardisation, PMS standardisation, PMG
standardisation, application specific *,
test strategy, harnesses, suites, regression,
verification *,

- performance, throughput, response *,
- re-use consequences, provisions; development process impact;

organisational impact; business impact,
assessment of strong and weak aspects, road map for all views,

- system engineering (cables, cabinets, environment, etc.),
- cost structure (material, production, initial, maintenance, installation),
- logistics, purchasing (long lead items, vulnerability, second sourcing).

These architectural concerns are broad. They look at the system (to be
built), its development and use environments. A more restricted view is to
look only at system aspects. Architectural concerns that are system aspects
are denoted with an asterisk.

3.1.4 Operator oriented system aspects

In the area of telecommunication infrastructure, systems tasks and
procedures of operators have been classified. A system has to provide
interfaces and functionality to support an operator in his or her tasks. A
traditional classification distinguishes operation, maintenance, and

www.manaraa.com

Aspect Design with the Building Block Method 595

administration tasks; it is often abbreviated OMA. FCAPS is the
classification of the OSI system management functional areas (SMFAs) [8] .
The functions are divided into fault management, configuration
management, accounting management, performance management, and
security management. These operator oriented function classifications are
system aspects.

3.2 Mapping of system aspects to software

Software aspects are derived from system aspects. To do this we first
classify system aspects in those that directly specify functionality and those
that put constraints on how functionality is implemented. Operator oriented
system aspects specify functionality, while system aspects from the system
qualities constrain the implementation of functionality . System aspects from
the architectural concerns list fall in both classes. Some of them specify
functionality that is realised in software. The relation between system
aspects and software aspects can be described by the following mappings:
- not relevant for software (e.g., handled in hardware)
- mapped to functional unit (e.g., domain object, BB, subsystem)
- mapped to own software aspect
- mapped to shared software aspect
- distributed over several other software aspects and/or functional blocks

In the following, three examples are given to describe this process. As a
first example the aspect list of the tss system where the BBM has been
applied first is given. The second example describes the rationale of
mapping a system aspect. The third example gives a list of software aspects
derived from the architectural concerns list.

3.2.1 Example: tss software aspects

As an example we give the list of software aspects in the tss system [2].
- system management

The aspect system management deals with the external control of the
system. This may be a man-machine interface, including formatted
input and output, or a message-based coded interface.

- recovery
The aspect recovery deals with the proper initialisation of the system
during recovery time.

- configuration control
The aspect configuration control deals with the impact of changes in
the physical (hardware) and/or logical configuration; changes may have
been induced by failures or reconfigurations via system management.

www.manaraa.com

596 Jurgen K. Muller

- data replication
The aspect data replication deals with the replication of data across
processor boundaries. Configuration data of the controller are
replicated whenever a peripheral device requires a local copy of part of
the configuration data.

- test handling
The aspect test handling comprises built-in functions running
periodically, or being invoked on specific events, in order to detect and
identify internal or external hardware faults or corrupted data. Test
functions have no resulting event except to indicate a failure .

- error handling
The aspect error handling is entered when a failure occurs. The related
functions take the appropriate actions on a failure. This especially
includes damage confinement and fault localisation.

- diagnostics
Functions of the aspect diagnostics are invoked by
- test handling in order to detect faults in the sense of preventive

maintenance,
- error handling in order to localise hardware faults,
- configuration control in order to verify the repair or re-configuration

of physical or logical objects.
- performance observation

The aspect performance observation deals with the collection and
processing of data for statistical and quality measurement purposes.

- debugging
The aspect debugging covers the functions required to debug the on
line software in test-floor operation as well as filed operation.

- overload control
The aspect overload control implements the functionality to prevent the
system from being overloaded. During the overload situation the
system is still within the margins of the specified quality of service.

- operational
The aspect operational has a specific character. It represents the core
functional behaviour of the system, i.e., handling of calls.

3.2.2 Example mapping of system aspect reliability in tss

To illustrate a mapping of a more complex system aspect the
implementation of the system aspect reliability in the tss switching system is
given.

Reliability is realised in the following ways:
- not in software:

www.manaraa.com

Aspect Design with the Building Block Method 597

- the central processor is in a 1: 1 redundant configuration that operates
in cold stand-by mode

- for the 3 classes of peripheral cards the following holds:
- specific service cards are configured in load sharing or hot stand-

by for dynamically allocated resources
- the network of switching systems implements hot stand by of trunk

cards
- subscriber cards are not redundant

- software aspect man-machine interface: changes to the card
configuration, states of card and logical objects and parameters thereof
made by the operator have transaction semantics

- software aspect configuration: persistence of the configuration is realised
in a database

- software aspect error handling: fault management concepts are
implemented for card faults to hold the system in a consistent state

3.2.3 Example of a hypothetical system

As another example we present a possible definition of software aspects
for a hypothetical medical imaging system. The definition is based on the list
of system aspects given by G. Muller (see above). A system could have the
following list of aspects:
- operational (functionality to process medical images)
- initialisation and recovery
- pixel data communication
- control communication
- imaging information model
- configuration management
- safety and consistency checking
- user interfacing
- testing

These aspects represent functionality that is orthogonal to object
modelling. Another concern such as logistics may lead to the use of an
identification number for BBs. Comparable cases can be derived from other
concerns as well.

4. ASPECTS AND BUILDING BLOCKS

Most of the systems designed with the BBM have their features in the
object dimension. That means that most of the BBs contain one or more
objects completely. Therefore for each BB a standard substructuring has

www.manaraa.com

598 Jiirgen K. Muller

been defined: all aspects are present in each BB, even if some of the aspects
are empty for a BB (figure 3). Note that some of the aspects such as
debugging may require functionality to be present everywhere. This could
mean that a BB automatically has to implement that functionality.
Functionality for another aspect such as error handling is only present in
parts of the system where errors can occur (virtual fault absence on higher
layers).

IEJ --_EJ -J:J I BB
................ >,........ :-:=.<.::... ,..., ""' .,.

' ,, ,,..., ,,., ,' ,, , ,

EJ @] EJ-- EJ BB
,, '

,," ,............ x.......

I EJ-_:-EiTr Ei EJ> EJ EJ I BB

Figure 3. Aspect structuring of building blocks

That means that systems designed with the BBM have BBs as their
primary decomposition, with secondary structuring provided by the aspects
within the BBs. Introducing new aspects for a system is not forbidden, but it
is a worst-case situation where the change effort is almost maximal.

5. ARCHITECTURAL DESIGN WITH ASPECTS

The list of aspects is a tool for the architects to check the functional
completeness of their identified components. Questions such as: which
initialisation actions are required by a component, which faults can a
component have, how can it be influenced by other faults in the system, how
can the component be configured, what is the required reliability, which
resources may it use, etc., help to specify its required functionality.

5.1 Aspect-completeness of configurable components

Application features are modelled ideally if they can be added to an
installed system. Even more advanced is if the complete system consists of
pluggable components. To be able to implement systems from components
only, these components have to be functionally complete. Functional

www.manaraa.com

Aspect Design with the Building Block Method 599

completeness is relative to a given functional infrastructure. Aspects together
with a well-designed infrastructure are a means to achieve this functional
completeness. A (set of) BB(s) is aspect-complete if it allocates all its
required resources itself and implements all aspect functionality [15].

5.2 Aspects and documentation

In the BB method the notion of a BB is pervasive from architectural
design to implementation. In the architectural design BBs are identified, the
specification phase completes the specification of a BB's functionality, in
the design and implementation phases it is designed and implemented,
respectively. The list of aspects is used for completeness checking in review
sessions. Each BB has its own documents: here, again, aspects are used as
the main chapters of the document.

5.3 Aspects and implementation

In the implementation each function is a triple <object, process, aspect>
in the design space, i.e., each function is part of an object, is driven by a
process, and is part of an aspect. Making aspects a standard substructuring of
a BB, provides a secondary modularity. Naming conventions, files, or
programming language modules are possible ways of implementing this
modularity. Some of the aspects of a BB may be empty.

6. COMPARABLE APPROACHES

The architectural models of Kruchten [11] and Soni et al. [17] also make
the distinction between object and process dimensions for their
implementation structuring. Kruchten uses the terms development view and
process view, while Soni et al. use module interconnection architecture and
execution architecture. The examples given by Soni et al. indicate that the
conceptual architecture provides a functional decomposition that is
hierarchical to the development and the execution architecture. Kruchten's
logical view provides no constraints for further structuring in the
development and process views.

Kruchten's model is object-oriented and recognises the independence of
the modelling of processing resources. It leaves out the aspect dimension,
i.e., functions are subordinate to objects. Soni et al. work with a functional
structuring and on the next level distinguish between development units and
processes. The functional structuring is dominant; object-oriented structuring

www.manaraa.com

600 Jurgen K. Muller

may be used on a micro-level. Perhaps this is the case because their model is
more a reverse-architecting model than a forward-architecting model.

The logical model of the BBM is close to the one developed by Kruchten
[11], however we can also imagine more function-oriented logical models.
The original project where the tss system was developed and from which the
BBM originates took only a list of features as the logical model. This may be
too limited for domains where most of the domain knowledge is not
implicitly present. On the other hand the logical model of Kruchten does not
support nor hinder feature-list-like descriptions.

Independent of architectural discussions, limitations of the object
oriented design have been recognised. Kiczales et al. [10] describe examples
where object-oriented modelling is too limited and leads to very complex
code. He is looking for an alternative structuring that leads to a natural
design structure also for more complex examples. Kiczales calls his
approach aspect-oriented programming (AOP). He defines an aspect to be
functionality that cross-cuts objects. Since his concern is programming and
development of next generation programming languages, it could be said
that he does bottom-up what the BBM method does top-down, from the
system point of view. Furthermore, the need to define (sub-)languages in
AOP for each kind of problem creates very specific solutions only.

ACKNOWLEDGEMENTS

Thanks to Lothar Baumbauer, who, as chief architect, promoted the
consequent use of aspects in the tss development. Thanks also to my
colleagues Frank van der Linden, Hans Jonkers, Henk Obbink, Rene
Krikhaar, Angelo Hulshout, Jan Gerben Wijnstra and William van der
Sterren for valuable discussions and comments to earlier versions of the
paper.

REFERENCES

[1) Len Bass, Paul Clements, Rick Kazman: Software Architecture in Practise, Addison
Wesley, 1998

[2) Lothar System Level Documentation, Volume 6014 (internal documentation)
Philips Kommunikations Industrie AG, 1995

[3) Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommer! ad, Michael Stal:
Pattern-oriented Software Architecture -A System of Patterns, Wiley and Sons Ltd., 1996

[4] Paul C. From Domain Models to Architectures, Workshop on Software
Architecture, USC Center for Software Engineering, Los Angeles, 1994

[5) Paul C. Clements: From Subroutines to Subsystems: Component-Based Software
Development, The American Programmer, vol. 8, no. 11, November 1995

www.manaraa.com

Aspect Design with the Building Block Method

[6] Martin Fowler: UML Distilled, Applying the Standard Object Modelling Language,
Addison-Wesley, 1997

[7] Hassan Gomaa: Software Design Methods for Concurrent and Real-Time Systems,
Addison-Wesley, 1993

[8] ITU: Management Framework for Open Systems Interconnection (OS!) for ccm
Applications, Recommendation X.700, September 1992

601

[9] Michael Jackson: Formal Methods and Traditional Engineering, Journal on Systems and
Software, vol. 40, pp. 191-194, 1998

[10] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean
Marc Loingtier, John lrwing: Aspect-Oriented Programming, Xerox Corporation, 1997

[11] Philipe Kruchten: The 4+1 View Model of Architecture, IEEE Software, Nov.l995
[12] Frank van der Linden and Jurgen K. Muller: Creating Architectures with Building

Blocks,1EEE Software, Nov. 1995
[13] Frank van der Linden, Jurgen K. Muller: Composing Product Families from Reusable

Components, Bonnie Melhart, Jerzy Rozenblit (eds.) Proceedings 1995 International
Symposium and Workshop on Systems Engineering of Computer Based Systems, IEEE,
pp. 35 D 40 (1995)

[14] Gerrit Muller: Systeem ontwerper een twintig koppig monster?, personal
communication

[15] Jiirgen K. Muller: Feature-Oriented Software Structuring, CompSAC'97, pp. 552-555,
August 1997

[16] Muthu Ramachandran, Wolfgang Fleischer: Design for Large Scale Software Reuse:
An Industrial Case Study, 4th Inter') Conf. on Software Reuse, Orlando, Florida, April
1996

[17] Dilip Soni, Robert L. Nord, and Christine Hofmeister: Software Architecture in
Industrial Applications, ICSE'95, Seattle 1995

[18] Clemens Szyperski: Component Software- Beyond Object-Oriented Programming,
Essex 1998

www.manaraa.com

Erratum to: Software Architecture

Patrick Donohoe

Carnegie Mellon University, USA

Erratum to:

P. Donohoe (Ed.)

Software Architecture
DOI: 10.1007/978-0-387-35563-4

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© IFIP International
Federation for Information Processing. The book has been updated with the
changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-0-387-35563-4

http://dx.doi.org/10.1007/978-0-387-35563-4
http://dx.doi.org/10.1007/978-0-387-35563-4

	Contents
	Organizing Committee
	Program Committee
	Preface
	ANALYSIS AND ASSESSMENT OF SOFTWAREARCHITECTURE
	Architecture Design Recovery of a Family ofEmbedded Software Systems
	1. INTRODUCTION
	2. CONTEXT
	3. OVERVIEW OF THE ARCHITECTURALDESIGN RECOVERY PROJECT
	3.1 Step 1 - Program understanding for maintenance
	3.2 Step 2 - Populating reuse and recovery libraries
	3.3 Step 3 - Applying the outcomes of the designrecovery

	4. RESULTS AND EXPERIENCES GAINED
	4.1 Tool support
	4.2 People
	4.3 The recovery process

	5. CONCLUSIONS AND THE FUTURE
	ACKNOWLEDGEMENTS
	REFERENCES

	A Software Architecture Reconstruction Method
	1. INTRODUCTION
	2. SOFTWARE ARCHITECTURE RECOVERY
	2.1 Architecture recovery frameworks
	2.2 The Dali workbench
	2.3 Architecture recovery methods

	3. ARCHITECTURE RECONSTRUCTION METHOD
	3.1 Developing a concrete pattern recognition plan
	3.2 Extracting a source model
	3.3 Detecting and evaluating pattern instances
	3.4 Reconstructing and analyzing the architecture

	4. CASE STUDIES
	4.1 SupraAnalyse system
	4.2 MATIS system

	5. LESSONS LEARNED
	6. CONCLUSIONS
	REFERENCES

	Behaviour Analysis of Software Architectures
	1. INTRODUCTION
	2. PRIMITIVE COMPONENTS
	3. COMPOSITE COMPONENTS
	4. ANALYSIS
	5. DISCUSSION & CONCLUSIONS
	REFERENCES

	Rearchitecting Legacy Systems-Concepts and CaseStudy
	1. PRODUCT LINE ARCHITECTURES FORREPLICATED COMPONENTS
	2. FRAMELETS
	3. REFLECTION AS THE BASIS OF SELFCONFIGURINGASSETS
	4. THE RPC PRODUCT LINE-A CASE STUDY
	5. CONCLUSION
	REFERENCES

	Checking the Correctness of ArchitecturalTransformation Steps via Proof-CarryingArchitectures
	1. INTRODUCTION
	2. PROOF -CARRYING ARCHITECTURES
	3. AN EXAMPLE: SECURE DISTRIBUTEDTRANSACTION PROCESSING
	3.1 The abstract SDTP architecture
	3.2 An abstract proof of security
	3.3 A slightly more concrete SDTP architecture
	3.4 A slightly more concrete proof of security
	3.5 Completing the proof

	4. GENERALIZING FROM THE EXAMPLE
	5. RELATED WORK
	6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	Developing Dependable Systems Using SoftwareArchitecture
	1. INTRODUCTION
	2. FORMAL SPECIFICATION OF DEPENDABILITYBEHAVIOR
	2.1 Formal framework
	2.2 Dependability properties
	2.3 Refinement relation

	3. REPOSITORY OF DEPENDABLE SOFTWAREARCHITECTURES
	3.1 Dependable software architecture
	3.2 Deriving dependable architectures from propertiesspecifications
	3.3 Updating the repository
	3.4 Using the repository

	4. CONCLUSIONS
	REFERENCES

	ARCHITECTURAL MODELS ANDDESCRIPTIONS
	Specification and Refinement of Dynamic SoftwareArchitectures
	1. INTRODUCTION
	2. THE 1t-CALCULUS
	3. COMPONENTS AND ROLES
	3.1 Components
	3.2 Specification of component's behaviour
	3.3 Composites

	4. ATTACHMENTS
	5. ARCHITECTURE PROTOTYPING ANDVALIDATION
	6. EXTENSION AND REFINEMENT
	6.1 Extension of roles and components
	6.2 Architecture Refinement

	7. ADAPTORS
	8. SYSTEM CONSTRUCTION AND EXECUTION
	9. DISCUSSION
	REFERENCES

	Modeling Software Architectures and Styles withGraph Grammars and Constraint Solving
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Graphs and Graph Rewriting

	3. GRAPH REWRITING FOR SOFTWAREARCHITECTURE STYLES
	3.1 Client-Server
	3.2 Remote Medical Care System
	3.3 Connectors: Parallel Point-to-point

	4. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

	Describing Software Architecture with UML
	1. INTRODUCTION
	2. CONCEPTUAL ARCHITECTURE VIEW
	3. MODULE ARCHITECTURE VIEW
	4. EXECUTION ARCHITECTURE VIEW
	5. CODE ARCHITECTURE VIEW
	6. DISCUSSION
	REFERENCES

	Assessing the Suitability of a Standard Design Methodfor Modeling Software Architectures
	1. INTRODUCTION
	2. OVERVIEW OF UML
	2.1 UML background
	2.2 Our strategy for adapting UML for architecturemodeling

	3. EXAMPLE APPLICATION
	4. MODELING THE EXAMPLE APPLICATION INC2
	4.1 Overview of C2
	4.2 Modeling the meeting scheduler in C2

	5. MODELING THE C2-STYLE MEETINGSCHEDULER APPLICATION IN UML
	6. DISCUSSION
	6.1 Software modeling philosophies
	6.2 Assumptions
	6.3 Problem domain modeling
	6.4 Architectural abstractions
	6.5 Architectural styles

	7. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	Software Architecture and Java Beans
	1. INTRODUCTION
	2. JAVA BEANS IN SHORT
	2.1 Example
	2.2 Status and Environment

	3. USING BEANS TO IMPLEMENT ANARCHITECTURE
	3.1 Components
	3.2 Connections
	3.3 Configurations

	4. USING AN ADL TO DESCRIBE A BEANSCONFIGURATION
	4.1 Beans
	4.2 Connections
	4.3 Configurations
	4.4 Implicit Aspects

	5. RELATED WORK
	6. DISCUSSION
	6.1 Combining Software Architecture and Beans
	6.2 Design for Change

	REFERENCES

	ARCHITECTURAL PATTERNS AND STYLES
	Architectural Styles as Adaptors1
	1 INTRODUCTION
	2 COMPONENTS, ARCHITECTURAL STYLES, ANDREFINEMENTS
	3 A MODEL OF PRODUCT-LINE ARCHITECTURES
	4 ARCHITECTURAL STYLES AS ADAPTORS
	4.1 Motivation
	4.2 Gen Voca and adaptors

	5 AN EXAMPLE FROM AVIONICS
	5.1 Example styles
	5.2 Packaging adaptors as components
	5.3 A layer-style adaptor

	6 CONCLUSIONS
	REFERENCES
	APPENDIX - SOURCE FOR

	Attribute-Based Architecture Styles
	1. INTRODUCTION
	2. MOTIVATIONS
	3. MODELING ARCHITECTURAL DECISIONSUSING AN ABAS
	3.1 The Structure of an ABAS

	4. QUALITY ATTRIBUTE MODELS PARAMETERS
	5. ABASs
	5.1 Reliability/ Availability Attribute Model
	5.2 Simplex ABAS

	6. USING ABASs
	7. CONCLUSIONS
	REFERENCES

	A Framework for Describing Software Architecturesfor Reuse·
	1. INTRODUCTION
	2. INTERCONNECTING COMPONENTS
	2.1 We have three sub-objects
	2.2 Synchronisation morphisms
	2.3 Asynchronous interconnection of components
	2.4 A comparison between synchronous andasynchronous inter-connection of components

	3. THE PIPELINE ARCHITECTURE
	3.1 The components
	3.2 Interconnection diagrams
	3.3 The pipeline architecture has the pipeline property
	3.4 The architecture
	3.5 Is the pipeline architecture reusable?
	3.6 Linking context, problem, and solution

	4. RELATED WORK
	5. CONCLUSION
	REFERENCES

	Modeling Software Architecture Using DomainSpecificPatterns
	1. INTRODUCTION
	2. PSIGENE
	2.1 System Overview
	2.2 Pattern Formalization and Pattern Catalog

	3. SOFTWARE ARCHITECTURE WITHINPSI GENE
	3.1 Architecture in PSiGene

	4. EXAMPLE
	5. DISCUSSION
	6. CONCLUSION
	REFERENCES

	ImageBuilder Software
	1. THE COMPANY
	2. PROJECTS
	3. SUPPORT
	4. ARTIFACTS
	5. HISTORY AND EVALUATION
	6. RECOMMENDATIONS
	6.1 Getting Started
	6.2 Making Progress
	6.3 Developer Relations

	7. CONCLUSION
	ACKNOWLEDGEMENTS

	Event-Based Execution Architectures for DynamicSoftware Systems
	1. INTRODUCTION
	2. PREVIOUS WORK
	2.1 Software Architecture
	2.2 Causal Modeling

	3. A THEORY OF EXECUTION ARCHITECTURE
	3.1 Execution Architectures
	3.2 Modules and Pathways
	3.3 Execution Architecture Events
	3.4 Causal and Time Orders
	3.5 Static Snapshots

	4. APPLICATIONS OF EXECUTIONARCHITECTURES
	4.1 An Air Traffic Control System
	4.2 Applications to Other Domains

	5. SUMMARY AND CONCLUSIONS
	REFERENCES

	DOMAIN-SPECIFIC ARCHITECTURES ANDPRODUCT FAMILIES
	Evolution and Composition of Reusable Assets inProduct-Line Architectures: A Case Study
	1. INTRODUCTION
	2. CASE STUDY METHOD
	3. CASE STUDY ORGANISATIONS
	3.1 Case 1: Axis Communications AB
	3.2 Case 2: Securitas Larm AB

	4. PRODUCT-LINE ARCHITECTURES ANDREUSABLE ASSETS
	5. PROBLEMS
	5.1 Multiple versions of assets
	5.2 Dependencies between assets
	5.3 Assets in new contexts

	6. CAUSE ANALYSIS
	6.1 Early intertwining of functionality
	6.2 Organization
	6.3 Time to market
	6.4 Economic models
	6.5 Encapsulation boundaries and required interfaces

	7. RELATED WORK
	8. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	Flexibility of the ComB AD* Architecture
	1. INTRODUCTION
	2. THE COMBAD ARCHITECTURE
	2.1 The ComBAD framework
	2.2 The ComBAD application architecture

	3. ASSESSING THE QUALITY
	3.1 Technical adaptability
	3.2 Functional adaptability
	3.3 Portability
	3.4 Reusability
	3.5 Evaluation of the assessment

	4. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	Medical Product Line Architectures
	1. MEDICAL ARCHITECTURES
	1.1 Characteristics of medical software environment
	1.2 Architecture overview

	2. MAIN ARCHITECTURAL ISSUES
	3. AN EXAMPLE SOLUTION
	3.1 Conceptual architecture
	3.2 Process architecture
	3.3 Technical architecture

	4. CONCLUSIONS
	REFERENCES

	Kaleidoscope
	1. INTRODUCTION
	2. THE ARCHITECTURAL APPROACH
	2.1 Static Architecture
	2.2 Dynamic Behaviour

	3. INFORMATION COMPONENTS
	3.1 Conceptual Images
	3.2 Concrete Images
	3.3 Facets
	3.4 Aggregate images

	4. PROJECTORS
	5. FILTERS
	6. STRATEGIC COMPONENTS
	6.1 Goals
	6.2 Architecture
	6.3 Strategies

	7. DYNAMIC BEHAVIOUR: SCENARIOS
	8. IMPLEMENTATION ISSUES
	9. CONCLUSIONS AND FUTURE WORK
	REFERENCES

	Segregating the Layers of Business InformationSystems
	1. INTRODUCTION
	1.1 Business information systems
	1.2 Why is software design so hard?

	2. QUALITY SOFTWARE ARCHITECTURE
	2.1 Overview
	2.2 Central themes
	2.4 Virtual devices
	2.5 DataStore
	2.6 Workspaces and storables
	2. 7 Virtual user interface (VUI)
	2.8 Virtual dialog manager (VDM)
	2.9 Virtual windows
	2.3 Architecture

	3. BENEFITS
	REFERENCES

	INTEROPERABILIT~INTEGRATION, ANDEVOLUTION OF SOr 1 WARE
	Security Issues with the Global Command andControl System (GCCS)
	1. INTRODUCTION
	2. BACKGROUND
	3. GCCS
	3.1 GCCS architecture
	3.2 Interoperability issues
	3.3 Architectural security issues and interoperability
	3.4 Architectural integration summary

	4. SECURITY IMPLEMENTATION
	4.1 State of the art

	5. A FRAMEWORK FOR SECURITY
	6. CONCLUSION
	REFERENCES

	Architecture for Software Construction by UnrelatedDevelopers
	1. INTRODUCTION
	2. A SIMPLE EXAMPLE
	3. USES FOR A SYSTEM ARCHITECTURALDESCRIPTION
	3.1 High-level description during planning stages
	3.2 High-level description during operation
	3.3 High level description during maintenance
	3.4 High-level description during major evolution

	4. A SECOND EXAMPLE
	5. A THIRD EXAMPLE
	6. CONCLUSIONS
	REFERENCES

	Integration of Heterogenous Software Architectures -An Experience Report
	1. INTRODUCTION
	2. SITUATION OF SOFTWARE ARCHITECTURES ATPROJECT START
	2.1 Initial software landscape
	2.2 Available software systems

	3. THE SOFTWARE LANDSCAPE MIGRATION PATH
	3.1 Migration step 1: data exchange support for keysoftware systems
	3.2 Migration step 2: data integration of key components
	3.3 Migration step 3: control integration of keyComponents
	3.4 Migration Step 4: Implementation of Components byDistributed Objects

	4. PROBLEMS ENCOUNTERED IN THE MIGRATION
	5. RELATED WORK
	6. CONCLUSION
	REFERENCES

	Structural Analysis of the Software Architecture - AMaintenance Assessment Case Study
	1. INTRODUCTION
	1.1 Software evolution
	1.2 Architectural quality
	1.3 Architectural erosion
	1.4 Characteristics of erosion
	1.5 Structural signs of erosion

	2. MAINTENANCE ASSESSMENT CASE STUDY
	2.1 Approach
	2.2 Proposed measures
	2.3 General measures
	2.4 Basic architectural measures
	2.5 Derived architectural measures

	3. THE CASE STUDY
	3.1 The Squid product
	3.2 Approach
	3.3 Conclusion from the interviews
	3.4 Summary and conclusions

	4. RELATED WORK
	5. BENEFITS
	6. FUTURE WORK
	REFERENCES

	Architectural Evolution
	1. INTRODUCTION
	2. NOKIA MOBILE PHONE FAMILY
	3. INITIAL ARCHITECTURE ANDDEVELOPMENT PROCESS
	4. TENSION IN THE INITIAL ARCHITECTURE
	5. EVOLUTION
	6. LESSONS LEARNED
	ACKNOWLEDGEMENTS

	Building Systems from Parts in the Real World
	1. INTRODUCTION
	2. EXAMPLES
	2.1 LIDAR: Improved aerial mapping
	2.2 GeoMedia Web
	2.3 GIS version control
	2.4 Upgrade version compatibility problem
	2.5 Image library
	2.6 Resume library
	2.7 Database communication

	3. DISCUSSION
	ACKNOWLEDGEMENTS

	TECHNIQUES AND METHODS FORSOFTWARE ARCHITECTURE
	Architectural Concerns in Automating CodeGeneration
	1. INTRODUCTION
	2. PROBLEM DESCRIPTION
	3. OUTLINE OF THE MODELLING APPROACH
	4. OUTLINE OF THE PROPOSEDARCHITECTURE
	5. SYNTHESISING PRODUCTION CODE
	6. CONCLUDING REMARKS
	REFERENCES

	The MBASE Life Cycle Architecture MilestonePackage
	1. ARCHITECTURE EVALUATION CRITERIA
	2. THE MBASE LIFE CYCLE APPROACH
	3. MBASE OVERVIEW
	3.1 Anchor point milestones

	4. EXAMPLE MBASE APPLICATION
	4.1 Digital library multimedia archive projects
	4.2 MBASE model Integration for LCO stage
	4.3 Project results

	5. THE ARCHITECTURE FEASIBILITYRATIONALE AS FIRST-CLASS CITIZEN.
	5.1 Document overview
	5.2 Document outline
	5.3 Document guidelines and rationale'
	5.4 Potential pitfalls/best practices
	5.5 Quality criteria

	6. CONCLUSIONS
	REFERENCES

	Software Architecture at Siemens:The challenges, our approaches, and some open issues
	1. INTRODUCTION
	2. PEOPLE, PROCESS, ARCHITECTURE
	2.1 Architecture assessments

	3. EXPERIENCE AND LESSONS LEARNED
	3.1 Use innovative processes
	3.2 Migrate from software "construction" to "composition"
	3.3 Architecture review sessions are effective
	3.4 Frameworks are useful for both process andarchitecture
	3.5 Investment in domain analysis/product family/productline can be worthwhile
	3.6 N-tier architectures are popular, especially fordistributed systems
	3.7 Maintain an online repository of "best practices"

	4. PROBLEMS FACED BY SOFTWARE ARCHITECTSIN INDUSTRY
	4.1 Increasing system complexity
	4.2 Architecture of high-lifetime and rapidly evolvingsystems
	4.3 Issues caused by organizational structure
	4.4 Architectures including COTS components orplatforms

	5. OUTLOOK
	ACKNOWLEDGEMENTS
	REFERENCES

	Architectural Design to Meet StakeholderRequirements
	1. INTRODUCTION
	2. GOAL-ORIENTED PROCESS SUPPORT FORARCHITECTURAL DESIGN
	3. MEETING DIFFERENT STAKEHOLDERREQUIREMENTS
	3.1 Scenario 1
	3.2 Scenario 2
	3.3 Scenario 3

	4. DISCUSSION AND RELATED WORK
	5. CONCLUSIONS AND FUTURE WORK
	REFERENCES
	APPENDIX

	The Software Architect
	1. AN ARCHITECT OR AN ARCHITECTURETEAM
	2. SKILLS OF THE ARCHITECTS
	2.1 A broad range of experience
	2.2 Communication skills
	2.3 Leadership
	2.4 Proactive, goal-oriented and committed

	3. THE ROLE AND PURPOSE OF THEARCHITECTURE TEAM
	3.1 The charter of a software architecture team

	4. A TEAM AMONG OTHER TEAMS
	4.1 Size of the team
	4.2 System architecture and software architecture

	5. TRAPS AND PITFALLS
	5.1 Lack of authority
	5.2 Ivory tower
	5.3 Imbalance
	5.4 Confusing a tool and the architecture
	5.5 Procrastination

	6. THE PERSONALITY OF THE ARCHITECT
	7. SUMMARY
	REFERENCES AND FURTHER READING

	Aspect Design with the Building Block Method
	1. INTRODUCTION
	2. OVERVIEW OF THE BBM
	2.1 The AM-M of the building block method

	3. SOFTWARE ASPECTS
	3.1 Aspects of system design
	3.2 Mapping of system aspects to software

	4. ASPECTS AND BUILDING BLOCKS
	5. ARCHITECTURAL DESIGN WITH ASPECTS
	5.1 Aspect-completeness of configurable components
	5.2 Aspects and documentation
	5.3 Aspects and implementation

	6. COMPARABLE APPROACHES
	ACKNOWLEDGEMENTS
	REFERENCES

	Erratum to: Software Architecture

